
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Survey and Critique of
Some Models of Code Generation

R. G. Cattell
Computer Science Department

Carnegie-Mellon University

November 1977

Abstract

Various work on code generation is discussed, particularly from the point of view of
simplifying and/or automating the derivation of this phase of compilers. Code
generators, which typically translate an intermediate notation into target machine code
in one or more steps, have been relatively ad hoc as compared to the first phase of
compilers, which translates a source language into the intermediate notation. Progress
in formalizing the code generation process is summarized, with the conclusion that
considerably more work remains. Future directions of research are suggested.

Acknowledgements

Td like to thank Bill Wulf, Mario Barbacci, Joe Newcomer, and Raj Reddy for their
comments on earlier versions of this paper.

This work was supported in part by the Defense Advanced Research Projects Agency
under contract number F 4 4 6 2 0 - 7 3 - C - 0 0 7 4 and is monitored by the Air Force Office of
Scientific Research.

1

1* Introduction

The classical compiler has two main phases: recognition, and generation. The
recognizer, which translates a source program into an internal notation, typically
consists of lexical, syntactic, and static semantic analysis. A code generator then
translates the internal notation into object code, in one or more subphases, with
various degrees and kinds of optimization.

Although there is more work to be done, considerable progress has been made toward
formalization and mechanization of the recognition phase of compilation. This paper is
a survey and analysis of some recent work toward doing the same for the code
generat ion phase, which heretofore has remained unpleasantly ad hoc and has received
less theoretical attention. The recurrent theme of these reviews is the goal of
simplifying and automating the construction of this phase of compilation. Particular
at tent ion is paid to the contributions and shortcomings of the various approaches with
respect to this goal.

Unfortunately, the assumptions and compilation models of authors in this area differ
wide ly , making a generalized summary of their work virtually impossible. Instead, the
approaches are discussed individually, drawing comparisons where appropriate. Then,
in the figures given at the end of this paper, a few salient features will be compared
along some common dimensions. The reader may want to refer to these tables as the
approaches are presented.

2. General Background

Wilcox, in his thesis at Cornell [1971] , provides one of the first comprehensive
discussions of code generation for a high-level language compiler. In particular, he
abstracts methodology from his work on PL/C, a PL/1 compiler developed at Cornell.
As wel l as describing the general structure of the compiler and code generator, he
discusses in some detail addressing and data reference, register management, and the
translation process between his internal notations, the APT and SLM. The APT is an
Abstract Program Tree which is essentially a parse tree of the language, but oriented
towards sequencing of operations rather than the phrase structure of the input. The
APT is linearized, then translated into a sequential SLM (Source Language Machine)
notat ion which is essentially an assembler-like notation especially oriented towards
execut ing P L / 1 . After some optimization on the SLM, it is translated into 3 6 0 machine
code.

Some of Wilcox's work, such as the idea of an APT, and his scheme for data
descript ion, have significance for general code generation. Unfortunately for our
purposes, a large part of the work is specific to the machine and language, wi th few
hints as to how it might be generalized. Also, the structure of the compiler precludes
cer ta in kinds of optimization; more on this later.

2

A r e c e n t thesis by Simoneaux [1 9 7 5] provides a more readable and general d iscuss ion
o f compi le r organizat ion, in termediate representat ions, and opt imizat ion, in the same
l igh t as this paper. However this thesis consti tutes l i t t le or no new resu l ts , and
t h e r e f o r e wi l l jus t be po in ted to as a re ference here.

W e i n g a r t [1 9 7 3] also presents a summary of code generat ion techniques, and a
p r o m i s i n g formal izat ion of the code generat ion process; his work wi l l be d iscussed in
s e c t i o n 4.

In gene ra l , the re have been two kinds of approaches to more automatic p roduc t ion of
code genera to rs . The f i rs t is the development of a special ized language for code
g e n e r a t o r s , w i t h bu i l t - in machinery for dealing w i th common details of the p rocess .
T h e second ext reme is the development of a program to bui ld a code genera tor f o r a
l anguage f rom a pure ly s t ruc tura l and behavioral machine descr ip t ion. Rather t han
b e i n g mutual ly exclusive, these procedural and descriptive language approaches ,
r e s p e c t i v e l y , represent points in a continuum of degrees of automatic programming. I t
is somet imes d i f f icu l t to classify an approach along this dimension; for example, au tho rs
some t ime re fe r to "descr ip t ions" which are real ly just tabular represen ta t ions of
p r o c e d u r e s . The descriptive approach is probably ul t imately more des i rab le ; no t
s u r p r i s i n g l y , the re has been more success w i th the former approach.

3. The Specialized Procedural Language Approach

Elson and Rake's [1 9 7 0] GCL, Generate Coding Language, was used as a p rocedu ra l
spec i f i ca t i on of code generat ion in a large PL/1 compiler. In the implementa t ion
d e s c r i b e d in their art ic le, GCL is t rans lated into an internal code and i n te rp re ted . Code
g e n e r a t i o n is per fo rmed in one pass, a t ree walk, in which node-speci f ic rou t i nes
(ca l led OPGEN Macro Defini t ions, w r i t t e n in GCL), are invoked at each node. Prev ious
passes have expanded cer ta in operat ions (such as indexing and t ype coerc ions) and
p e r f o r m e d global opt imizat ions on the t ree. Elson and Rake seem to have been
r e a s o n a b l y successful w i t h this approach, except perhaps for compilat ion speed, w h i c h
w o u l d be improved by compil ing GCL, or by simply improving the implementat ion, w h i c h
t h e y suggest .

A r e c e n t thesis taking the special ized language approach was w r i t t en by R. P. Young at
t h e Un ive rs i t y of Il l inois [1 9 7 4] , The organizat ion and internal notat ion he uses is
s imi la r to that of Wilcox (who is now at U of I and served as his advisor). The code
g e n e r a t i o n process is descr ibed in ICL (In te rpre t ive Coding Language), wh ich is s t o r e d
and i n t e r p r e t e d by the Coder. The input to the Coder f rom the compiler f ron t end is
in t he fo rm of a sequential SLM notat ion. ICL is based on templates for each SLM
i n s t r u c t i o n , having capabi l i t ies for decision-making, automatic handling of var ious da ta
accesses (an e laborat ion of Wilcox's data descriptors), and register al locat ion. ICL
t u r n s out to be hard to read and wr i t e , so Young proposes a h igher - leve l TEL
(Temp la te Language) wh ich is compi led into ICL

Young ' s approach is a considerable improvement over simple machine code macro
s u b s t i t u t i o n fo r source language operat ions. He recognizes that "Simple subs t i t u t i on

3

into a code skeleton ... leads to inadequate code", which is what led him to I C L A This is
not to say that he has solved all the problems of a specialized language for code
generat ion, however. There are, in particular, some serious questions with respect to
the organization of the system. For example, the decision to do all the translation in
one pass makes forward references difficult (reserving space for address calculation
for an instruction and "then either no-op instructions or a branch around the unused
space is inserted..." patching it later!) In discussing optimization, he suggests that the
SLM instructions should somehow be "rearranged to perform the required computation
in a more efficient manner", but this makes difficult the optimizations which depend on
the original APT, or the peculiarities of the machine architecture. It could also be
argued that the intermediate SLM notation is not necessary at all, that generation could
proceed directly from the APT,

Implementation of Young's coder was unfortunately not done, although an ICL
description for the 3 6 0 was proposed.

There is a comparatively long history of compiler-writing systems, dealing with code-
generat ion to lesser or greater extents. These efforts have all taken the specialized
language approach. An early example is Feldman [1966] , who uses a language FSL for
descript ion of programming language semantics (code generation). In combination with
a syntax description, it was used in a compiler-compiler. It was somewhat primitive,
but did deal wi th errors, forward references, and simple storage allocation. Feldman
and Gries [1 9 6 8] and McKeeman et al [1970] survey more advanced translator writ ing
systems. More recently, White [1973] and Ganzinger et al [1 9 7 7] describe compiler-
generat ion systems along this line. Traditionally, compiler-generation systems have
been weak on automating the later stages of compilation, specifically code generation.
But as the formal methods and grammars applied have become better understood and
more powerfu l , their scope has gradually been evolving towards the later stages of
compilation.

Ripken [1 9 7 5] describes the intermediate code generator currently used in the latter
compi ler -generator , MUG2 (Ganzinger et al [1977]) .

There are three distinct phases of code generation in his scheme, as shown in Figure
2. The first phase takes as input an APT-like tree with attributes attached to the
nodes, constructed and optimized in earlier phases of MUG2. This APT is translated
into a zero-address virtual machine code. A Tree-Walking Push-Down Transducer
(TPDT) performs this translation, using a set of code templates (indexed by APT
opera tor) in a specialized notation allowing testing of attribute values attached to
nodes and output of code. In the second phase, the zero-address machine operations
are translated into an SLM-like n-address form (which Ripken calls the Intermediate
Language, IL). This is a fairly simple procedure, in which the zero-address virtual
machine, wi th its several stacks, is simulated, and SLM-instructions emitted for each

Inadequate code is generated because simple substitution doesn't allow analysis of the context in which a
construct appears. For example, we might want to fenerate different code for an addition if the result is used
as an address (indexing), or if one of the arguments is 1.

4

z e r o - a d d r e s s ins t ruc t ion (except PUSHes and POPs). Finally, the SLM ins t ruc t ions are
t r a n s l a t e d in to ta rge t machine code, using macros for the SLM ins t ruc t ion p r o v i d e d b y
t he user (as in Mi l ler [1971]) .

The MUG2 g r o u p has gone much far ther than previous compi le r -genera to r p ro j ec t s in
s e v e r a l w a y s . They have been able to integrate formal izat ions of all phases of the
comp i le r , inc lud ing the later stages, and optimizations in part icular . This has l a rge l y be
made poss ib le b y the r ichness and numerousness of their in termediate no ta t ions .
These a l low each phase to operate on the notation most appropr ia te and e f f i c ien t f o r
i ts use. The APT represen ta t ion in general, and at t r ibutes in par t icu lar , have been
used to make the descr ip t ion of various t ree t ransformat ions and op t im iza t ions
poss ib le in a concise way . Also, the zero-address machine phase make it poss ib le to
nea t l y separa te t e m p o r a r y allocation, because temporar ies and the i r l i fet imes are made
exp l i c i t on a stack.

L ike ea r l i e r comp i le r -genera t ion systems, MUG2 avoids machine dependence unt i l qu i te
la te in the compi la t ion process. This is a mixed blessing. It means that chang ing
machine cou ld be as easy as changing the the SLM macros in the last s tage. Howeve r ,
if one wan ts to make machine-dependent optimizations, par t i cu la r ly those w h i c h
i nvo l ve recogn iz ing ear ly in the compilation the t ree segments that shou ld be
p e r f o r m e d by ce r ta in ta rget instruct ions,^ then we are not in as good of shape. This
is pa r t i cu l a r l y t roub lesome because simplif ication rather than automat ion of machine
dependence is the approach taken. However, work on MUG2 is st i l l under w a y , and t he
au tho rs shou ld have more advances forthcoming.

4. More Automation, More Descriptive Languages

P. L. Mi l le r 's thesis [1 9 7 1] was probably the f i rs t attempt t owa rd automat ing code
g e n e r a t o r p roduc t i on . His goal is statedly the descr ipt ive language app roach .
A l t h o u g h he on ly at tacked a por t ion of the complete prob lem, the l imi tat ions and
app l i cab i l i t y of his w o r k are fa i r ly c lear ly specif ied.

In Mi l le r 's model , cons t ruc t ion of a code generator occurs in t w o phases. F i rs t , t h e
language is " d e s c r i b e d " by a set of macros in MIML, a procedural Machine Independen t
Macro Language. These prov ide a machine-independent skeleton for a code gene ra to r .
T h e n , the machine is descr ibed in OMML, a declarat ive Object Machine Macro Language,
w h i c h is used to " f i l l ou t " the code generator skeleton. Speci f ical ly, the OMML
spec i f i es the reg is te rs and memory on the machine, instruct ions to move data b e t w e e n
t h e m , w o r d size and alignment information, and most impor tant ly , the ins t ruc t ions t o
emi t f o r each "macro " (actual ly, an SLM-like instruct ion) p roduced b y the MIML
p r o c e d u r e s . The SLM-l ike intermediate code is a sequence of t w o - o p e r a n d v i r t u a l
i ns t ruc t i ons , bu t is essent ia l ly a b inary t ree because each ins t ruct ion is numbered and
one of t he operands may be [the number o f] a previous inst ruct ion.

2 for exaropkj. usint * aubtraci-ona-and-ikip-if-zaro for a loop, incfcxint for an addition, or a shrft for muHipiy
by Iwo.

5

In order to eventually achieve both language and machine independence, it is important
that the descriptions of the two be separated. In the past, it has not been necessary
to attack this difficult task. Miller's model of code generation looks interesting in this
respect , in that it might be possible to do this in his system, if the details can be
ironed out.

His scheme falls short of our goals in two major ways. First, only two subproblems are
attacked: arithmetic expressions, and data access; and the solutions are not completely
general . For example, in data access, he allows only simple address calculation (index,
displacement, base), assumes all of memory is addressable, and that registers have
certain properties. Second, his approach cannot properly be called purely descriptive.
Obviously, this hasn't been achieved with respect to the language, as the MIML macros
are essentially programs. With respect to the machine,, it is necessary to specify
instruction sequences for each macro, which is debatably pure description, although it
is a step in the right direction.

M. K. Donegan [1 9 7 3] has attempted to generalize Miller's scheme in some ways. The
heart of his system is a finite-state machine model of code generation: in the process
of generating code for a node in a parse tree, the code generator enters various
states, dependent on the properties of the operands and the machine registers
available. Code is emitted and operations performed on the basis of this state; then
another state is entered, or (in a terminal state) code generation for the node is
complete.

Donegan points out that the state transition table with associated actions is easier to
understand and debug than routines in a language tailored to code generation such as
those described earlier in this paper. He suggests a language CGPL (Code Generator
Preprocessor Language) for conveniently describing the states and actions, and a
preprocessor which translates CGPL into a program in a high-level language such as
P L / 1 . The program, when compiled, would constitute the code generator. The
preprocessor must analyze the state transitions to generate a program utilizing the
shortest paths to each terminal state, checking for input errors such as circular paths.
It must also make some assumptions about register allocation and other tasks
per formed in the code generation process.

Donegan's biggest contribution is his characterization of the code generation process
in such a simple way, a finite state machine. The simplicity of the model aids human
understanding, as mentioned above, as well as making mechanization easier. His for te
may also be his weakness, however: has the process been oversimplified? For
example, the model as presented seems to have trouble with register allocation, when
there are more than one or less than an effectively infinite number of registers.
Donegan points out that "Any attempt to assign states to each possible register
conditions would be rather hopeless" in such a case, and discusses various
alternatives, none of which look very attractive. The finite state model as described
seems to be more of a convenient mechanism for handling data access characteristics
of instructions, than a panacea for code generation. However, more elaborate *state
tables look promising as an efficient notation for constructing or driving a code
generator from the output of an analysis program.

6

U n f o r t u n a t e l y , Donegan didn't implement the system, so the only assurance w e have
t ha t p rob lems are surmountable is the usual express ion of conf idence that the basic
ideas are sound , that implementat ion would f i l l in detai ls. This isn't par t i cu la r l y a fau l t
o f Donegan 's w o r k , but ra ther is t rue to more or less of a degree of all the w o r k
d i scussed in this paper ; the whole task is too large to under take these s tud ies .
Consequen t l y , it is especial ly necessary to t r y to foresee how major detai ls might be
hand led in these models.

A n o t h e r con t r i bu t i on of Donegan is that he has neat ly separated code g e n e r a t o r
g e n e r a t i o n t ime f rom code generat ion t ime, a concern w i th some o ther models.
Donegan makes l i t t le mention of language independence, incidental ly, p resumab ly he
h a d in mind deal ing w i t h mult iple machines and a single language.

C o n c u r r e n t l y w i t h Donegan, Weingart [1 9 7 3] developed a model of code gene ra t i on
t h a t is more p o w e r f u l , and demonstrably pract ical . His code generator uses a p a t t e r n
t r e e , or d iscr iminat ion net, to select code sequences for an APT-I ike input parse t r e e .

The code gene ra to r works as a corout ine to the parsing process. APT tokens
(o p e r a t o r , symbo l , and constant nodes of the t ree) are passed to the code g e n e r a t o r ,
w h i c h s to res them on a stack, and t raverses the pat tern t ree in an at tempt to match
t h e s tack tokens (the stack is a preorder representa t ion of the APT t ree) . The t r e e
w a l k i n g commences w i t h the top node of the pa t te rn t ree ; the nodes encoun te red are
o f t w o s o r t s :

(1) o u t p u t act ions, wh ich occur at the leaves of the pa t te rn t ree , and spec i f y
ins t ruc t ions to generate. Af ter processing such an output act ion, the code
gene ra to r re tu rns to the top of the pa t te rn t ree , using the next piece of APT
inpu t .

(2) match nodes, which speci fy an operator , operands (register , memory, cons tant) ,
o r one of the predef ined classes of opera tors or operands; these are matched
against the cur ren t input token. Upon a successful match, the t r e e wa l k
cont inues at the r ight son of this pa t te rn t ree node, w i th the next input t o k e n ;
o t h e r w i s e , it cont inues at the left son.

Th is p a t t e r n t r e e , used as a discrimination net, is a compact and ef f ic ient w a y t o
r e p r e s e n t most of the machine-dependent informat ion in a code generator . We ingar t
d e m o n s t r a t e d the method by modifying an IMP-10 (B i lo fsky [1973]) compi ler (wh ich
a l r e a d y used this in terna l representat ion), to generate code for the PDP-11 . The re is
s t i l l some machine-dependency not bu i l t - in to the t ree , par t icu lar ly w i t h respec t to
i n s t r u c t i o n and data format , but this does not look infeasible for fu tu re work .

W e i n g a r t f ound that creat ing the pat tern t ree for the PDP-11 , despite its s imple and
compac t f o r m , was qui te di f f icul t . This is not surpr is ing, since all of the potent ia l code
sequences and pa t te rns must be in terwoven into the one pa t te rn t ree w i th the p r o p e r
o r d e r i n g to g e n e r a t e good code. This prompted Weingart to engage in the second pa r t
of his thes i r , a t tempt ing to automatically generate the t ree f rom a machine desc r i p t i on .
U n f o r t u n a t e l y , his ideas here are not nearly as universal as his formal izat ion of code
g e n e r a t i o n ; the p rob lem has been vast ly overs impl i f ied.

7

Basically, it is assumed that each machine instruction corresponds to one language
operator , with a small t ree representing the action of the instruction. When that t ree
is found in the input, it is assumed that we should generate that instruction. It is
immediately apparent that this is insufficient, as Weingart observes, in the cases where
no instruction implements some portion of an input tree. To fix this, he adds
"conversions". These correspond to instructions that "convert" a data item to a form in
which one of the other insructions can operate on it, for example moving it into a
register. The thesis is quite weak on conversions; the PDP-11 is only partially dealt
wi th , and the scheme does not appear to be general enough to handle other machines.
However , Weingart did succeed in writing a program which (for the PDP-11)
automatically constructs the pattern tree from a special representation of the
instruction actions, and automatically adds the conversions, given a human-generated
input file which sets these up (e.g., specifies the necessary conversions).

Weingart does not show the code generator or examples of its output. The
automatically generated pattern tree was not compared to the manually generated one,
nor was the quality of the code discussed. The thesis is lacking in evaluation of
results, wi th respect to both performance and generality.

More recently, Newcomer [1 9 7 5] presents a more promising approach to the selection
of code sequences. In his scheme, a set of attributes, T-operators, language axioms,
and some other specifications are prepared for a machine and language, and these are
analyzed to produce code templates (specifying code to generate for language
constructs) for a compiler. The analysis uses APT-like language parse trees, but with
attr ibutes attached to the nodes. The attributes are selected by the user to specify
useful propert ies and other information about the nodes in the tree. For example,
they might specify the location to be used for a temporary required in the calculation
of the node's result, "fudge factors" such as whether the negative of the originally
specified result is to be computed for efficiency reasons, or common sub-expression
information.

The T-operators are of two kinds: terminal T-ops, and transformation T-ops [my terms,
not Newcomer's] , which probably should be thought of as completely different animals,
although they have been given the same name in the thesis.

Terminal T-ops specify trees for which code can be generated "immediately". When a
t ree is not of this form, transformation T-ops specify operations which can be
performed to change its form. This might include generation of some code, for
example, to load an operand into a register, or it might not, for example in
transformations of the tree based on arithmetic properties. Like terminal T-ops,
transformation T-ops specify the form and attributes of the trees to which they are
applicable; in addition, they specify the form and attributes of the trees after the
operat ion is performed. For efficiency, T-ops are indexed by the (top) language
operator (L-op) of the trees to which they apply.. It is also necessary to know the
cost of using the T-op, and its requirements and effects on the global program state
(for example, wi th respect to allocation of resources). Conveniently, cost can be
measured as whatever the user desires to optimize; the only assumption made is that a
cost can be given to each code sequence, and that these are additive.

8

Because Newcomer's thesis does not include a complete description of the code
template generation scheme in one place, a summary of the process may be useful
here . Although his mathematical notation would make this description much shorter, it
has not been used, to improve readability. In the following, "template" means a
language t ree with attributes (a pattern) plus a code sequence which implements that
t ree .

Given an APT-like language tree L for which we wish to generate a code template
(comments on this selection below), we search for code sequences as follows:

5 1 . Look up the top operation of L, to get all terminal T-ops which might be
applicable, call this set P.

52 . If any are directly applicable (shape & attributes match L) then go to S7.

53 . Form a Preferred Attribute Set (PAS) by putting together the sets of attributes
required (of the operands) by the terminal T-ops in P.

54 . Recursively perform this algorithm for each operand of the top node of L,
passing the PAS as a parameter. Each son will return a set of templates with
potential code sequences for their evaluation.

55 . Form the cross-product of possibilities for these templates, collecting all
possible concatenations of the code sequences.

56 . Form the cross-product of this set with P (P gives the possible code sequences
to implement the top L-op), but only include those operand evaluation
sequences whose attributes satisfy the attribute (domain) requirements of the
corresponding element of P.

57 . If a non-empty subset of these satisfy the PAS we were passed, return this
subset (the first- time the algorithm is performed, the PAS is empty and trivially
satisfied. Otherwise:

58 . Attempt to satisfy the PAS by means-ends analysis similar to that used in GPS
[Ernst & Newell, 1969] , but exhaustive: For each template, find the difference
between its requirements (attributes) and the PAS. Use this difference to look
up transformation T-ops, and try applying them to get templates which satisfy
the PAS.

59 . If successful with a non-empty subset of templates, return this set (with the
attributes and code sequences, as modified by the transformation T-ops to
satisfy the PAS). Otherwise, give up.

The language axioms are used to determine all other trees equivalent to the given one,
and this algorithm is performed for each.

Although this algorithm could be used directly in a compiler, to generate code for a

9

t r e e L, it would be too expensive to do the analysis at compile time. Instead, it is
envisioned that a driving program would somehow select a complete set (but no larger
than necessary) of small language trees for which to find optimal code. This gives us
templates (language trees with corresponding code sequences) which could then be
used in the compiler. Both the selection of the trees and the use of the templates in
the compiler are open for future research.

Note that it is possible for S9 to "give up". This should not normally happen if there
exists any way to implement L on the machine and the T-ops provided are adequate.
However , in order to avoid an infinite loop in which the algorithm repeatedly applies a
sequence of T-ops which unknowingly return it to its original state, it was necessary
to limit the depth of search. To avoid this, it would be necessary to leave the means-
ends analysis paradigm and incorporate memory of previous search.

One of the best strengths of Newcomer's template idea is that it appears to be suitable
for use in an optimizing compiler such as Bliss-11 (Wulf et al [1975]) , in which code
generat ion occurs in several phases. The templates can be used in an earlier phase to
enumerate potential code sequences to guide, say, register allocation, and later, in the
actual output of code.

The most conspicuous drawbacks of Newcomer's scheme are that it is too general, and
that it is not general enough. It is probably too general in the sense that Newcomer
has applied general but weak AI methods to the problem, and experienced difficulties
w i th the amount of time required to analyze even simple trees. It might be possible to
achieve tolerable performance through heuristics; he suggests what effects these
heuristics would have to have, but gives no actual mechanisms. Another alternative is
to use a stronger method with correspondingly stronger assumptions and built- in
knowledge about code generation.

Like Donegan, Newcomer deals on ly with arithmetic expression trees. An open area
for research is to determine whether control constructs and other operations can be
incorporated into his scheme. Also open to further work is a way to automatically
discover semantic equivalence of trees; the general problem is undecidable, an
approximate solution is desired to reduce proliferation of identical cases.

Invent ing the attributes, transformation & terminal T-ops, and other specifications for
this system is still a non-trivial task, even though the case analysis is automated. A
mechanism for deducing them from a machine description would be desirable, for this
reason as well as others.

Concurrent ly with Newcomer, Snyder [1975] , at MIT, wrote a thesis with somewhat
less ambitious goals with respect to formalization and automation of code generation,
but interesting in that it provides ideas for different generalizations. His paper
describes the implementation of a compiler for the programming language C, in which a
large part of the machine dependence of the code generation process has been
abstracted into tables.

The first phase of the compiler code generation produces a 3-address code for an
abstract C-machine. The second phase then translates this abstract machine code into

10

assembly code for the target machine (a macro expansion scheme is used, which takes
advantage of properties of typical assembly languages). These two phases are
analogous to Miller's MIML and OMML, but more refined, as we will see shortly.

The instructions for the abstract machine, which Snyder refers to as AMOPs (Abstract
Machine Operations), are essentially L-ops which include the types (real, integer,
pointer) of their operands. Pseudo-instructions are also permitted. These are
basically keyword macros for storage allocation, procedure linkage, and other
information. The addresses for the abstract machine are called REFs; a REF may
specify an abstract register, static or stack variable, label, indirect reference, or
constant.

The user provides a machine description, in the form of a set of specifications which
map the abstract machine onto a real machine. These specifications are translated by
a stand-alone program GT which generates tables for the code generator. The
machine description maps the abstract machine onto a real machine in two ways. Part
of the mapping is occurring in GT before the compiler is produced, the other part in
the compiler itself; keep this in mind to avoid confusion.

The user's machine description consists of three kinds of specifications. First, the user
defines the data storage and access structure to be used in the abstract machine (i.e.,
the target machine structure). To do this, he defines the register names, classes of
registers, conflicts (either real or due to the abstract representation), memory
alignment, and addressable unit sizes. Snyder uses a quite readable declaration-like
notation to specify this information:

r e g n a m e s (X 0 , X I , X 2 t X 3 , X 4 , A , Q , F) ;
c l a s s X (X B , X 1 , X 2 , X 3 , X 4) , R (A , Q) ;
s i z e l (c h a r) f 4 (i n t , f l o a t) , 8 (d o u b l e) ?

Then, the user specifies the data access properties of the machine instructions, in a
"operand i , operand2, result" notation. For example,

+ d : F f f 1 f F
+ t : R , H , 1 .
* i : Q , n , Q [A]

specifies that: double precision add (+d) takes its first operand form the F-register, its
second operand from memory, and leaves its result in the F-register; integer add (+i)
takes its first operand in a register, the second from memory, and leaves the result in
the first operand location; integer multiplication (*i) multiplies a memory location into
the Q-register and destroys register A in the process.

Then, the user defines a mapping from abstract machine operations to assembly
language, using a macro-expansion scheme. This is somewhat complex to describe
here , but a simple example is:

+ i : " AD#R # S n

11

w h e r e #R and #S are macros which expand to the names of the result and second
operands, respectively. An occurrence of integer addition might then expand to

ADA X

to add X to accumulator A, for example. When the features supplied for macro
expansion are insufficient, it is possible to specify this in the form of a C routine.

Al together , Snyder has made some hopeful advances toward our goals, particularly in
the convenient specification of data storage and access. Unfortunately, it is necessary
to per form the case analysis of code sequences, and to construct macros and C
routines to perform the translation. Further work combining the successes of Snyder
and Newcomer will eventually be necessary.

Snyder brings up an important point with respect to abstract machines, or in fact any
intermediate notation between source and object languages:

"If the abstract machine is of a high level (i.e., very problem-oriented), then the
program [compiler] will be very portable, but the implementation of the abstract
machine will be difficult. On the other hand, if the abstract machine is of a low level
(i.e., more machine-oriented), then, unless it corresponds closely to the target
machine, either the code will be inefficient or the implementation will be complicated
by optimization code."

In the case of an UNCOL for multiple languages, there is yet another constraint, that it
correspond to the high level language, for both implementation and code efficiency.
Nevertheless, the motivation for an UNCOL is great, and this author believes that these
will become more prevalent, probably with some language or machine restrictions (e.g.,
see Coleman [1974]) . Snyder seems fairly definite, however, about sticking with one
language.

The fact that Snyder fully implemented his system was a great asset in evaluating his
ideas, because he was forced to fill in details, even if only for a couple machines. He
was surprisingly successful in converting his compiler to generate code for another
machine in a few days time. Of course, to achieve an implementation of an ent ire
compiler in reasonable time it was necessary to simplify by restricting machine
architectures and ignoring optimization to a large extent. For example, the register
allocation is performed on the fly by a simple local algorithm.

The directions Snyder points out for further work are "bigger and better": more
general machine model, more complicated languages, and optimization. Our goal of
more fully automating code generator generation could be added to this list.

12

5. Related Formal Treatments

At the opposite pole from implementation, Aho & Johnson [1976] deal formally with the
problem of generating optimal code from a parse tree, using a model similar to
Newcomer's. They propose a model of machine and language, and show several
interesting results. In particular, they show that a simple brute-force optimal code
generat ion scheme is linearly proportional to the tree size and instruction set size.
Unfortunately, they also make some unacceptable simplifying assumptions. For
example, with respect to the language, they are only dealing with expression trees,
and only ones without common subexpressions. With respect to the machine, an
instruction must compute and store a single result into a register, registers must be of
one symmetric kind, and of course they do not deal with any other processor state or
intricacies of control, only the arithmetic instructions in one-to-one correspondence
wi th arithmetic L-ops.

Samet [1 9 7 5] , in a voluminous thesis, presents a method for proving that a code
generator has correctly translated a program; he has implemented the prover for
translations of CMPLISP, a subset of LISP, into LAP, a PDP-10 assembly code. Samet's
system proves that a particular program was correctly translated independent of the
code generation process, rather than proving that a code generator is correct
independent of the input program. This approach has the advantage that no
knowledge of the the code generator, be it human or machine, is required, but, of
course, the disadvantage that a new proof is required for each translation.

Basically, to prove that a set of machine instructions correctly implements a CMPLISP
function, his system symbolically executes the machine instructions in such a way as to
produce a t ree representation of their effect, and this is then proved equivalent to the
CMPLISP function. The cornerstone of the system is a canonical t ree representation,
obtained using a set of semantic equivalence axioms which Samet derived from
McCar thy [1963] . Both the original program and the output of the symbolic execution
are expressed in this form, as shown in Figure 2, reducing the equivalence/non-
equivalence proof to a comparatively simple matching process.

The "machine description" in Samet's system consists of a set of LISP procedures, one
for each LAP instruction. When the procedure for an instruction is executed, it
updates a computational model as appropriate to the effect of the instruction. It also
performs certain control operations; for example, when a condition is tested, either the
condition value is known from previous results and that path is taken, or both paths
are processed (there are mechanisms to stack alternatives and test for loops).

Samet's system has been oversimplified here. However, it should be clear that his
ideas, in particular the symbolic execution, the axioms of semantic equivalence, and the
canonical t ree form, have potential applicability to our goals of generating a translator.

13

6. Summary

Figure 1 is a condensation into tabular form of many of the observations made in this
paper. The abbreviated interpretations should be fairly self-explanatory at this point.
The entries are classified according to the primary goal of their approach, as they
w e r e in this paper: simplifying or automating the generation of code generators
(sections 3, 4, resp.). Note that all of the authors model code generation as a multiple-
step process from source language to intermediate language-machine notation(s) to the
target machine code. Some used an internal notation like Wilcox's SLM; others used an
APT- l ike notation. Wilcox used both. Regardless of its form, the utility of the internal
notation is that it provides a low-level but machine-independent UNCOL (Conway
[1 9 5 8]) representation, and/or it allows information and transformations to be more
easily and concisely represented. One of the most important aspects of the various
techniques, but the hardest to compare in any simple way, is the algorithm itself; these
are simply summarized in a short phrase in the figure. The last two columns give a
short evaluation of the approach.

A frequent ly confusing aspect of systems involving more than one level of
interpretat ion or translation, such as many of those described, is what is being
interpreted/ t ranslated by / into what at what point. For example, the approaches differ
as to whether the translator is table-driven, or generated from tables, and the degree
to which the case analysis of instructions is performed at translation time as opposed
to translator construction time. A simple notation, developed by the author in
conjunction with S. Saunders [1977] , is used in Figure 2 to try to clarify these
relationships for selected systems. The notation is quite simple; two primitives are
used. An arrow from language L I to language L2, with T connected to the side of the
ar row, indicates that T translates the text (program) in language L I to language L2. If
L2 is missing, i.e., the head of the arrow is replaced by an electrical-engineering
grounding symbol, then T Interprets L I (one can think of this as translating L I into
action, perhaps).

It should be noted that the assumptions the various authors make about the definition
of code generation and its relationship to the rest of the compiler differ somewhat.
For example, the stage at which register allocation is performed differs, and this
affects the flexibility and information available to other stages (see comments on
MUG2). The post-processing assumptions also differ, for example whether machine or
assembly code is generated. Snyder even takes advantage of the syntax of the
assembler language in building code generation macros. Although there are these
dif ferences, all of the authors have in common the "core" function of code generation:
the selection of machine instructions on the basis of the intermediate language
constructs.

In summary, this paper has attempted to point out the potential drawbacks and
advantages of several models of code generation, particularly with respect to
possibilities for simplifying and automating the creation of this phase of the compiler.
Progress has been made, yet all of these works have non-trivial deficiencies with

14

respect to this goal, pointing directions for future research. It is likely that there will
be more interest in this field in the near future.

15

Bibliography

Aho, A. V., and Johnson, S.O.: "Optimal Code Generation for Expression Trees", JACM
2 3 , 3 (July 1976) , pp 4 5 8 - 5 0 1

Coleman, Samuel S.: JANUS: A Universal Intermediate Language, PhD thesis,
Electrical Engineering, University of Colorado, 1974

Conway, M. E.: "Proposal for an UNCOL", CACM 1,10 (October 1958) pp 5 - 8

Donegan, Michael K.: An Approach to the Automatic Generation of Code Generators,
* PhD thesis, Computer Science & Engineering, Rice University, 1973

Ernst, G. W., and Newell, A.: GPS: A Case Study In Generality and Problem Solving,
Academic Press, 1969

Elson, M., and Rake, S. T.: "Code-generation Technique for Large-language
Compilers", IBM Systems Journal 9,3 (1970) , pp 1 6 6 - 1 8 8

Feldman, J.: A Formal Semantics for Computer-Oriented Languages, PhD thesis,
Computer Science, Carnegie-Mellon University, 1964

Feldman, J. and Gries, D.: "Translator Writing Systems", CACM 11,2 (February 1 96 8)
pp 7 7 - 1 1 3

Ganzinger, K, Ripken, K., and Wilhem, R.: "Automatic Generation of Optimizing
Multipass Compilers", IFIPS Proceedings 1977, pp 5 3 5 - 5 4 0

McCarthy, J,: "A basis for a Mathematical Theory of Computation", in Computer
Programming and Formal Systems (Eds: Baffort and Hirshberg), North Holland,
1 9 6 3

McKeeman, W. M., Horning, J. J., and Wortman, D. B.: A Compiler Generator, Prentice
Hall, 1 9 7 0

Miller, Perry L.: Automatic Creation of a Code Generator from a Machine Description,
T R - 8 5 , Project MAC, Massachusetts Institute of. Technology, 1971

Newcomer, Joseph M.: Machine Independent Generation of Optimal Local Code, PhD
thesis, Computer Science, Carnegie-Mellon University, 1975

Ripken, Knut: "Generating an Intermediate-Code Generator in a Compiler-Writing
System", Proceedings of the International Computing Symposium, 1975, pp 1 2 1 -
127

Samet, Hanan: Automatically Proving the Correctness of Translations Involving
Optimized Code, PhD thesis, Computer Science, Stanford University, 1975

16

Saunders, S., and Cattell, R.: "A Notation for Translation and Interpretation Systems",
Blackboard in Science Hall 4114, March 1977.

Simoneaux, Donald C : High-Level Language Compiling for User-Defineable
Architectures, Electrical Engineering, Naval Postgraduate School, 1975

Snyder, Alan: A Portable Compiler for the Language C, TR-149 , Project MAC,
Massachusetts Institute of Technology, 1975

Weingart , Steven W.: An Efficient and Systematic Method of Compiler Code
Generation, PhD thesis, Computer Science, Yale University, 1973

White, John R.: JOSSLE: A Language for Specifying and Structuring the Semantic
Phase of Translators, PhD thesis, University of California at Santa Barbara,
1 9 7 3

Wilcox, Thomas R.: Generating Machine Code for High-Level Programming Languages,
PhD thesis, Computer Science, Cornell University, 1971

Wulf, W., Johnsson, R., Weinstock, C , Hobbs, S., and Geschke, C : The Design of an
Optimizing Compiler, American Elsevier, 1975

Young, Raymond: The Coden A Program Module for Code Generation in High-level
Language Compilers, MS thesis. Computer Science, University of Illinois, 1 9 7 4

Work Goal
Intermediate
Notation(s) Algorithm

Advantages /
Implementation Contributions Limitations

Wilcox
1971

Formalize APT&SLM still relatively
ad hoc

PL/C: 360 internal notat ions,
descr ib ing locations

machine/ language speci f ic ,
mainly coded- in

Feldman
1964

• s o n
& Rake
1970

Young
197$

Simpl i fy parse t ree

Simpl i fy APT

Simpli fy APT&SLM

u s e r - w r i t t e n FSL

i n te rp re ted Q Q L
coding language

in te rp re ted none
coding language

semi-automated system
for who le compiler

workab le system for
large language

only some of compi ler
funct ions automated

s low, some genera l i t y ,
but sti l l lacking

practical?, advanced w i t h opt imizat ion; genera l i ty
respect to simpl i f icat ion

Ripken
1977

Miller
1971

Simpl i fy APT w /
a t t rs , &SLM

Automate linear APT

t ree transfms &
code macros

sti l l under opt imizat ion, a t t r ibu tes machine dependence,
development & in termed. not. advances, automation

in tegrated w i th compiler

special ized macro l imited
expansion

separated lang/mach
dependence, macros

only addrsing, exprs
handled, and in l imited w a y

Donegan
1973

Weingart
1973

S imp l i f y / APT
Automate?

S imp l i f y / APT
Automate

s ta te - t rans i t ion
table

none

d iscr iminat ion-net IMPÍO:
d r i ven matcher / PDP10
code emi t ter

Newcomer Automate low- leve l APT a t t r -d i f f d r i ven
1975 w /a t t r i bu tes exhaust ive search

nyc'
197

l imited

Snyder
1975

S imp l i f y / 3 -addr SLM
Automate

combined macros /
table d r i ven

Aho &
Johnson
1976

Samet
1975

Formalize APT using
machine-ops

C-compiler

exhaust ive search none

Ver i f y Canonical
(LISP) APT

t rans fm rules, symb CMPLISP:
" :n i

s impl ic i ty

simple formal izat ion;
pract ical , ef f ic ient

search approach:
automated case analysis

many machine
proper t ies tabular ized

some complexi ty l imits,
formal alg'm statement

formal t ree equivalence
methods; ver i f ica t ion

pract ical i ty? l imited w.r . t .
constructs handled

l imited w.r.t . automation

too slow, requi res se tup ,
not general enough w.r . t .
machine

too C- /mach ine- speci f ic ;
st i l l much manual const r .

too s t rong assms about
machine arch. & ops

st i l l l imited w.r . t . con t ro l
const ructs s imulat ion, matching PDP10

Figure 1. See tex t fo r explanat ions. Comments on cont r ibut ions/ l imi ta t ions are re la t ive to predecessors/successors, not w.r . t . all.

Young

APT

Snyder

SLM ^ Machine-code

Î
ICL
j ^ — C o d e r

T

indicates that T
translates A into B

1
A

i r 1
indicates that I
executes A

j> 3 -addr
fa code

phase 1

A
-^•Assembly Code

tables
C Q ~ t L f < ~ G T

mach
descr

Ripken optimizing
tree transfms

source - > A P T .

ig->tree attr b

PTI/ -j> APT .
attributes

string->tree attribute
grammar rules

i i

zero-addr
fa code

code
templates

TPDT

4> SLM
A

IL-clescr

J < — I L P G

lit
0» machine

code .

DMACS-like
macro expnsn

Samet

CMPLISP
compiler. >

V

canonical
reprs'n -

equiva

—fa—miiui

repn

ivaience rules machine
code t

Machine
Description

J r — LISP

canonical
reprs'n It

yes/no

matching
process

Figure 2. Interpretation & Translation diagrams for selected systems.

