Myopic Heuristics for the Single
Machine Weighted Tardiness Problem

Thomas E. Morton and Ram Mohan V. Rachamadugu

CMU-RI-TR-83-9

Carnegie-Mélon University
Pittsburgh, Pennsylvania 15213

University of Michigan
Ann Arbor, Michigan

28 November 1982

Copyright © 1983 Carnegie-Médlon University

This research was supported, in part, by the Air Force Office of Scientific Research under contract
F49620-82-K0017.



Abstract

It ss well known that the single machine weighted tardiness problem fn/1//ZwT}
Is JMP-cornpiete. Hence, it is unlikely that there exist polynomial® bounded algorithms
to solve this problem. Further, the problem ss of great practical significance We
develop myopic heuristics for this problem; these heuristics have been tested against
competing heuristics, against a tight lower bound, and where practical against the
optimum, with uniformly good results. Also, these heuristics can be used as
dispatching rules in practical situations, In our efforts to seek optimum solutions we
develop a hybrid dynamic programming procedure fa modified version of Baker's
procedure} whntch provides lower and upper bounds ‘whtn it becomes ’impractical to
find the optimum solution. Further, stopping rules are dtvtlcped for identifying optimal

first job/jobs,




MYOPIC HEURISTICS FOR THE
SINGLE MACHINE WEIGHTED TARDINESS PROBLEM

1. Introduction

. The problem of minimizing weighted tardiness of a given set of jobs to be
processed on a single machine has attracted the attention .of several researchers.
Lenstra [9] has shown that the problem is NP-complete. In view of this, it is not
surprising that earlier attempts in solving the problem resorted to both enumerative
techniques and heuristics. Panwalkar, Dudek and Smith [7] report that in a survey
conducted by them, the proportion of respondents who ranked meeting due dates or
minimizing penalty costs as the most important criterio-n was larger than for any other
criterion, In view of the practical importance of this problem,there a exists need fo_r
developing 'good' heuristics which are useful for the single machine caée and may be

extended and generalized to multiprocessors, flow shops and job shops.

Surprisingly, there are very few heuristics for the weighted tardiness problem.
The problem may be defined as follows: we have n jobs J.e 1. J-_J that arrive
simultaneously to be processed on the machine. Each job J. has associated with it a
triple(p.l,d.l,w.) which represents the processing time, the due date and the weight of the
jobs. Each job has associated with It the penalty function CI.(L|) where t. is the

completion time of the job. C.I(t} Is given -by’
. - - +
Cit) = wit=d}
We wish to find a schedule such that Z!;’:g:.(t.) is a minimum.  Without loss of

generality, we further assume that d < ij.":; Py Any job{s! not satisfying this condition

can be deleted from the problem since there always exist optimal solutions in which

1 . +
we use the notation.. X = max(0.X)



such a job(s) occupy the last position in the sequence. This condition can recursively

be applied on the problem until the condition is satisfied

2. Review of earlier "heuristics

It is well known that if no job can be completed earlier than its due date, then
the weighted shortest processing time rule(WSPT) minimizes weighted tardiness [1].
This is likely to be approximately the case when the machine or the shop is ‘heavily

loaded'.

Another heuristic which may be used is the earliest due date rule(EDD). Arrange
the jobs according to the EDD rule, if it is possible under any rule to schedule all
jobs on time, then the rule is optimal. This rule is likely to perform well when the

shop or the machine is 'lightly loaded' [13].

Taking into consideration the fact that these simple heuristics perform well under
these extreme situations, Schild and Fredman [13] developed a procedure that they
claimed to give an optimal schedule. However, Eastman [6] showed that the
procedure is not an exact one by constructing a counterexampie. No computational
studies have been reported to determine how good a solution is generated by their

procedure.

In a paper on the experimental comparison of solution algorithms for the
average(unweighted) tardiness problems. Baker and Martin [1] refer to Montagne's
method [10]. They clam It to be very effective for the weighted version of the
tardiness problem. The heuristic is as follows: sequence the jobs in nondecreasing

order of p}./vvj.C;g’\-d.} [3],

Yet another heuristic proposed by Baker [4] for the average or unweighted
tardiness problem, called 'modified due date method', is as follows: if it is impossible
to complete a job before its due date revise its due date to be the earliest possible

completion time. Schedule next the job that has the earliest due date. It appears that



the procedure has done well in experimental studies [4]. It can easily be seen that
Baker's rule indeed provides optimal solution in two extreme cases for the unweighted
or average tardiness problems- when all jobs in an optimal sequence are either early

or late.

3. Description of our_heuristic

Prior to the description of our heuristic, consider the following property which

characterizes an optimal solution to the single machine weighted tardiness problem.

PROPOSITION 11 Let J; and JJ. be any two adjacent jobs (J.I precedes J.) in an

optimal sequence for the single machine problem. The sequence satisfies the following

property-
+F + "
f_i_{l_(di-t-Pi)} > il 1m(d.-t--p.)}

where t is the start time for J:
PROOF. We have to consider six subcases. These are as follows:

Case 1. Both jobs are early in either positionfFigure 1). In this case we are
indifferent as to which sequenceU, immediately precedes Jj or Jj immediately precedes
J) is used. If J, does not precede J.J in a given optimal sequence, we can create

another optimal sequence satisfying the property by merely interchanging jobs J., and JIJ_

o= = b

t
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o

Figure 1

Case |I: Both jobs are late in either position(Figure 2).
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Figure_2

Since both jobs are late in either position, it is necessary that the the job with higher
ratio of the weight to the processing time must be scheduled first for the sequence
to be optimal Since d|<t+p.I and dj<t+p1,
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Case til: One job is late in either position and the other is early in the earlier

position and late in the later positionFigure 3)
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Figure 3
dj)t+Pj_' dj<t+p'|+pj d. <t

Cost if |, precedes J.J W, (t+p.-d) +wj(t+p|.+pj,-d.)

Cost if J.J precedes Ji wlit+pi+pj.-d.’)
J. should precede Jj. if

wlt+p.+p-dl £ wit+p-d.J + w(t+p.+p.-d)




Since dl. <tand dj. <t+p + P the above expression may be rewritten as

+ +
W, (d. -t -p.) . -t-p.)t
e PR Sl 2 ¥ > Mif, 4y rt-py
Py Pj | Py

Case IV One job is late in either position and the other is early in either

position(Figure 4).

O e e — —.

Figure 4

d<t dj >t+p, P,

It is obvious that J, should precede Jj

+
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Case V: One job is early in ether position and the other is early in the earlier
position and late in the later podtionfFigure 5).
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d. > t+p.+p. d. > t+p. d. < t+p.+p.
it is clear that in this case J, should precede ‘]'1'

Since d}-(t+p.) > p,

+
: d, - t-
] 1 - (_l_—pj.) } -0
P Pi j

Since w. > 0, dl-(t+p.) >0 and dtt+p.) < P«

+

+ -
f_i._ 1- (dy -t-py) } Is positive,
P; Pj
Therefore,
+ 7t + 7
.w_i -(di-t-pi) > ‘il 1_(d.-t—p.)
Py Pj Pj Py

Case VI: Both jobs sr& early in the earlier position and late in the later

position(Figure 6).

oo = —

Figure 8

d. > t+p,. and d. < t+p.+p.



dJ > t+p, and d} < t+pi+pJ
J; should precede JJ if

wilt+pi.+pj.-d) > wjft+p|.+pf-d.)

: +
W, (dy N _ W. (d.-t-p.)
—l{ 1- _I—Q/ r, > iy, i TPy }
Py pj J " *j Py

Thus, in all cases the property is satisfied by at least one optimal solution. .

This proposition can be used directly to find a schedule which cannot be
improved by adjacent pairwise interchange. We exploit this property in the following
manner in developing our heuristic: for every job, we "determine an 'apparent priority

index(AP.) as defined below:

LT pitt o xo

where t is the current time. Since at any instance, we do not know what the optimal
first two jobs on the machine would be, we approximate the value of P, by X. In the
absence of any estimate, we approximate the value of P, by the mean processing time
of the jobs. However, it may be noted tnat in assigning X value equal to the mean
processing time of the jobs, we are in fact trying to strive towards local optimality. It
is clear that since local optimality does not necessarily ensure global optimafity in this
problem, we may attempt to assign X a value which is more than one multiple of the
average processing time of the jobs, 'hus helping us look beyond the next job and

achieve better results.

Our heuristic is as follows: at any instance, we determine the apparent priority
for all unscheduled jobs. We assign next the job with the highest apparent priority. In

case of ties, we assign next the job that has the earliest due datelthe secondary’




criterion is based on our study of a relaxation of the problem where all jobs have
equal processing times and equal weights. It is also interesting to note thé existence
of a property similar to the one we discussed for the relaxed problem with jobs
having equal processing times. In this case, the result holds good not only in the case
of adjacent pairwise interchange, but also when comparing jobs not necessarily
adjacent to each other in an optimal solution. These details are presented in the

appendix).

It is interesting to note the change in apparent priority assigned by our heuristic
over time. This is shown in Figure 7. It is clear that if a job is too early, then it
need not be scheduled immediately. Also, if the job is late, it is given full
priority(w./p.) as in WSPT rule. In the intermidiate range, the apparent priority is
smoothly increased Also, we note that as X -> 0o, our heuristic is same as WSPT
rule. However, as X -» 0, it assignee priority as follows:

AP. =0 if slack is positive
= Wl./pl. if slack Is zero or negative

When we impose the secondary priority rule also, it may be noted that as X -»
Q, our heuristic behaves somewnhat like EDD rule, but not quite the same. However,
even when jobs are rather slack, our heuristic appears to have performed better than

the EDO rulelsee the section on computational experiments).

An appropriate choice of X is necessary for the good performance of our
heuristic.  Intuitively, as explained before, one would expect it to be related to the
average processng time of the jobs. So the apparent priority may be written as

follows:

+
+
H: APy = fi{l_(di"t'f’i)}
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where k is a parameter to be determined and p is the average processing time
of unscheduled jobs. It is possible for us to develop different rules for assigning
apparent priority for the jobs. However, we would expect these alternate schemes to
have features similar to H1 such as assigning the job full priority oncefwi/p.l) it is late
and zero or near zero priority if it is too early. In the intermediate range, we may
follow alternate schemes which gradually increase the priority of the job. Two
alternate scemes, where the rate of change in the priority of the job in the

intermediate range itself increases over time are envisaged below:

i
H2: AP; = == {1 --—
* pl{ p-!-k(di- t-pi)+}
w +
HZ AP, = —= exp( k{d; -t-p;) )
L Pi p

H2 and H3 are similar to HI. Their characteristics are shown in Figures 8 and 9
respectively. It may be noted that in these cases, as in H1, jobs are assignhed full
priorityfw./p.) if the slack is zero or negative. However, as is evident from Figures 8
and 9, rate of change in the priority assigned to a job increases as t is increased until
there is no more slack. In our pilot studies, we found that H3 performed better than
H1 and a parameter value of k in the range -of 0.5 to 2 yielded good results over

wide range o™

problems.
It is also interesting to note the asymptotic forms of the heursistics. These are shown

in table 1.
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Apparent Priority

Heuri sti c| k =0 k -»00

H 0 if early Sane as

W, 0 WEPT Rul e
pzYV

Sane as 0 if early
H2, H3 WSPT Rul e
L 0w

Pl

Table 1

4. Review of prior_computational studies

In testing out various enumerative algorithms for the weighted tardiness problem
(@nd also unweighted or average tardiness problem), various authors followed different

procedures for generating test problems. [2]

Two important factors over which control was exercised in generating test
problems are the tardiness factor and the due date range. In most prior studies, it
was assumed that the job weights were independent of other factors. The tardiness
factor is a rough measure of the number of jobs which might be expected to be
tardy in a random sequence [16]. Let p be the mean processing time and 3 be the
average due date. Then, in an average sense, the number of jobs completed in time in
a random sequence is given by d/p. The tardiness factor, r, is given by

r = 1-Proportion of jobs on time
= 1-{{d/p)/n}

3 = npM-r)

The typical procedure followed by various authors in generating the test
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problems is as follows: generate the p, as per some distribution and generate the due

dates using the tardiness factor and population mean or the sample mean of the

processing times. The range for the due dates was controlled by specifying the

variance of the distribution generating the due dates.

Srinivasan [16], in testing his hybrid algorithm for the average or unweighted
tardiness problem used a bivariate normal distribution for generating process.ng fmes

and the due dates. Srinivasan generated test problems controlling for the following

factors- the coefficient of variation for the processing times, the coeffiaent of

variation for the due dates, the correction coefficient between the processing tn*
and the due dates. The number of jobs in a problem was varied from 8 to 50. H.

results indicated that the problems with tardiness factor of 0.6 were most dff c*t to

solve.

In a study comparing the effectiveness of various algorithms for unweighted or
average tardiness problem, Baker and Martin [ 13 followed a similar procedure, but

used a normal distribution to generate processing times and uniform distribution to

generate due dates. The range of the due dates was varied from 20% to 95% of the

total processing times of the jobs. The number of jobs in a problem was varied frar*

8 to 15.

) or or unweighisd
Fish€l (M- M testing . du- based precede for *8 averaga

processing tmes
cardiness P-b.em. used a uniform

«**Fnp ta s ~ I Ty
] of obs
and the due dates. He tested s proce .

‘! ] RN L tus
varying upt, 50. »d,ness factor vaned rdm b.

. F odea ecbl. His
N varied fro. 20 to ,00, of *e to., process « oo

i 118}
onc,usions riding the proUem difficuity are * * r » «hcs. 0. S

SC. . t«l. h

weimer «<-*B * branch and bound *

;trtbtjﬁm[1<1oz »d
Brdioess problem, generated processing tin>.s from a unrform

ke Y Job waghts were
ft. due dates were, generated from a uniform distributee, . -n,
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generated from a uniform distribution [15]. Wumber of jobs in a problem were
chosen to be 10 or 20. It may be noted that the weights were generated independent
of the processing times and the due dates. !t may also be noted that no control was
txerctsed over the tardiness factor In fact it can be shown that tardiness factor was

irppctly sat at approximately 0.5

In a study conducted ‘Dy RjnrocyKan et a/ [12] to test their branch and bound
algorithm for the weighted tardiness problem, weights were generated from a uniform
distrtut;on[4 5,5 5] . Prcbiern sizes of 10,15 and 20 A*©ri tried. Tardiness factor
was set at 02,0406 and 08 Processing times were generated using the Normal
distritjuticn a’d tre $'ce dates were generated frcm a un”orm distribution.  As in
Scriwer™Ms stha-/. s> we-gnts -esveft generates T.osperriert -of the processing times
arci t"t Que dates ?Mnoy<an et &J studv rr-d.cated 2o "e'JtFon between cor’putatsonal
trre #and tnt ccritiition cceffci't”t between. prectss’g tirrts a’c’ trse clue aates»
Probiems Avh “rgf rangt for tfu« dates were r«"ative*v easier to solvt cempartd to
problems wW'th shert r*rjt *or the tfy« salts. Rr~eoy<i® e? m study indicated that
the prcbiems wath tardiness Zactcr of CS wer* fliff*\Cwit tc scive’cempared *A%th OS m
Srntvasans study [ 1611 However, sy such companison must take @O Cconsideration
the fact that RaenooyKen # &/ Study was en 7r# waghted lardiness probiem whareas

SrwvasEn s sty /ras ot tie average OF UNWagNied rdness probiems

Picard and Queyrerne [11) tasted ther adapiation of tme dependent waveling
salesman Jgortivn 0 e wesphtad tardiness problam on the same set of problems
usec by RenooyKan et & Scivege and Baker [14] used the same set of problems
gerersted by RenooyKan o 3/ 10 e ther procadse

S. Measws of performance

Prior  compuiations siuchas on e weghiad 1t ainets problem were gy
confrad 10 vaaatng enumerilive methoas  Thg Deng the Case 11 18 nOt RAprng
Wt e pephasis N Mese studes wias on the e Of tomputatond e andior

MEMOry rRQUrEMeNds MOwEVEr 1 O Study we wish 0 find how good our
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heuristic is when compared to the optimum value. Since this implies that the study is
to be conducted across wide range of values of number of jobs in a
problem,processing times of jobs, weights etc., the performance measure shouid take
these aspects into consideration. Absolute deviation from the optimum value is likely
to suffer from scaling effects. Any averaging of th_e percentage deviation from the
optimum is ‘Iikely to mislead us since such deviations are likely to be very large in the
case of problems with low tardiness factorFor a more detailed discussion of the
choice of appropriate measure of performance, see [5]). The metric that we will be

using in our study is as follows:

Weighted tardiness for Optimum
heuristic sequence value
Performance of the heuristic: =—
W*n*p W *n*p

W,n and p are, respectively, the mean weight of the jobs, number of jobs and
the mean processing time of the jobs in a problem. We normalize the performance

measure by dividing the deviation from the optimum by the number of jobs. This

normalizes the measure with respect to the number of jobs in a problem and thus

permits comparison among problems with different number of jobs. Further division
with the average weight normalizes the measure for the differences in the average
weights of the job sets in different problems. Finally, divfsion with the average
processing time expresses the measure in terms of the number of average processing

times tardy.

In case of problems where the optimum value could not be found due to
computational limitations such as time and/or memory requirements, we used a tight

lower bound and the best feasible sotutioa
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8. Msthod for obtaining optimum or ‘high bench mark’ solution

in order to test our heuristic, ¢ is necessary that we compare the performance
of our heuristic against the optimum, if possible Based on the reported perfDrmance
results, tftree enumerative methods [14. 11, 123 seem most promising. Of dl the
erumsrativi methods, we choose the dynamic programming procedure suggested by
Serfage and Baker [14], Among the various enumeat?ve methods, this procedure has
the best computational tine performance for the set of tested problems Furthermore,
the isbeiiHg proccdurt ustd in this method !esd$ to compact memory requirements,
pat:cuialy m c*s§8 of the pofaems with btgh tartness vaiuc These are the very
prcb*tms that f>ae Dctn found oy other researchers most difficult to solve. Also, the
90Dpmg uke that we deveico for identify«ng first ;ob/jcbs sn an optima solution is

cased en the ayarrrc programming jSrececkrs.

it »$ ¥ e/ enr seesdta s, tigrEf e tiramc preg'STr g socrcach suggested
ch Sate' 448 Serags |TA] Usswres tée Yeast rctet5th-fin thds, fabéirg space
requiremsrt may be 100 lsrge. parucuarly in case of the probisms with low tardiness
factor. Thess sre the probiems for wiich no computstional results have been rsportad
by Baker and Scivage Aiso, none of the sarher stuces have raporited resulis for
probiems having mors than 20 jobs in case of weighted tardiness problems  Sinces we
planned 10 test probiems having more than 20 jobs. it ssemed lkely that we might be
comraced by bmilatons of excessve meamory reguremamts and/or  axcessiVvE
compuiatons e In such cases. we comprsd the performance of owr hauristic
sguirst 8 high Bench-mark. such a3 3 Hght lower bound Unfortunastely, Schrage and
Baer [14] procecurs doss not Compute lower and upper bourwis for the probilem

Snce #1135 Mot Sheiy that n Case of lrpe problemsiprobisms with mors than
20 jobs wa meght be corstraned by the bmitstiors Of computastionsl trme andior
mamory  reQurermerts  we mocied e Bsker nd Scvage procedre [ 14) t©©
detervee the 'Cwir e Doer bounds  The proceture was further modifed o
I8 ™E [OLE P SUGEL. WONCh was NeCMSNy 10 determng the iower bounds snd
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also for the use of a stopping rule developed by us. The bounds become sharper and
sharper as we progreséively move from one stage to the next The details of the

hybrid dynamic programming procedure developed by us are shown in the next section.

6.1 Hybrid dynamic programming procedure

This procedure is a modification of the dynamic programming procedure for the
sequencing problems with p-recedence constraints developed by Schrage and Baker
[14]. We .modified this procedure in order to determine the lower and upper
bounds at every application of the recursive relationship. We also developed a
stopping rule for identification of first job in an optimal sequence. We follow notation
similar to Baker and Schrage [14] with appropriate additions as needed for our

modification of the procedure.

Notation

J; 1 Jobi
8 : set of feasible jobs, S is feasible if, for every job J.I £ S,
all the predecessors of J; are also included in S.
N : Set of ail jobs.
t(S) : Zjes pj
S:N\S
f(S) : Value of the optimal schedule for set S
R(S) : Set of jobs in S that have no successors in S
gkA(S)) : Penalty for completing Jr at t(S), k*S
" : Value of minimum weighted lateness schedule for
WSPT(S)  the jobs in S with the release date being t(S)
: Lower bound for the weighted tardiness problem given that
BOS) feasible set S is scheduled optimally at the beginning
: Index of the job scheduled to be in the first position in
NS  the sequence generated for f(S)
: Lower bound for the problem given that all feasible
LBO)  subsets of cardinality | have been enumerated

Recursive relation is [16],

ffSI = mingres) { ffS\K) + gfk, US) 1
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Initial condition is f(0)=0
Optimal value is given by f(N).

Schrage and Baker [14] provided the detailed procedure for enumerating all
feasible subset S in such a way that S\k is enumerted before S and a procedure for

assigning an address to the subset S\k so that f(S\k) can be accessed quickly.

At every enumeration, we determine B(S) as follows:

B©S) = f{S) + max {0, WSPT (§) }

if B(S) A current best feasible solution, then f(S) can be set at infinity and
need not be further considered. Further, a lower bound for the problem is
given by

LBf) = min B[S Vv |Sj =1and SCN
An upper bound for the solution is given by
UBS) = f(S) + weighted tardiness of WSPT sequence for jobs in 5

We terminate if UBS) = LB{[S| - 1)

8.2 Stopping_rule for the optimal first job

In order to guarantee the optimal first job, we can use the following procedure:
suppose HS) is same for all S such that |S|=I, f=2,3,«xxt Stop further computation

after the condition is satisfied for the smallest value of t.

For identifying the optimal first job and/or determinig the lower bounds, it Is
necessary to know when all feasible subsets of jobs of given cardinality have been
enumerated, This may be done by numbering the jobs and arranging the jobs in stages
as shown below

1. Jobs are assigned to stages such that no job is assigned to a stage less
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than or equal to its predecessors.
2. Jobs at any stage have indices greater than jobs at earlier stages.

3. Every job is assigned to the earliest possible stage, subject to (1) and (2).

These details are shown for a hypothetical example in Figure 10. It may be
noted that when the above mentioned job indexing procedure is used in conjunction
with the enumeration scheme proposed by Baker and Schrage [14], all feasible
subsets of cardinality k-1 would have been enumerated before the job with the lowest
index in stage k can be considered for inclusion in a feasible subset of tasks. Thus,
the updating of LB(]) and checking for the optimal first job can be carried out when
the job with the lowest index at any stage is being considered for thé first time for

inclusion in the feasible set S.

Another independent stopping rule for identifying the optima" first job follows

from the next proposition-

PROPOSITION li: If the job with the highest w./p. is tardy even if scheduled

first, then there is an optimal sequence in which it must be sequenced first

PROOF: Without loss of generality, assume that w”/p wzl Py - Also,
since J; is tardy even if scheduled first p; > d, Suppose there exists an optimal

schedule such that J, occupies jth position and let J. occupy j- | th position(Figure 11).

Pairwise interchange of J, and J* does not affect the completion times of other
jobs. Decrease in the value of the objective function due tc pairwise interchange of

J, and J; equals

Wi[{0‘T+pi_di}+-{O'T+pi+p3-d7]+1 + th{0,T+P|+p—{1l-d’}+"{O‘T+p1‘d1}+]
* w'lpi - W!-pl
{ op,I” lw. /p) - fw/pj]
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However, the right hand side is non negative and this contradicts the optimaiity
of the original schedule. Thus, by successively 'pushing' J} to the first position, we

get set of dominant schedules and hence the result

7. Design of the experiment

Control variables in generating the test problems are: number of jobs in a
problem, distribution of the processing times, distribution of the due dates, correlation
between the processing times and the due dates, priority or the weights assigned to
the jobs.

» Processing times and the due dates: Processing times and the due dates
are generated using bivariate Normal .distribution which incorporates the
variation in processing times, variation in due dates and the correlation
between the processing times and the due dates. We set the various
parameters at the following levels:

Tardiness factor(r) :0.2,0.4,0.6,0-8

Coefficient of variation for the
processing times :0.1,0.3

Correlation coefficent between
p, and d, (p) :Q,0,5

Range factor for the due dates (R) :0.4,0.8

Population mean for the job
processing times :30

o Weights _for the jobs In prior studies by RinnooyKen [12] and
Schweimer [15], job weights were generated independently of the job
processing times and the due dates. However, we fed that on average
the penalties associated with the tardiness of the jobs would be
proportionate to the *work content of the jobs.  Teking this into
consideration, we determine the weights for the jobs by independently
determining the factor w./p, from the uniform distribution in the range
[0.23.

w=(w./p.f«p,
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(wi./p.)" is random variate generated from the uniform distribution [0,2]
and P is the processing time generated from a bivariate normal
distribution as described above.

* Number of jobs: In order to study the effect of the number of jobs in a
problem on our heuristic, we choose the number of jobs in a problem to
be 10, 20 or 30.

We tested 20 problems for each specification of the parameters. Thus, in total

we tested 20x4x2x2x2x3=1920 problems.

7.1 Computational experiments

In testing our heuristicffor comparison purposes, we used exponent form of our
heUristic[HS] with parameter value set at 05) on 1920 problems, we made a few
further changes. For problems where optimum solution could not be founddargely due
to excessive memory requirement for problems with 30 jobs), we compared myopic
heuristic solution against lower and upper- bounds. We found additional lower and
upper bounds by solving the Iinéar assignment relaxation procedure suggested by
RinnooyKan? et al [12]. Best upper bound for the solution was found by choosing
the best solution among EDD sequence, WSPT sequence, Montagne's sequence, upper
bound generated by the hybrid dynamic procedure at termination, solution to linear
assignment relaxation procedure suggested by RinnooyKan et al and fifteen solutions
generated by five parameter values for each of the three different versions of our

heuristic

Tables 2 through 5 give the computational results for various problem sizes.
Table 2 provides the results for problems with 10 and 20 jobs. As may be noted,
our heuristic performed well when compared to other heuristics. As noted earlier, we

kept the parameter value of the myopic heuristic fixed at 0.5. However, results can

2Cur pilot studs©* as wei) as published results f 12] showed that the lower bound obtained by this
procedure ts a&cut 20% oeiow the optimum "%\u®» Howvtr, th« lower bound lends to be tighter if the
problems are ’ess sirdy and/or the variance of the job processing tjm«s is low.




Mean Val ue of Performance Measure for 10 and 20 Job Probl ens

TABLE 2

R-04 R =0.8
n T OPT EDD WSFT MP MYH OPT EDD WSPT MP MYH

10 0.2 0.038 0.770 0.047 0.014 0.020* 0.017 0.028 0.107 0.011 0.026
0.4 0.253 0.515 0.094 0.048 0.029 0.184 0.293 0.232 0.084 0.051
0.6 0.886 1.006 0.151 0.088 0.027 0.740 0.953 0.376 0.183 0.055
0.8 2.090 1.427 0.112 0.065 0.015 2.094 1.402 0.202 0.088 0.025

20 0.2 0.024 0.107 0.074 0.027 0.021 0.007 0.024 0.151 0.022 - 0.014
0.4 0.403 0.830 0.192 0.125 0.033 0.196 0.513 0.498 0.202 0.047
0.6 1.319 1.981 0.298 0.194 0.035 1.128 1.697 0.774 0.398 0.054

**

0.8 3.619 2.897 0.337 0.219 0.018 3.513 0.018 3.064 .0.587 0.220

OPT; Mean Val ue of Normalized Cbtinuw

EDD: Earliest Due Date Rule

W5PTs Wi ghted Shortest Processing Tine Rule

MP: Mont agne' s Procedur e

MYH: Myopic Heuristic [H3] with paraneter k value set at 0.5

* . S .
I ncreasing the value of paraneter k in the nyopic heuristic yields better results than Mntagne' s nethod.

-kit
One problemwas not solved to optinmality in case of both range factors -

yi el ded the best feasible solution for both problens.

0,4 and O, 8.

However ,

nmyopi ¢ heuristic

£e



TABLE 3

Mean Val ue of Performance Measure for fully solved 30 Job Probl ens
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(n = 30)
R=10.4
Number of
T pr obl ens
fully sol ved aPT EDD WEPT MP MYH
0.2 73 0. 027 0. 107 0. 099 0. 035 0.017
0.4 26 0. 400 1. 125 0. 290 0. 164 0. 027
0.6 8 2. 069 2. 049 0. 439 0. 350 0. 056
0.8 16 5. 186 4.242 0. 564 0. 315 0.018
R = 0.8
Nunber of
T probl ens
fully sol ved aPT ELD WSPT MP MYH
0,2 80 0, 001 0. 033 0.224 0. 020 0. 007
0,4 38 0.172 0.521 0.739 0. 260 0. 048
0.6 10 1. 600 2. 412 1.215 0. 634 0.073
0.8 20 5. 380 4. 223 0. 837 0. 352 0. 030
OPT: Mean Val ue 6f Nor mal i zed Opti mum
EDD: Earliest Due Date Rule
WSPT: Wi ghted' Shortest Processing Tine Rul e
MP: Mont ague’s Procedur e
MYH Myopi ¢ Heuristic [H3] with paraneter k value set at 0.5




TABLE 4

Mean Val ue of Nornalized deviation from the best |ower bound
(For unsol ved 30 Job Probl ens)
R- 0.4 R=10.8
T Nurber  of . Nunber  of

Pr obl ens HD WBPT MP MWH Pr obl ens HD WSPT MP MWH
0.2 7 0.413 0. 196 0. 150 0.091 0 - - - -
o4 54 1. 457 0.514 0.414 0. 250 42 1. 157 0. 853 0. 481 0. 209
0.6 72 3.586 1. 140 0. 940 0.713 70 3. 165 1.793 1.188 0. 664
0.8 64 5.098 1. 056 0. 876 0. 592 60 4,799 1. 452 0. 923 0. 487
EDD; Earliest Due Date Rule
WSPT; Weighted Shortest Processing Time Rule
MP; Mont ague' s Procedure
MYH; M/opi ¢ Heuristic [H3] with parameter k value set at 0,5

TABLE 5
Comparison j7jj Jjaan Values for "yopi © heuristic vis-a-vis best |lower and best upper bounds
' (For unsolved 30 Job Probl ens)
R» 0.4 R=0.8

T Best Nornalized Best Nornalized Nor mal i zed Myopic Best Normal i zed Best Nornalized Nor mal i zed Myopic

Lower Bound Upper Bound Heuristic Val ue Lower Bound Upper Bound Heuristic Val ue
0.2 0.071 0. 155 0. 162 - - -
0,4 0. 294 0. 526 0.544 0. 167 0. 356 0. 376
0*6 1.270 1. 909 1.983 0.925 1.522 1: 589
0.8 4. 549 5. 096 5.141 4.504 4. 965 4.991
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further be improved a low tardiness factors by increasing the vaue of the
paramemter k. In case of problems with 20 jobs, we found optimum for dl problems

except two problems with tardiness factor 0,8,

in the case of 30 job problems, we could not find the optimal solution to dl
problems  Results comparing the performance of various heuristics for problems
wwhere optimum could be found BTB shown in Table 3, It is clear that the myopic
heuristic performed better than competing heuristics in this case aso. Results in the
cast of problems for which optimum could not be found are shown in Tables 4 and
5 Taile 4 ccmpstm thB mean deviation of normaliztd values of various heuristics
frcm the best tower bound Hsre agasn, myop:.c heuristic performs better than
competing heurisfces.  Table 5 compares the mean ¥au© of myopic heuristic to the
b#st avadlable \cw8 bound md kmt available uppm bound It is dear frcm this table
that the myope heuristic provided the best possfci# results among «l heuristics teeted

\r cast of p'z<Omer»s *or ®H-"  ccfrr™m .2¢c/d, i-t appears that the mesn

srfchrs MsasMe 'S at tts 'Aerst for crosiSTS *fsth 1a”8rsss factor 0.8 Tafaes 2

Ufstscd ~:ir t£5 Alre “cst at*#\"i tc sche. 08 ecfcuceér, AbS5 tases X trs
computstionad tme required to find optimam for the problama
8._Conciusion

It Is ritse WA cr compasbonsl s tig: ¥ MEw myopic heuristic developed
by us is much better Bun any other heuristic tested The hen dtir is A .k arc easy
1o vphment n most rest Ei, qiinjioe The myopic heurt
dispetciung rse s well  in such a Came. we mersly determine which job is to be
loaced on the mactwne mext and make subsacuent decisions 83 syl when the maching
becorres svplibis for further loadng  ©t i3 further possble to ivgrove upon the
scheciie gerersted by the heunstic by checiung for the tocsl optirmakity svewy, < jTopdi
RS N s easy 10 Duid 3 DroCeure whive we Strt with an i scheduie generated
by O hristc Bnd make changes among Mdiacent obs unti no further mprovement in

T8
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the solution takes place. We are currently extending the application of our myopic
heuristic to situations where we have more than one processor(identical processors in

parallel). Further extensions in the area of generalized flow shops are being explored
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APPENDIX

Consider the following relaxation of the single machine weighted tardiness
problem: suppose that all jobs have unit processing timestif not we split them into
jobs of unit processing time and assign each the weight w./p. The due dates for
these jobs are set at d.,d.-1,d.-2,. d.-p.+1). Let t be the completion time for the
job J, " C :

Consider the interchange of the current job J. with another job J.J which is due
to be completed at t+X Since* all jobs are of equal length, such interchange does not
affect the completion time of any other job. Let w. and d. be the weight and the due

date of job J

PROPOSITION AJ: Let t, be the completion time of X Consider another job Jj

completing X time units after J. Then, an optimal sequence should satisfy the
following property—

+1F
}-'(di-‘tc)

X

> W,

S
&+
1_(d."'tc) l

X

PROOF: We have to consider eight subcases. These are as follows:

Case I: Both jobs are late in either position. Since both jobs are late in either
position, the job with higher weight must precede the job with lower weightfFigure

Ad)

It is clear that in this case the apparent priorities of both jobs are same as their

weights and the condition is satisfied.

Case 1I: Both jobs are early in either positionfFigure AZ2). In this case, we are

indifferent as to which job is scheduled first Schedule first the job with highest
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apparent priority.

Case_ 1t Both jobs are early in the current position and late in position t+X

(Figure A3).

Cost if J. completes at t and J completes at t +X = w(t +X- d) +0

- WX Jl" = k||((:fV'+Y (|

Cost if J. completes at t +X and J. completes at t = w.(t +X-d.) +0
| ' C J " C I C 1 -+

Schedule J. att and J. at t +X if
|

C J C

(1) € (IT) = 'wi{l-‘thc)* wj%-l-(ij_-t:_c)+}
Py R
Case_lV: One job is late and the other is early in either positionfFigure A.4), ft Is
clear that the job that is late should be scheduled first Note that the job that is early
has zero apparent priority and the job that is late has full weight as its apparent

priority.

Cases V _and VI: One job Is late in either position and the other is early in earlier

position and late in later position(Figure A.5)

Cost if j. completes at t. = Wj(t.;+x‘d-,)
and Jj completes at t X

Cost if J. completes at t = wft +X-d. | + W(t d)
| ' c i c i
and J completes at t +X
j c

We schedule J att and J. att +X if

C j c
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Wi(tehX-d) S Wi(tetX"d,) +w(t-d.)

w; £ v, 1- (di_tc)
X
Since Jj is late at tc and dl.-tc AN X, the above expression may be rewritten as
+ +
. (d, -t )"
X X

Cases VII and VIII: One job is early in either position and the other is early in earlier

position and late in later position (Figure A.6). It is clear that J.] should be scheduled at

tc, since dj'tc > X, apparent priority of J.I will be greater than zero.

So, in all the cases discussed above, job with higher apparent priority should be

scheduled in the current position.

PROPOSITION A11: If all jobs have unit processng times and equal weights, the

EDD sequence minimizes the average tardiness.

PROOF: Consider two adjacent jobs in an optimal sequence such that Ji

precedes J. and d. > dL

Figure A7

Case 1: Suppose both ~,] and j] are early or on time. Since Jj is early or on

time and d, > ol patrwtse interchange does not degrade the solution,

Case lI: Both ji. and f are tardy, Pairwise interchange does not degrade the

solution since both processing times and weights are equal.
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Case HL J. is tardy and JJ is early or on time. This is impossible since d.I > dj

and completion time of J. < ‘]','

Case |V: J. is early or on time and J,- is tardy. |If J. is on time, then pairwise
interchange does not degrade the solution. If J.I is early, then pairwise interchange

improves the solution.

Thus, in all cases, pairwise interchange does not degrade the solution and, in
fact ray improve it Since our arguments employ only information about the individual

jobs and not the location in the sequence[2] , the EDD sequence is optimal




