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Abstract 

Various work on code generation is discussed, particularly from the point of view of 
simplifying and/or automating the derivation of this phase of compilers. Code 
generators, which typically translate an intermediate notation into target machine code 
in one or more steps, have been relatively ad hoc as compared to the first phase of 
compilers, which translates a source language into the intermediate notation. Progress 
in formalizing the code generation process is summarized, with the conclusion that 
considerably more work remains. Future directions of research are suggested. 
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1* Introduction 

The classical compiler has two main phases: recognition, and generation. The 
recognizer, which translates a source program into an internal notation, typically 
consists of lexical, syntactic, and static semantic analysis. A code generator then 
translates the internal notation into object code, in one or more subphases, with 
various degrees and kinds of optimization. 

Although there is more work to be done, considerable progress has been made toward 
formalization and mechanization of the recognition phase of compilation. This paper is 
a survey and analysis of some recent work toward doing the same for the code 
generat ion phase, which heretofore has remained unpleasantly ad hoc and has received 
less theoretical attention. The recurrent theme of these reviews is the goal of 
simplifying and automating the construction of this phase of compilation. Particular 
at tent ion is paid to the contributions and shortcomings of the various approaches with 
respect to this goal. 

Unfortunately, the assumptions and compilation models of authors in this area differ 
wide ly , making a generalized summary of their work virtually impossible. Instead, the 
approaches are discussed individually, drawing comparisons where appropriate. Then, 
in the figures given at the end of this paper, a few salient features will be compared 
along some common dimensions. The reader may want to refer to these tables as the 
approaches are presented. 

2. General Background 

Wilcox, in his thesis at Cornell [1971] , provides one of the first comprehensive 
discussions of code generation for a high-level language compiler. In particular, he 
abstracts methodology from his work on PL/C, a PL/1 compiler developed at Cornell. 
As wel l as describing the general structure of the compiler and code generator, he 
discusses in some detail addressing and data reference, register management, and the 
translation process between his internal notations, the APT and SLM. The APT is an 
Abstract Program Tree which is essentially a parse tree of the language, but oriented 
towards sequencing of operations rather than the phrase structure of the input. The 
APT is linearized, then translated into a sequential SLM (Source Language Machine) 
notat ion which is essentially an assembler-like notation especially oriented towards 
execut ing P L / 1 . After some optimization on the SLM, it is translated into 3 6 0 machine 
code. 

Some of Wilcox's work, such as the idea of an APT, and his scheme for data 
descript ion, have significance for general code generation. Unfortunately for our 
purposes, a large part of the work is specific to the machine and language, wi th few 
hints as to how it might be generalized. Also, the structure of the compiler precludes 
cer ta in kinds of optimization; more on this later. 
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A r e c e n t thesis by Simoneaux [ 1 9 7 5 ] provides a more readable and general d iscuss ion 
o f compi le r organizat ion, in termediate representat ions, and opt imizat ion, in the same 
l igh t as this paper. However this thesis consti tutes l i t t le or no new resu l ts , and 
t h e r e f o r e wi l l jus t be po in ted to as a re ference here. 

W e i n g a r t [ 1 9 7 3 ] also presents a summary of code generat ion techniques, and a 
p r o m i s i n g formal izat ion of the code generat ion process; his work wi l l be d iscussed in 
s e c t i o n 4. 

In gene ra l , the re have been two kinds of approaches to more automatic p roduc t ion of 
code genera to rs . The f i rs t is the development of a special ized language for code 
g e n e r a t o r s , w i t h bu i l t - in machinery for dealing w i th common details of the p rocess . 
T h e second ext reme is the development of a program to bui ld a code genera tor f o r a 
l anguage f rom a pure ly s t ruc tura l and behavioral machine descr ip t ion. Rather t han 
b e i n g mutual ly exclusive, these procedural and descriptive language approaches , 
r e s p e c t i v e l y , represent points in a continuum of degrees of automatic programming. I t 
is somet imes d i f f icu l t to classify an approach along this dimension; for example, au tho rs 
some t ime re fe r to "descr ip t ions" which are real ly just tabular represen ta t ions of 
p r o c e d u r e s . The descriptive approach is probably ul t imately more des i rab le ; no t 
s u r p r i s i n g l y , the re has been more success w i th the former approach. 

3. The Specialized Procedural Language Approach 

Elson and Rake's [ 1 9 7 0 ] GCL, Generate Coding Language, was used as a p rocedu ra l 
spec i f i ca t i on of code generat ion in a large PL/1 compiler. In the implementa t ion 
d e s c r i b e d in their art ic le, GCL is t rans lated into an internal code and i n te rp re ted . Code 
g e n e r a t i o n is per fo rmed in one pass, a t ree walk, in which node-speci f ic rou t i nes 
(ca l led OPGEN Macro Defini t ions, w r i t t e n in GCL), are invoked at each node. Prev ious 
passes have expanded cer ta in operat ions (such as indexing and t ype coerc ions) and 
p e r f o r m e d global opt imizat ions on the t ree. Elson and Rake seem to have been 
r e a s o n a b l y successful w i t h this approach, except perhaps for compilat ion speed, w h i c h 
w o u l d be improved by compil ing GCL, or by simply improving the implementat ion, w h i c h 
t h e y suggest . 

A r e c e n t thesis taking the special ized language approach was w r i t t en by R. P. Young at 
t h e Un ive rs i t y of Il l inois [ 1 9 7 4 ] , The organizat ion and internal notat ion he uses is 
s imi la r to that of Wilcox (who is now at U of I and served as his advisor). The code 
g e n e r a t i o n process is descr ibed in ICL ( In te rpre t ive Coding Language), wh ich is s t o r e d 
and i n t e r p r e t e d by the Coder. The input to the Coder f rom the compiler f ron t end is 
in t he fo rm of a sequential SLM notat ion. ICL is based on templates for each SLM 
i n s t r u c t i o n , having capabi l i t ies for decision-making, automatic handling of var ious da ta 
accesses (an e laborat ion of Wilcox's data descriptors), and register al locat ion. ICL 
t u r n s out to be hard to read and wr i t e , so Young proposes a h igher - leve l TEL 
(Temp la te Language) wh ich is compi led into ICL 

Young ' s approach is a considerable improvement over simple machine code macro 
s u b s t i t u t i o n fo r source language operat ions. He recognizes that "Simple subs t i t u t i on 
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into a code skeleton ... leads to inadequate code", which is what led him to I C L A This is 
not to say that he has solved all the problems of a specialized language for code 
generat ion, however. There are, in particular, some serious questions with respect to 
the organization of the system. For example, the decision to do all the translation in 
one pass makes forward references difficult (reserving space for address calculation 
for an instruction and "then either no-op instructions or a branch around the unused 
space is inserted..." patching it later!) In discussing optimization, he suggests that the 
SLM instructions should somehow be "rearranged to perform the required computation 
in a more efficient manner", but this makes difficult the optimizations which depend on 
the original APT, or the peculiarities of the machine architecture. It could also be 
argued that the intermediate SLM notation is not necessary at all, that generation could 
proceed directly from the APT, 

Implementation of Young's coder was unfortunately not done, although an ICL 
description for the 3 6 0 was proposed. 

There is a comparatively long history of compiler-writing systems, dealing with code-
generat ion to lesser or greater extents. These efforts have all taken the specialized 
language approach. An early example is Feldman [1966] , who uses a language FSL for 
descript ion of programming language semantics (code generation). In combination with 
a syntax description, it was used in a compiler-compiler. It was somewhat primitive, 
but did deal wi th errors, forward references, and simple storage allocation. Feldman 
and Gries [ 1 9 6 8 ] and McKeeman et al [1970] survey more advanced translator writ ing 
systems. More recently, White [1973 ] and Ganzinger et al [ 1 9 7 7 ] describe compiler-
generat ion systems along this line. Traditionally, compiler-generation systems have 
been weak on automating the later stages of compilation, specifically code generation. 
But as the formal methods and grammars applied have become better understood and 
more powerfu l , their scope has gradually been evolving towards the later stages of 
compilation. 

Ripken [ 1 9 7 5 ] describes the intermediate code generator currently used in the latter 
compi ler -generator , MUG2 (Ganzinger et al [1977]) . 

There are three distinct phases of code generation in his scheme, as shown in Figure 
2. The first phase takes as input an APT-like tree with attributes attached to the 
nodes, constructed and optimized in earlier phases of MUG2. This APT is translated 
into a zero-address virtual machine code. A Tree-Walking Push-Down Transducer 
(TPDT) performs this translation, using a set of code templates (indexed by APT 
opera tor ) in a specialized notation allowing testing of attribute values attached to 
nodes and output of code. In the second phase, the zero-address machine operations 
are translated into an SLM-like n-address form (which Ripken calls the Intermediate 
Language, IL). This is a fairly simple procedure, in which the zero-address virtual 
machine, wi th its several stacks, is simulated, and SLM-instructions emitted for each 

Inadequate code is generated because simple substitution doesn't allow analysis of the context in which a 
construct appears. For example, we might want to fenerate different code for an addition if the result is used 
as an address (indexing), or if one of the arguments is 1. 
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z e r o - a d d r e s s ins t ruc t ion (except PUSHes and POPs). Finally, the SLM ins t ruc t ions are 
t r a n s l a t e d in to ta rge t machine code, using macros for the SLM ins t ruc t ion p r o v i d e d b y 
t he user (as in Mi l ler [ 1971 ] ) . 

The MUG2 g r o u p has gone much far ther than previous compi le r -genera to r p ro j ec t s in 
s e v e r a l w a y s . They have been able to integrate formal izat ions of all phases of the 
comp i le r , inc lud ing the later stages, and optimizations in part icular . This has l a rge l y be 
made poss ib le b y the r ichness and numerousness of their in termediate no ta t ions . 
These a l low each phase to operate on the notation most appropr ia te and e f f i c ien t f o r 
i ts use. The APT represen ta t ion in general, and at t r ibutes in par t icu lar , have been 
used to make the descr ip t ion of various t ree t ransformat ions and op t im iza t ions 
poss ib le in a concise way . Also, the zero-address machine phase make it poss ib le to 
nea t l y separa te t e m p o r a r y allocation, because temporar ies and the i r l i fet imes are made 
exp l i c i t on a stack. 

L ike ea r l i e r comp i le r -genera t ion systems, MUG2 avoids machine dependence unt i l qu i te 
la te in the compi la t ion process. This is a mixed blessing. It means that chang ing 
machine cou ld be as easy as changing the the SLM macros in the last s tage. Howeve r , 
if one wan ts to make machine-dependent optimizations, par t i cu la r ly those w h i c h 
i nvo l ve recogn iz ing ear ly in the compilation the t ree segments that shou ld be 
p e r f o r m e d by ce r ta in ta rget instruct ions,^ then we are not in as good of shape. This 
is pa r t i cu l a r l y t roub lesome because simplif ication rather than automat ion of machine 
dependence is the approach taken. However, work on MUG2 is st i l l under w a y , and t he 
au tho rs shou ld have more advances forthcoming. 

4. More Automation, More Descriptive Languages 

P. L. Mi l le r 's thesis [ 1 9 7 1 ] was probably the f i rs t attempt t owa rd automat ing code 
g e n e r a t o r p roduc t i on . His goal is statedly the descr ipt ive language app roach . 
A l t h o u g h he on ly at tacked a por t ion of the complete prob lem, the l imi tat ions and 
app l i cab i l i t y of his w o r k are fa i r ly c lear ly specif ied. 

In Mi l le r 's model , cons t ruc t ion of a code generator occurs in t w o phases. F i rs t , t h e 
language is " d e s c r i b e d " by a set of macros in MIML, a procedural Machine Independen t 
Macro Language. These prov ide a machine-independent skeleton for a code gene ra to r . 
T h e n , the machine is descr ibed in OMML, a declarat ive Object Machine Macro Language, 
w h i c h is used to " f i l l ou t " the code generator skeleton. Speci f ical ly, the OMML 
spec i f i es the reg is te rs and memory on the machine, instruct ions to move data b e t w e e n 
t h e m , w o r d size and alignment information, and most impor tant ly , the ins t ruc t ions t o 
emi t f o r each "macro " (actual ly, an SLM-like instruct ion) p roduced b y the MIML 
p r o c e d u r e s . The SLM-l ike intermediate code is a sequence of t w o - o p e r a n d v i r t u a l 
i ns t ruc t i ons , bu t is essent ia l ly a b inary t ree because each ins t ruct ion is numbered and 
one of t he operands may be [ the number o f ] a previous inst ruct ion. 

2 for exaropkj. usint * aubtraci-ona-and-ikip-if-zaro for a loop, incfcxint for an addition, or a shrft for muHipiy 
by Iwo. 
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In order to eventually achieve both language and machine independence, it is important 
that the descriptions of the two be separated. In the past, it has not been necessary 
to attack this difficult task. Miller's model of code generation looks interesting in this 
respect , in that it might be possible to do this in his system, if the details can be 
ironed out. 

His scheme falls short of our goals in two major ways. First, only two subproblems are 
attacked: arithmetic expressions, and data access; and the solutions are not completely 
general . For example, in data access, he allows only simple address calculation (index, 
displacement, base), assumes all of memory is addressable, and that registers have 
certain properties. Second, his approach cannot properly be called purely descriptive. 
Obviously, this hasn't been achieved with respect to the language, as the MIML macros 
are essentially programs. With respect to the machine,, it is necessary to specify 
instruction sequences for each macro, which is debatably pure description, although it 
is a step in the right direction. 

M. K. Donegan [ 1 9 7 3 ] has attempted to generalize Miller's scheme in some ways. The 
heart of his system is a finite-state machine model of code generation: in the process 
of generating code for a node in a parse tree, the code generator enters various 
states, dependent on the properties of the operands and the machine registers 
available. Code is emitted and operations performed on the basis of this state; then 
another state is entered, or (in a terminal state) code generation for the node is 
complete. 

Donegan points out that the state transition table with associated actions is easier to 
understand and debug than routines in a language tailored to code generation such as 
those described earlier in this paper. He suggests a language CGPL (Code Generator 
Preprocessor Language) for conveniently describing the states and actions, and a 
preprocessor which translates CGPL into a program in a high-level language such as 
P L / 1 . The program, when compiled, would constitute the code generator. The 
preprocessor must analyze the state transitions to generate a program utilizing the 
shortest paths to each terminal state, checking for input errors such as circular paths. 
It must also make some assumptions about register allocation and other tasks 
per formed in the code generation process. 

Donegan's biggest contribution is his characterization of the code generation process 
in such a simple way, a finite state machine. The simplicity of the model aids human 
understanding, as mentioned above, as well as making mechanization easier. His for te 
may also be his weakness, however: has the process been oversimplified? For 
example, the model as presented seems to have trouble with register allocation, when 
there are more than one or less than an effectively infinite number of registers. 
Donegan points out that "Any attempt to assign states to each possible register 
conditions would be rather hopeless" in such a case, and discusses various 
alternatives, none of which look very attractive. The finite state model as described 
seems to be more of a convenient mechanism for handling data access characteristics 
of instructions, than a panacea for code generation. However, more elaborate *state 
tables look promising as an efficient notation for constructing or driving a code 
generator from the output of an analysis program. 
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U n f o r t u n a t e l y , Donegan didn't implement the system, so the only assurance w e have 
t ha t p rob lems are surmountable is the usual express ion of conf idence that the basic 
ideas are sound , that implementat ion would f i l l in detai ls. This isn't par t i cu la r l y a fau l t 
o f Donegan 's w o r k , but ra ther is t rue to more or less of a degree of all the w o r k 
d i scussed in this paper ; the whole task is too large to under take these s tud ies . 
Consequen t l y , it is especial ly necessary to t r y to foresee how major detai ls might be 
hand led in these models. 

A n o t h e r con t r i bu t i on of Donegan is that he has neat ly separated code g e n e r a t o r 
g e n e r a t i o n t ime f rom code generat ion t ime, a concern w i th some o ther models. 
Donegan makes l i t t le mention of language independence, incidental ly, p resumab ly he 
h a d in mind deal ing w i t h mult iple machines and a single language. 

C o n c u r r e n t l y w i t h Donegan, Weingart [ 1 9 7 3 ] developed a model of code gene ra t i on 
t h a t is more p o w e r f u l , and demonstrably pract ical . His code generator uses a p a t t e r n 
t r e e , or d iscr iminat ion net, to select code sequences for an APT-I ike input parse t r e e . 

The code gene ra to r works as a corout ine to the parsing process. APT tokens 
( o p e r a t o r , symbo l , and constant nodes of the t ree) are passed to the code g e n e r a t o r , 
w h i c h s to res them on a stack, and t raverses the pat tern t ree in an at tempt to match 
t h e s tack tokens ( the stack is a preorder representa t ion of the APT t ree) . The t r e e 
w a l k i n g commences w i t h the top node of the pa t te rn t ree ; the nodes encoun te red are 
o f t w o s o r t s : 

(1 ) o u t p u t act ions, wh ich occur at the leaves of the pa t te rn t ree , and spec i f y 
ins t ruc t ions to generate. Af ter processing such an output act ion, the code 
gene ra to r re tu rns to the top of the pa t te rn t ree , using the next piece of APT 
inpu t . 

( 2 ) match nodes, which speci fy an operator , operands (register , memory, cons tant ) , 
o r one of the predef ined classes of opera tors or operands; these are matched 
against the cur ren t input token. Upon a successful match, the t r e e wa l k 
cont inues at the r ight son of this pa t te rn t ree node, w i th the next input t o k e n ; 
o t h e r w i s e , it cont inues at the left son. 

Th is p a t t e r n t r e e , used as a discrimination net, is a compact and ef f ic ient w a y t o 
r e p r e s e n t most of the machine-dependent informat ion in a code generator . We ingar t 
d e m o n s t r a t e d the method by modifying an IMP-10 (B i lo fsky [1973] ) compi ler (wh ich 
a l r e a d y used this in terna l representat ion), to generate code for the PDP-11 . The re is 
s t i l l some machine-dependency not bu i l t - in to the t ree , par t icu lar ly w i t h respec t to 
i n s t r u c t i o n and data format , but this does not look infeasible for fu tu re work . 

W e i n g a r t f ound that creat ing the pat tern t ree for the PDP-11 , despite its s imple and 
compac t f o r m , was qui te di f f icul t . This is not surpr is ing, since all of the potent ia l code 
sequences and pa t te rns must be in terwoven into the one pa t te rn t ree w i th the p r o p e r 
o r d e r i n g to g e n e r a t e good code. This prompted Weingart to engage in the second pa r t 
of his thes i r , a t tempt ing to automatically generate the t ree f rom a machine desc r i p t i on . 
U n f o r t u n a t e l y , his ideas here are not nearly as universal as his formal izat ion of code 
g e n e r a t i o n ; the p rob lem has been vast ly overs impl i f ied. 
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Basically, it is assumed that each machine instruction corresponds to one language 
operator , with a small t ree representing the action of the instruction. When that t ree 
is found in the input, it is assumed that we should generate that instruction. It is 
immediately apparent that this is insufficient, as Weingart observes, in the cases where 
no instruction implements some portion of an input tree. To fix this, he adds 
"conversions". These correspond to instructions that "convert" a data item to a form in 
which one of the other insructions can operate on it, for example moving it into a 
register. The thesis is quite weak on conversions; the PDP-11 is only partially dealt 
wi th , and the scheme does not appear to be general enough to handle other machines. 
However , Weingart did succeed in writing a program which (for the PDP-11) 
automatically constructs the pattern tree from a special representation of the 
instruction actions, and automatically adds the conversions, given a human-generated 
input file which sets these up (e.g., specifies the necessary conversions). 

Weingart does not show the code generator or examples of its output. The 
automatically generated pattern tree was not compared to the manually generated one, 
nor was the quality of the code discussed. The thesis is lacking in evaluation of 
results, wi th respect to both performance and generality. 

More recently, Newcomer [ 1 9 7 5 ] presents a more promising approach to the selection 
of code sequences. In his scheme, a set of attributes, T-operators, language axioms, 
and some other specifications are prepared for a machine and language, and these are 
analyzed to produce code templates (specifying code to generate for language 
constructs) for a compiler. The analysis uses APT-like language parse trees, but with 
attr ibutes attached to the nodes. The attributes are selected by the user to specify 
useful propert ies and other information about the nodes in the tree. For example, 
they might specify the location to be used for a temporary required in the calculation 
of the node's result, "fudge factors" such as whether the negative of the originally 
specified result is to be computed for efficiency reasons, or common sub-expression 
information. 

The T-operators are of two kinds: terminal T-ops, and transformation T-ops [my terms, 
not Newcomer's] , which probably should be thought of as completely different animals, 
although they have been given the same name in the thesis. 

Terminal T-ops specify trees for which code can be generated "immediately". When a 
t ree is not of this form, transformation T-ops specify operations which can be 
performed to change its form. This might include generation of some code, for 
example, to load an operand into a register, or it might not, for example in 
transformations of the tree based on arithmetic properties. Like terminal T-ops, 
transformation T-ops specify the form and attributes of the trees to which they are 
applicable; in addition, they specify the form and attributes of the trees after the 
operat ion is performed. For efficiency, T-ops are indexed by the (top) language 
operator (L-op) of the trees to which they apply.. It is also necessary to know the 
cost of using the T-op, and its requirements and effects on the global program state 
(for example, wi th respect to allocation of resources). Conveniently, cost can be 
measured as whatever the user desires to optimize; the only assumption made is that a 
cost can be given to each code sequence, and that these are additive. 
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Because Newcomer's thesis does not include a complete description of the code 
template generation scheme in one place, a summary of the process may be useful 
here . Although his mathematical notation would make this description much shorter, it 
has not been used, to improve readability. In the following, "template" means a 
language t ree with attributes (a pattern) plus a code sequence which implements that 
t ree . 

Given an APT-like language tree L for which we wish to generate a code template 
(comments on this selection below), we search for code sequences as follows: 

5 1 . Look up the top operation of L, to get all terminal T-ops which might be 
applicable, call this set P. 

52 . If any are directly applicable (shape & attributes match L) then go to S7. 

53 . Form a Preferred Attribute Set (PAS) by putting together the sets of attributes 
required (of the operands) by the terminal T-ops in P. 

54 . Recursively perform this algorithm for each operand of the top node of L, 
passing the PAS as a parameter. Each son will return a set of templates with 
potential code sequences for their evaluation. 

55 . Form the cross-product of possibilities for these templates, collecting all 
possible concatenations of the code sequences. 

56 . Form the cross-product of this set with P (P gives the possible code sequences 
to implement the top L-op), but only include those operand evaluation 
sequences whose attributes satisfy the attribute (domain) requirements of the 
corresponding element of P. 

57 . If a non-empty subset of these satisfy the PAS we were passed, return this 
subset (the first- time the algorithm is performed, the PAS is empty and trivially 
satisfied. Otherwise: 

58 . Attempt to satisfy the PAS by means-ends analysis similar to that used in GPS 
[Ernst & Newell, 1969] , but exhaustive: For each template, find the difference 
between its requirements (attributes) and the PAS. Use this difference to look 
up transformation T-ops, and try applying them to get templates which satisfy 
the PAS. 

59 . If successful with a non-empty subset of templates, return this set (with the 
attributes and code sequences, as modified by the transformation T-ops to 
satisfy the PAS). Otherwise, give up. 

The language axioms are used to determine all other trees equivalent to the given one, 
and this algorithm is performed for each. 

Although this algorithm could be used directly in a compiler, to generate code for a 
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t r e e L, it would be too expensive to do the analysis at compile time. Instead, it is 
envisioned that a driving program would somehow select a complete set (but no larger 
than necessary) of small language trees for which to find optimal code. This gives us 
templates (language trees with corresponding code sequences) which could then be 
used in the compiler. Both the selection of the trees and the use of the templates in 
the compiler are open for future research. 

Note that it is possible for S9 to "give up". This should not normally happen if there 
exists any way to implement L on the machine and the T-ops provided are adequate. 
However , in order to avoid an infinite loop in which the algorithm repeatedly applies a 
sequence of T-ops which unknowingly return it to its original state, it was necessary 
to limit the depth of search. To avoid this, it would be necessary to leave the means-
ends analysis paradigm and incorporate memory of previous search. 

One of the best strengths of Newcomer's template idea is that it appears to be suitable 
for use in an optimizing compiler such as Bliss-11 (Wulf et al [1975] ) , in which code 
generat ion occurs in several phases. The templates can be used in an earlier phase to 
enumerate potential code sequences to guide, say, register allocation, and later, in the 
actual output of code. 

The most conspicuous drawbacks of Newcomer's scheme are that it is too general, and 
that it is not general enough. It is probably too general in the sense that Newcomer 
has applied general but weak AI methods to the problem, and experienced difficulties 
w i th the amount of time required to analyze even simple trees. It might be possible to 
achieve tolerable performance through heuristics; he suggests what effects these 
heuristics would have to have, but gives no actual mechanisms. Another alternative is 
to use a stronger method with correspondingly stronger assumptions and built- in 
knowledge about code generation. 

Like Donegan, Newcomer deals on ly with arithmetic expression trees. An open area 
for research is to determine whether control constructs and other operations can be 
incorporated into his scheme. Also open to further work is a way to automatically 
discover semantic equivalence of trees; the general problem is undecidable, an 
approximate solution is desired to reduce proliferation of identical cases. 

Invent ing the attributes, transformation & terminal T-ops, and other specifications for 
this system is still a non-trivial task, even though the case analysis is automated. A 
mechanism for deducing them from a machine description would be desirable, for this 
reason as well as others. 

Concurrent ly with Newcomer, Snyder [1975] , at MIT, wrote a thesis with somewhat 
less ambitious goals with respect to formalization and automation of code generation, 
but interesting in that it provides ideas for different generalizations. His paper 
describes the implementation of a compiler for the programming language C, in which a 
large part of the machine dependence of the code generation process has been 
abstracted into tables. 

The first phase of the compiler code generation produces a 3-address code for an 
abstract C-machine. The second phase then translates this abstract machine code into 
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assembly code for the target machine (a macro expansion scheme is used, which takes 
advantage of properties of typical assembly languages). These two phases are 
analogous to Miller's MIML and OMML, but more refined, as we will see shortly. 

The instructions for the abstract machine, which Snyder refers to as AMOPs (Abstract 
Machine Operations), are essentially L-ops which include the types (real, integer, 
pointer) of their operands. Pseudo-instructions are also permitted. These are 
basically keyword macros for storage allocation, procedure linkage, and other 
information. The addresses for the abstract machine are called REFs; a REF may 
specify an abstract register, static or stack variable, label, indirect reference, or 
constant. 

The user provides a machine description, in the form of a set of specifications which 
map the abstract machine onto a real machine. These specifications are translated by 
a stand-alone program GT which generates tables for the code generator. The 
machine description maps the abstract machine onto a real machine in two ways. Part 
of the mapping is occurring in GT before the compiler is produced, the other part in 
the compiler itself; keep this in mind to avoid confusion. 

The user's machine description consists of three kinds of specifications. First, the user 
defines the data storage and access structure to be used in the abstract machine (i.e., 
the target machine structure). To do this, he defines the register names, classes of 
registers, conflicts (either real or due to the abstract representation), memory 
alignment, and addressable unit sizes. Snyder uses a quite readable declaration-like 
notation to specify this information: 

r e g n a m e s ( X 0 , X I , X 2 t X 3 , X 4 , A , Q , F ) ; 
c l a s s X ( X B , X 1 , X 2 , X 3 , X 4 ) , R ( A , Q ) ; 
s i z e l ( c h a r ) f 4 ( i n t , f l o a t ) , 8 ( d o u b l e ) ? 

Then, the user specifies the data access properties of the machine instructions, in a 
"operand i , operand2, result" notation. For example, 

+ d : F f f 1 f F 
+ t : R , H , 1 . 
* i : Q , n , Q [A] 

specifies that: double precision add (+d) takes its first operand form the F-register, its 
second operand from memory, and leaves its result in the F-register; integer add (+i) 
takes its first operand in a register, the second from memory, and leaves the result in 
the first operand location; integer multiplication (*i) multiplies a memory location into 
the Q-register and destroys register A in the process. 

Then, the user defines a mapping from abstract machine operations to assembly 
language, using a macro-expansion scheme. This is somewhat complex to describe 
here , but a simple example is: 

+ i : " AD#R # S n 
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w h e r e #R and #S are macros which expand to the names of the result and second 
operands, respectively. An occurrence of integer addition might then expand to 

ADA X 

to add X to accumulator A, for example. When the features supplied for macro 
expansion are insufficient, it is possible to specify this in the form of a C routine. 

Al together , Snyder has made some hopeful advances toward our goals, particularly in 
the convenient specification of data storage and access. Unfortunately, it is necessary 
to per form the case analysis of code sequences, and to construct macros and C 
routines to perform the translation. Further work combining the successes of Snyder 
and Newcomer will eventually be necessary. 

Snyder brings up an important point with respect to abstract machines, or in fact any 
intermediate notation between source and object languages: 

"If the abstract machine is of a high level (i.e., very problem-oriented), then the 
program [compiler] will be very portable, but the implementation of the abstract 
machine will be difficult. On the other hand, if the abstract machine is of a low level 
(i.e., more machine-oriented), then, unless it corresponds closely to the target 
machine, either the code will be inefficient or the implementation will be complicated 
by optimization code." 

In the case of an UNCOL for multiple languages, there is yet another constraint, that it 
correspond to the high level language, for both implementation and code efficiency. 
Nevertheless, the motivation for an UNCOL is great, and this author believes that these 
will become more prevalent, probably with some language or machine restrictions (e.g., 
see Coleman [1974] ) . Snyder seems fairly definite, however, about sticking with one 
language. 

The fact that Snyder fully implemented his system was a great asset in evaluating his 
ideas, because he was forced to fill in details, even if only for a couple machines. He 
was surprisingly successful in converting his compiler to generate code for another 
machine in a few days time. Of course, to achieve an implementation of an ent ire 
compiler in reasonable time it was necessary to simplify by restricting machine 
architectures and ignoring optimization to a large extent. For example, the register 
allocation is performed on the fly by a simple local algorithm. 

The directions Snyder points out for further work are "bigger and better": more 
general machine model, more complicated languages, and optimization. Our goal of 
more fully automating code generator generation could be added to this list. 
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5. Related Formal Treatments 

At the opposite pole from implementation, Aho & Johnson [1976 ] deal formally with the 
problem of generating optimal code from a parse tree, using a model similar to 
Newcomer's. They propose a model of machine and language, and show several 
interesting results. In particular, they show that a simple brute-force optimal code 
generat ion scheme is linearly proportional to the tree size and instruction set size. 
Unfortunately, they also make some unacceptable simplifying assumptions. For 
example, with respect to the language, they are only dealing with expression trees, 
and only ones without common subexpressions. With respect to the machine, an 
instruction must compute and store a single result into a register, registers must be of 
one symmetric kind, and of course they do not deal with any other processor state or 
intricacies of control, only the arithmetic instructions in one-to-one correspondence 
wi th arithmetic L-ops. 

Samet [ 1 9 7 5 ] , in a voluminous thesis, presents a method for proving that a code 
generator has correctly translated a program; he has implemented the prover for 
translations of CMPLISP, a subset of LISP, into LAP, a PDP-10 assembly code. Samet's 
system proves that a particular program was correctly translated independent of the 
code generation process, rather than proving that a code generator is correct 
independent of the input program. This approach has the advantage that no 
knowledge of the the code generator, be it human or machine, is required, but, of 
course, the disadvantage that a new proof is required for each translation. 

Basically, to prove that a set of machine instructions correctly implements a CMPLISP 
function, his system symbolically executes the machine instructions in such a way as to 
produce a t ree representation of their effect, and this is then proved equivalent to the 
CMPLISP function. The cornerstone of the system is a canonical t ree representation, 
obtained using a set of semantic equivalence axioms which Samet derived from 
McCar thy [1963 ] . Both the original program and the output of the symbolic execution 
are expressed in this form, as shown in Figure 2, reducing the equivalence/non-
equivalence proof to a comparatively simple matching process. 

The "machine description" in Samet's system consists of a set of LISP procedures, one 
for each LAP instruction. When the procedure for an instruction is executed, it 
updates a computational model as appropriate to the effect of the instruction. It also 
performs certain control operations; for example, when a condition is tested, either the 
condition value is known from previous results and that path is taken, or both paths 
are processed (there are mechanisms to stack alternatives and test for loops). 

Samet's system has been oversimplified here. However, it should be clear that his 
ideas, in particular the symbolic execution, the axioms of semantic equivalence, and the 
canonical t ree form, have potential applicability to our goals of generating a translator. 
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6. Summary 

Figure 1 is a condensation into tabular form of many of the observations made in this 
paper. The abbreviated interpretations should be fairly self-explanatory at this point. 
The entries are classified according to the primary goal of their approach, as they 
w e r e in this paper: simplifying or automating the generation of code generators 
(sections 3, 4, resp.). Note that all of the authors model code generation as a multiple-
step process from source language to intermediate language-machine notation(s) to the 
target machine code. Some used an internal notation like Wilcox's SLM; others used an 
APT- l ike notation. Wilcox used both. Regardless of its form, the utility of the internal 
notation is that it provides a low-level but machine-independent UNCOL (Conway 
[ 1 9 5 8 ] ) representation, and/or it allows information and transformations to be more 
easily and concisely represented. One of the most important aspects of the various 
techniques, but the hardest to compare in any simple way, is the algorithm itself; these 
are simply summarized in a short phrase in the figure. The last two columns give a 
short evaluation of the approach. 

A frequent ly confusing aspect of systems involving more than one level of 
interpretat ion or translation, such as many of those described, is what is being 
interpreted/ t ranslated by / into what at what point. For example, the approaches differ 
as to whether the translator is table-driven, or generated from tables, and the degree 
to which the case analysis of instructions is performed at translation time as opposed 
to translator construction time. A simple notation, developed by the author in 
conjunction with S. Saunders [1977] , is used in Figure 2 to try to clarify these 
relationships for selected systems. The notation is quite simple; two primitives are 
used. An arrow from language L I to language L2, with T connected to the side of the 
ar row, indicates that T translates the text (program) in language L I to language L2. If 
L2 is missing, i.e., the head of the arrow is replaced by an electrical-engineering 
grounding symbol, then T Interprets L I (one can think of this as translating L I into 
action, perhaps). 

It should be noted that the assumptions the various authors make about the definition 
of code generation and its relationship to the rest of the compiler differ somewhat. 
For example, the stage at which register allocation is performed differs, and this 
affects the flexibility and information available to other stages (see comments on 
MUG2). The post-processing assumptions also differ, for example whether machine or 
assembly code is generated. Snyder even takes advantage of the syntax of the 
assembler language in building code generation macros. Although there are these 
dif ferences, all of the authors have in common the "core" function of code generation: 
the selection of machine instructions on the basis of the intermediate language 
constructs. 

In summary, this paper has attempted to point out the potential drawbacks and 
advantages of several models of code generation, particularly with respect to 
possibilities for simplifying and automating the creation of this phase of the compiler. 
Progress has been made, yet all of these works have non-trivial deficiencies with 
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respect to this goal, pointing directions for future research. It is likely that there will 
be more interest in this field in the near future. 
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Work Goal 
Intermediate 
Notation(s) Algorithm 

Advantages / 
Implementation Contributions Limitations 

Wilcox 
1971 

Formalize APT&SLM still relatively 
ad hoc 

PL/C: 360 internal notat ions, 
descr ib ing locations 

machine/ language speci f ic , 
mainly coded- in 

Feldman 
1964 

• s o n 
& Rake 
1970 

Young 
197$ 

Simpl i fy parse t ree 

Simpl i fy APT 

Simpli fy APT&SLM 

u s e r - w r i t t e n FSL 

i n te rp re ted Q Q L 
coding language 

in te rp re ted none 
coding language 

semi-automated system 
for who le compiler 

workab le system for 
large language 

only some of compi ler 
funct ions automated 

s low, some genera l i t y , 
but sti l l lacking 

practical?, advanced w i t h opt imizat ion; genera l i ty 
respect to simpl i f icat ion 

Ripken 
1977 

Miller 
1971 

Simpl i fy APT w / 
a t t rs , &SLM 

Automate linear APT 

t ree transfms & 
code macros 

sti l l under opt imizat ion, a t t r ibu tes machine dependence, 
development & in termed. not. advances, automation 

in tegrated w i th compiler 

special ized macro l imited 
expansion 

separated lang/mach 
dependence, macros 

only addrsing, exprs 
handled, and in l imited w a y 

Donegan 
1973 

Weingart 
1973 

S imp l i f y / APT 
Automate? 

S imp l i f y / APT 
Automate 

s ta te - t rans i t ion 
table 

none 

d iscr iminat ion-net IMPÍO: 
d r i ven matcher / PDP10 
code emi t ter 

Newcomer Automate low- leve l APT a t t r -d i f f d r i ven 
1975 w /a t t r i bu tes exhaust ive search 

nyc' 
197 

l imited 

Snyder 
1975 

S imp l i f y / 3 -addr SLM 
Automate 

combined macros / 
table d r i ven 

Aho & 
Johnson 
1976 

Samet 
1975 

Formalize APT using 
machine-ops 

C-compiler 

exhaust ive search none 

Ver i f y Canonical 
(LISP) APT 

t rans fm rules, symb CMPLISP: 
" :n i 

s impl ic i ty 

simple formal izat ion; 
pract ical , ef f ic ient 

search approach: 
automated case analysis 

many machine 
proper t ies tabular ized 

some complexi ty l imits, 
formal alg'm statement 

formal t ree equivalence 
methods; ver i f ica t ion 

pract ical i ty? l imited w.r . t . 
constructs handled 

l imited w.r.t . automation 

too slow, requi res se tup , 
not general enough w.r . t . 
machine 

too C- /mach ine- speci f ic ; 
st i l l much manual const r . 

too s t rong assms about 
machine arch. & ops 

st i l l l imited w.r . t . con t ro l 
const ructs s imulat ion, matching PDP10 

Figure 1. See tex t fo r explanat ions. Comments on cont r ibut ions/ l imi ta t ions are re la t ive to predecessors/successors, not w.r . t . all. 
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Figure 2. Interpretation & Translation diagrams for selected systems. 


