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Abstract

It ss well known that the single machine weighted tardiness problem fn/1//ZwT}

Is JMP-cornpiete. Hence, it is unlikely that there exist polynomial^ bounded algorithms

to solve this problem. Further, the problem ss of great practical significance We

develop myopic heuristics for this problem; these heuristics have been tested against

competing heuristics, against a tight lower bound, and where practical against the

optimum, with uniformly good results Also, these heuristics can be used as

dispatching rules in practical situations, !n our efforts to seek optimum solutions we

develop a hybrid dynamic programming procedure fa modified version of Baker's

procedure} wntch provides lower and upper bounds whtn it becomes impractical to

find the optimum solution Further, stopping rules are dtvtlcped for identifying optimal

first job/jobs,



MYOPIC HEURISTICS FOR THE
SINGLE MACHINE WEIGHTED TARDINESS PROBLEM

1. Introduction

The problem of minimizing weighted tardiness of a given set of jobs to be

processed on a single machine has attracted the attention of several researchers.

Lenstra [9 ] has shown that the problem is NP-complete. In view of this, it is not

surprising that earlier attempts in solving the problem resorted to both enumerative

techniques and heuristics. Panwalkar, Dudek and Smith [7 ] report that in a survey

conducted by them, the proportion of respondents who ranked meeting due dates or

minimizing penalty costs as the most important criterion was larger than for any other

criterion, In view of the practical importance of this problem,there a exists need for

developing 'good' heuristics which are useful for the single machine case and may be

extended and generalized to multiprocessors, flow shops and job shops.

Surprisingly, there are very few heuristics for the weighted tardiness problem.

The problem may be defined as follows: we have n jobs J • J J - _ J that arrive

simultaneously to be processed on the machine. Each job J. has associated with it a

triple(p.,d.,w.) which represents the processing time, the due date and the weight of the

jobs. Each job has associated with It the penalty function C.(t.) where t. is the

completion time of the job. C.(t.) Is given by

We wish to find a schedule such that Z!*"C.(t.) is a minimum. Without loss of

generality, we further assume that d < Z j'*" p.. Any job{s! not satisfying this condition

can be deleted from the problem since there always exist optimal solutions in which

we use the notation.. X = max(O.X)



such a job(s) occupy the last position in the sequence. This condition can recursively

be applied on the problem until the condition is satisfied

2. Review of earlier heuristics

It is well known that if no job can be completed earlier than its due date, then

the weighted shortest processing time rule(WSPT) minimizes weighted tardiness [1 ] .

This is likely to be approximately the case when the machine or the shop is 'heavily

loaded'.

Another heuristic which may be used is the earliest due date rule(EDD). Arrange

the jobs according to the EDD rule, if it is possible under any rule to schedule all

jobs on time, then the rule is optimal. This rule is likely to perform well when the

shop or the machine is 'lightly loaded' [13].

Taking into consideration the fact that these simple heuristics perform well under

these extreme situations, Schild and Fredman [13] developed a procedure that they

claimed to give an optimal schedule. However, Eastman [6 ] showed that the

procedure is not an exact one by constructing a counterexampie. No computational

studies have been reported to determine how good a solution is generated by their

procedure.

In a paper on the experimental comparison of solution algorithms for the

average(unweighted) tardiness problems. Baker and Martin [ 1 ] refer to Montagne's

method [10]. They claim It to be very effective for the weighted version of the

tardiness problem. The heuristic is as follows: sequence the jobs in nondecreasing

order of p./w.CC'^-d.) [3 ] ,

Yet another heuristic proposed by Baker [4 ] for the average or unweighted

tardiness problem, called 'modified due date method', is as follows: if it is impossible

to complete a job before its due date revise its due date to be the earliest possible

completion time. Schedule next the job that has the earliest due date. It appears that



the procedure has done well in experimental studies [4]. It can easily be seen that

Baker's rule indeed provides optimal solution in two extreme cases for the unweighted

or average tardiness problems- when all jobs in an optimal sequence are either early

or late.

3. Description of our heuristic

Prior to the description of our heuristic, consider the following property which

characterizes an optimal solution to the single machine weighted tardiness problem.

PROPOSITION I: Let J. and J. be any two adjacent jobs (J. precedes J.) in an

optimal sequence for the single machine problem. The sequence satisfies the following

property-

where t is the start time for J.
i

PROOF: We have to consider six subcases. These are as follows:

Case 1: Both jobs are early in either positionfFigure 1). In this case we are

indifferent as to which sequenceU. immediately precedes J. or J. immediately precedes

J.) is used. If J. does not precede J. in a given optimal sequence, we can create

another optimal sequence satisfying the property by merely interchanging jobs J. and JL

I 1

J. J .

d. d.

Figure 1

Case II: Both jobs are late in either position(Figure 2).



J i J .

Figure 2

Since both jobs are late in either position, it is necessary that the the job with higher

ratio of the weight to the processing time must be scheduled first for the sequence

to be optimal Since d<t+p. and d.<t+p.,

w. w

Case til: One job is late in either position and the other is early in the earlier

position and late in the later positionFigure 3)

I r
I
|
I

J.
1

I

J.
1 J

d l

Figure 3

P j d. < t + p. + d. < t

Cost if j precedes J. = w.(t+p.-d) +w.(t+p.+p,-d.)

Cost if J. precedes J. = wit+p.+p.-d.)

J should precede J if

wlt+p.+p-dl £ wft+p-d.J + w(t+p.+p.-d)



Since d. < t and d. < t + p. + p., the above expression may be rewritten as

"if,

Case IV: One job is late in either position and the other is early in either

position(Figure 4).
i 1

J . J .

Figure 4

d < t d. >t+p.+p.

It is obvious that J, should precede J.

Since d.-(t+p.) > p.,

Since d. < t,

= 0

Case V: One job is early in either position and the other is early in the earlier

position and late in the later positionfFigure 5).



J . J .

d. dj

Figure 5

d. > t+p.+p. d. > t+p. d. < t+p.+p.

it is clear that in this case J. should precede J..

Since d.-(t+p.) > p..

( d . - t - p . )- p . ) )
1 } - 0

i j
Since w. > 0, d-(t+p.) >0 and d.-tt+p.) < p«

Is positive,

Therefore,

Case VI: Both jobs sr& early in the earlier position and late in the later

position(Figure 6).
I i
l

J . J.
J

Figure 8

d. > t+p,. and d. < t+p.+p.



d. > t+p. and d. < t+p.+p.

J. should precede J. if

w.lt+p.+p.-d) > w.ft+p.+p.-d.)

i -^-p /r >
p j J " *i

Thus, in all cases the property is satisfied by at least one optimal solution. •

This proposition can be used directly to find a schedule which cannot be

improved by adjacent pairwise interchange. We exploit this property in the following

manner in developing our heuristic: for every job, we "determine an 'apparent priority

index'(AP.) as defined below:

AP. =1 Pit1 x I
where t is the current time. Since at any instance, we do not know what the optimal

first two jobs on the machine would be, we approximate the value of p. by X. In the

absence of any estimate, we approximate the value of p. by the mean processing time

of the jobs. However, it may be noted tnat in assigning X value equal to the mean

processing time of the jobs, we are in fact trying to strive towards local optimality. It

is clear that since local optimality does not necessarily ensure global optimafity in this

problem, we may attempt to assign X a value which is more than one multiple of the

average processing time of the jobs, 'hus helping us look beyond the next job and

achieve better results.

Our heuristic is as follows: at any instance, we determine the apparent priority

for all unscheduled jobs. We assign next the job with the highest apparent priority. In

case of ties, we assign next the job that has the earliest due datelthe secondaryr



criterion is based on our study of a relaxation of the problem where all jobs have

equal processing times and equal weights. It is also interesting to note the existence

of a property similar to the one we discussed for the relaxed problem with jobs

having equal processing times. In this case, the result holds good not only in the case

of adjacent pairwise interchange, but also when comparing jobs not necessarily

adjacent to each other in an optimal solution. These details are presented in the

appendix).

It is interesting to note the change in apparent priority assigned by our heuristic

over time. This is shown in Figure 7. It is clear that if a job is too early, then it

need not be scheduled immediately. Also, if the job is late, it is given full

priority(w./p.) as in WSPT rule. In the intermidiate range, the apparent priority is

smoothly increased Also, we note that as X -> oo, our heuristic is same as WSPT

rule. However, as X -» 0, it assignee priority as follows:

AP. =0 if slack is positive

= w./p. if slack Is zero or negative

When we impose the secondary priority rule also, it may be noted that as X -»

Q, our heuristic behaves somewhat like EDD rule, but not quite the same. However,

even when jobs are rather slack, our heuristic appears to have performed better than

the EDO rulelsee the section on computational experiments).

An appropriate choice of X is necessary for the good performance of our

heuristic. Intuitively, as explained before, one would expect it to be related to the

average processng time of the jobs. So the apparent priority may be written as

follows:



w. WSPT RULE X-OO
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where k is a parameter to be determined and p is the average processing time

of unscheduled jobs. It is possible for us to develop different rules for assigning

apparent priority for the jobs. However, we would expect these alternate schemes to

have features similar to H1 such as assigning the job full priority oncefw./p.) it is late

and zero or near zero priority if it is too early. In the intermediate range, we may

follow alternate schemes which gradually increase the priority of the job. Two

alternate scemes, where the rate of change in the priority of the job in the

intermediate range itself increases over time are envisaged below:

H2:
k ( d i - t - p i )

H3: AP.

H2 and H3 are similar to HI. Their characteristics are shown in Figures 8 and 9

respectively. It may be noted that in these cases, as in H1, jobs are assigned full

priorityfw./p.) if the slack is zero or negative. However, as is evident from Figures 8

and 9, rate of change in the priority assigned to a job increases as t is increased until

there is no more slack. In our pilot studies, we found that H3 performed better than

H1 and a parameter value of k in the range -of 0.5 to 2 yielded good results over

wide range oJ" problems.

It is also interesting to note the asymptotic forms of the heursistics. These are shown

in table 1.
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Heuristic|

HI

H2, H3

Apparent Priority

k = 0

0 if early

w.

PZ
 0/w

Same as
WSPT Rule

k -»oo

Same as
WSPT Rule

0 if early

PI
 0/w

Table 1

4. Review of prior computational studies

In testing out various enumerative algorithms for the weighted tardiness problem

(and also unweighted or average tardiness problem), various authors followed different

procedures for generating test problems. [2 ]

Two important factors over which control was exercised in generating test

problems are the tardiness factor and the due date range. In most prior studies, it

was assumed that the job weights were independent of other factors. The tardiness

factor is a rough measure of the number of jobs which might be expected to be

tardy in a random sequence [16]. Let p be the mean processing time and 3 be the

average due date. Then, in an average sense, the number of jobs completed in time in

a random sequence is given by d/p. The tardiness factor, r, is given by

r = 1-Proportion of jobs on time

3 = npM-r)

The typical procedure followed by various authors in generating the test
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problems is as follows: generate the p. as per some distribution and generate the due

dates using the tardiness factor and population mean or the sample mean of the

processing times. The range for the due dates was controlled by specifying the

variance of the distribution generating the due dates.

Srinivasan [16 ] , in testing his hybrid algorithm for the average or unweighted

tardiness problem used a bivariate normal distribution for generating process.ng fmes

and the due dates. Srinivasan generated test problems controlling for the following

factors- the coefficient of variation for the processing times, the coeffiaent of

variation for the due dates, the correction coefficient between the processing t n * .

and the due dates. The number of jobs in a problem was varied from 8 to 50. H.

results indicated that the problems with tardiness factor of 0.6 were most d,ff,c*t to

solve.

In a study comparing the effectiveness of various algorithms for unweighted or

average tardiness problem, Baker and Martin [ 13 followed a similar procedure, but

used a normal distribution to generate processing times and uniform distribution to

generate due dates. The range of the due dates was varied from 20% to 95% of the

total processing times of the jobs. The number of jobs in a problem was varied frar*

8 to 15.

e r [ M . m testing . du- based precede for * 8

P-b.em. used a uniform « * * n t o . — - * * »rr:;:;;n::r::::;.
varying upt0 50. »d,nesS factor vaned from 0.5 0.

^ varied f r o . 20 to ,00 , of *e to., process « •• ^

conc,USions r i d i n g the proUem difficuity are * * r » «hcs. o. S -

SC t « l . h « - * B * branch and bound ^

Brdioess problem, generated ProceSsing tin>eS from a unrform =

ft. due dates were, generated from a uniform distr ibutee,. , - n ,
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generated from a uniform distribution [ 1 5 ] Wumber of jobs in a problem were

chosen to be 10 or 20 It may be noted that the weights were generated independent

of the processing times and the due dates. !t may also be noted that no control was

txerctsed over the tardiness factor In fact it can be shown that tardiness factor was

irppctly sat at approximately 0 5

In a study conducted Dy RjnrocyKan et a/ [12 ] to test their branch and bound

algorithm for the weighted tardiness problem, weights were generated from a uniform

distrtut;on[4 5,15 5l Prcbiern sizes of 10,15 and 20 A*©ri tried Tardiness factor

was set at 0 2,04 06 and 0 8 Processing times were generated using the Normal

dtstr.'tjuticn a^d tre $'ce dates were generated frcm a un^orm distribution As in

Scriwer^fs st^a-/ ;cs> we-gnts ••ve'ft generates T.osperriert of the processing times

arci t^t Que dates ?^rnoy<an et &J studv r-d.cated ^o "e'Jt*on between cor^putat»ona!

tnt ccr^t'iition cceffci't^t between prectss^g tirrts a^c trse clue aates»

Ar'»th ^rgf rangt for tfu« dates were r«^ative*v easier to solvt cempartd to

w*th shcrt r * r j t *or the tfy« salts Rr^eoy<i^ e? m study indicated that

^actcr of CS we** fliff^Cw't tc scive^cempared *A*th OS m

was en ?r

st^tfv /*as c** t*e average
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heuristic is when compared to the optimum value. Since this implies that the study is

to be conducted across wide range of values of number of jobs in a

problem,processing times of jobs, weights etc., the performance measure should take

these aspects into consideration. Absolute deviation from the optimum value is likely

to suffer from scaling effects. Any averaging of the percentage deviation from the

optimum is likely to mislead us since such deviations are likely to be very large in the

case of problems with low tardiness factorFor a more detailed discussion of the

choice of appropriate measure of performance, see [5]). The metric that we will be

using in our study is as follows:

Weighted tardiness for Optimum
heuristic sequence value

Performance of the heuristic: — -=-—
W * n * p W * n * p

W,n and p are, respectively, the mean weight of the jobs, number of jobs and

the mean processing time of the jobs in a problem. We normalize the performance

measure by dividing the deviation from the optimum by the number of jobs. This

normalizes the measure with respect to the number of jobs in a problem and thus

permits comparison among problems with different number of jobs. Further division

with the average weight normalizes the measure for the differences in the average

weights of the job sets in different problems. Finally, divfsion with the average

processing time expresses the measure in terms of the number of average processing

t imes tardy.

In case of problems where the optimum value could not be found due to

computational limitations such as time and/or memory requirements, we used a tight

lower bound and the best feasible sotutioa

1
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in order to test our heuristic, st is necessary that we compare the performance

of our heuristic against the optimum, if possible Based on the reported perfDrmance

results, tftree enumerative methods [14. 11, 123 seem most promising. Of all the

erumsrativi methods, we choose the dynamic programming procedure suggested by

Serfage and Baker [14], Among the various enumerat?ve methods, this procedure has

the best computational tine performance for the set of tested problems Furthermore,

the iabeiiiHg proccdurt ustd in this method !ead$ to compact memory requirements,

pa^t cuiar'iy m c*s§ of the profa:ems with btgh tartness va-iuc These are the very

prcb^tms that f>ave Dctn found oy other researchers most difficult to solve Also, the

stODpmg ru*e that we deveico for identify«ng first ;ob/jcbs sn an optima! solution is

cased en the ay^arrrc programming jsre

t •$ wc/*e^r sees c a l^st, t̂ ĉ g**8 t**e c ' r a r : c prcg'STr^g socrcach suggested

c^ Sate' 4^s Scrags I s ^ ] ' s s - res tKe east rc^c^t5t^-fi ; t.^s, 'abe^rg space

VE
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also for the use of a stopping rule developed by us. The bounds become sharper and

sharper as we progressively move from one stage to the next The details of the

hybrid dynamic programming procedure developed by us are shown in the next section.

6.1 Hybrid dynamic programming procedure

This procedure is a modification of the dynamic programming procedure for the

sequencing problems with precedence constraints developed by Schrage and Baker

[14 ] . We modified this procedure in order to determine the lower and upper

bounds at every application of the recursive relationship. We also developed a

stopping rule for identification of first job in an optimal sequence. We follow notation

similar to Baker and Schrage [14 ] with appropriate additions as needed for our

modification of the procedure.

Notation

N

t(S)

S

f(S)

R(S)

g(k/t(S))

WSPT(S)

B(S)

F{S)

LB(l)

: Job i

set of feasible jobs, S is feasible if, for every job J. £ S,

all the predecessors of J are also included in S.

Set of ail jobs.

Z J € S P j

N \ S

Value of the optimal schedule for set S

Set of jobs in S that have no successors in S

Penalty for completing JR at t(S), k*S

Value of minimum weighted lateness schedule for

the jobs in S with the release date being t(S)

Lower bound for the weighted tardiness problem given that

feasible set S is scheduled optimally at the beginning

Index of the job scheduled to be in the first position in

the sequence generated for f(S)

Lower bound for the problem given that all feasible

subsets of cardinality I have been enumerated

Recursive relation is [ 1 6 ] ,

ffSl = mink | R { S ) { ffS\k) + gfk, US)} 1
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Initial condition is f(0)=0

Optimal value is given by f(N).

Schrage and Baker [14] provided the detailed procedure for enumerating all

feasible subset S in such a way that S\k is enumerted before S and a procedure for

assigning an address to the subset S\k so that f(S\k) can be accessed quickly.

At every enumeration, we determine B(S) as follows:

B(S) = f{S) + max {0, WSPT (S) }

if B(S) ^ current best feasible solution, then f(S) can be set at infinity and

need not be further considered. Further, a lower bound for the problem is

given by

LBfl) = min B{S) V | S j = I and S C N

An upper bound for the solution is given by

UB(S) = f(S) + weighted tardiness of WSPT sequence for jobs in 5

We terminate if UB(S) = LB{[S| - 1)

8.2 Stopping rule for the optimal first job

In order to guarantee the optimal first job, we can use the following procedure:

suppose F(S) is same for all S such that |S|=l , f=2,3,«xt Stop further computation

after the condition is satisfied for the smallest value of t.

For identifying the optimal first job and/or determinig the lower bounds, it Is

necessary to know when all feasible subsets of jobs of given cardinality have been

enumerated, This may be done by numbering the jobs and arranging the jobs in stages

as shown below

1. Jobs are assigned to stages such that no job is assigned to a stage less
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than or equal to its predecessors.

2. Jobs at any stage have indices greater than jobs at earlier stages.

3. Every job is assigned to the earliest possible stage, subject to (1) and (2).

These details are shown for a hypothetical example in Figure 10. It may be

noted that when the above mentioned job indexing procedure is used in conjunction

with the enumeration scheme proposed by Baker and Schrage [14] , all feasible

subsets of cardinality k-1 would have been enumerated before the job with the lowest

index in stage k can be considered for inclusion in a feasible subset of tasks. Thus,

the updating of LB(I) and checking for the optimal first job can be carried out when

the job with the lowest index at any stage is being considered for the first time for

inclusion in the feasible set S.

Another independent stopping rule for identifying the optima" first job follows

from the next proposition-

PROPOSITION li: If the job with the highest w./p. is tardy even if scheduled

first, then there is an optimal sequence in which it must be sequenced first

PROOF: Without loss of generality, assume that w^/p > w / p Also,

since J1 is tardy even if scheduled first p1 > dv Suppose there exists an optimal

schedule such that J occupies jth position and let J. occupy j- I th position(Figure 11).

Pairwise interchange of J and J^ does not affect the completion times of other

jobs. Decrease in the value of the objective function due tc pairwise interchange of

J. and J equals

- w.p.p1

- fw /p j ]



20

Stage 2 2

FTG1JRF 10

•J 7

FIGURE 11
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However, the right hand side is non negative and this contradicts the optimaiity

of the original schedule. Thus, by successively 'pushing' J to the first position, we

get set of dominant schedules and hence the result

7. Design of the experiment

Control variables in generating the test problems are: number of jobs in a

problem, distribution of the processing times, distribution of the due dates, correlation

between the processing times and the due dates, priority or the weights assigned to

the jobs.

• Processing times and the due dates: Processing times and the due dates

are generated using bivariate Normal .distribution which incorporates the

variation in processing times, variation in due dates and the correlation

between the processing times and the due dates. We set the various

parameters at the following levels:

Tardiness f ac to r ( r ) :0 .2 ,0 .4 ,0 .6 ,0-8

Coefficient of var ia t ion for the
processing times :0.1,0.3

Correlat ion coefficent between
p. and d. (p) :Q,0,5

Range factor for the due dates (R) :0.4,0.8

Population mean for the job
processing times :30

• Weights for the jobs: In prior studies by RinnooyKan [12] and
Schweimer [15], job weights were generated independently of the job
processing times and the due dates. However, we feel that on average
the penalties associated with the tardiness of the jobs would be
proportionate to the *work content of the jobs. Taking this into
consideration, we determine the weights for the jobs by independently
determining the factor w./p. from the uniform distribution in the range
[0.23.

w=(w./p.f«p.
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(w./p.) is random variate generated from the uniform distribution [0,2]

and p. is the processing time generated from a bivariate normal

distribution as described above.

• Number of jobs: In order to study the effect of the number of jobs in a

problem on our heuristic, we choose the number of jobs in a problem to

be 10, 20 or 30.

We tested 20 problems for each specification of the parameters. Thus, in total

we tested 20x4x2x2x2x3=1920 problems.

7.1 Computational experiments

In testing our heuristicffor comparison purposes, we used exponent form of our

heuristic[H3] with parameter value set at 0.5) on 1920 problems, we made a few

further changes. For problems where optimum solution could not be founddargely due

to excessive memory requirement for problems with 30 jobs), we compared myopic

heuristic solution against lower and upper bounds. We found additional lower and

upper bounds by solving the linear assignment relaxation procedure suggested by

RinnooyKan2 et al [12]. Best upper bound for the solution was found by choosing

the best solution among EDD sequence, WSPT sequence, Montagne's sequence, upper

bound generated by the hybrid dynamic procedure at termination, solution to linear

assignment relaxation procedure suggested by RinnooyKan et al and fifteen solutions

generated by five parameter values for each of the three different versions of our

heuristic

Tables 2 through 5 give the computational results for various problem sizes.

Table 2 provides the results for problems with 10 and 20 jobs. As may be noted,

our heuristic performed well when compared to other heuristics. As noted earlier, we

kept the parameter value of the myopic heuristic fixed at 0.5. However, results can

Cur pilot studs©* as wei) as published results f 12 ] showed that the lower bound obtained by this
procedure ts a&cut 20% oeiow the optimum ^%\u®» Howvtr, th« lower bound lends to be tighter if the
problems are ?ess sirdv and/or the variance of the job processing tjm«s is low.



TABLE 2

Mean Value of Performance Measure for 10 and 20 Job Problems

n

10

20

T

0.2

0.4

0.6

0.8

0.2

0.4

0.6
**

0.8

R - 0.4

OPT

0.038

0.253

0.886

2.090

0.024

0.403

1.319

3.619

EDD

0.770

0.515

1.006

1.427

0.107

0.830

1.981

2.897

WSFT

0.047

0.094

0.151

0.112

0.074

0.192

0.298

0.337

MP

0.014

0.048

0.088

0.065

0.027

0.125

0.194

0.219

MYH

0.020*

0.029

0.027

0.015

0.021

0.033

0.035

0.018

R = 0.8

OPT

0.017

0.184

0.740

2.094

0.007

0.196

1.128

3.513

EDD

0.028

0.293

0.953

1.402

0.024

0.513

1.697

0.018

WSPT

0.107

0.232

0.376

0.202

0.151

0.498

0.774

3.064

MP

0.011

0.084

0.183

0.088

0.022

0.202

0.398

.0.587

MYH

0.026

0.051

0.055

0.025

0.014

0.047

0.054

0.220

OPT; Mean Value of Normalized Optimum
EDD: Earliest Due Date Rule
WSPTs Weighted Shortest Processing Time Rule
MP: Montagne's Procedure
MYH: Myopic Heuristic [H3] with parameter k value set at 0.5

-kit

Increasing the value of parameter k in the myopic heuristic yields better results than Montagne's method.

One problem was not solved to optimality in case of both range factors - 0,4 and 0,8. However, myopic heuristic
yielded the best feasible solution for both problems.
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TABLE 3

Mean Value of Performance Measure for fully solved 30 Job Problems

(n = 30)

R = 0.4

T

0.2

0.4

0.6

0.8

Number of
problems
fully solved

73

26

8

16

OPT

0.027

0.400

2.069

5.186

EDD

0.107

1.125

2.049

4.242

WSPT

0.099

0.290

0.439

0.564

MP

0.035

0.164

0.350

0.315

MYH

0.017

0.027

0.056

0.018

R = 0.8

T

0,2

0,4

0.6

0.8

Number of
problems
fully solved

80

38

10

20

OPT

0,001

0.172

1.600

5.380

EDD

0.033

0.521

2.412

4.223

WSPT

0.224

0.739

1.215

0.837

MP

0.020

0.260

0.634

0.352

MYH

0.007

0.048

0.073

0.030

OPT: Mean Value of Normalized Optimum
EDD: Earliest Due Date Rule
WSPT: Weighted'Shortest Processing Time Rule
MP: Montaguefs Procedure
MYH Myopic Heuristic [H3] with parameter k value set at 0.5



TABLE 4

T

0.2

0/4

0.6

0.8

Number of
Problems

7

54

72

64

Mean Value

R - 0.4

EDD

0.413

1.457

3.586

5.098

WSPT

0.196

0.514

1.140

1.056

of Normalized deviation from the best lower
(For unsolved 30 Job Problems)

MP

0.150

0.414

0.940

0.876

MYH

0.091

0.250

0.713

0.592

bound

R = 0.8
Number of
Problems

0

42

70

60

EDD

-

1.157

3.165

4.799

WSPT

-

0.853

1.793

1.452

MP

-

0.481

1.188

0.923

MYH

-

0.209

0.664

0.487

EDD; Earliest Due Date Rule
WSPT; Weighted Shortest Processing Time Rule
MP; Montague's Procedure
MYH; Myopic Heuristic [H3] with parameter k value set at 0,5

J?JiJj^an

TABLE 5

myopic heuristic vis-a-vis best lower and best upper bounds

0.2

0,4

0*6

0.8

(For unsolved 30 Job Problems)

Best Normalized
Lower Bound

0.071

0.294

1.270

4.549

R » 0.4

Best Normalized
Upper Bound

0.155

0.526

1.909

5.096

Normalized Myopic
Heuristic Value

0.162

0.544

1.983

5.141

R = 0.8

Best Normalized
Lower Bound

-

0.167

0.925

4.504

Best Normalized
Upper Bound

-

0.356

1.522

4.965

Normalized Myopic
Heuristic Value

-

0.376

1.589

4.991
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further be improved at low tardiness factors by increasing the value of the

paramemter k. In case of problems with 20 jobs, we found optimum for all problems

except two problems with tardiness factor 0,8,

in the case of 30 job problems, we could not find the optimal solution to all

problems Results comparing the performance of various heuristics for problems

vwhere optimum could be found BTB shown in Table 3, It is clear that the myopic

heuristic performed better than competing heuristics in this case also. Results in the

cast of problems for which optimum could not be found are shown in Tables 4 and

5 Table 4 ccmpstm thB mean deviation of normaliztd values of various heuristics

frcm the best tower bound Hsre agasn, myop:c heuristic performs better than

competing heunsfces Table 5 compares the mean ¥aiu© of myopic heuristic to the

b#st available \cw§r bound md kmt available uppm bound It is dear frcm this table

that the myope heuristic provided the best possifci# results among «!I heuristics teeted

\r cast of prz<Qmrr»s *or A H - ^ ccfrr^m ?c^d, -t appears that the m

s r * c ^ r : s rMsas^e 'S at ts A erst for crosiSTS /*>th la^srsss factor 0 8 Tafaes 2

U*srsc$ ^ : : r t £5 Aire ^cst a^*,^"! tc sc.ve ^s ec^cuccr; A55 cases ĉ - trs

t s r-ts^ *^c^ c st-s* t-a: tr

*» : t w ^ r

^.st-.r s ^ : s arc easy

• • : " " : « jZB^i
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the solution takes place. We are currently extending the application of our myopic

heuristic to situations where we have more than one processor(identical processors in

parallel). Further extensions in the area of generalized flow shops are being explored
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APPENDIX

Consider the following relaxation of the single machine weighted tardiness

problem: suppose that all jobs have unit processing timestif not we split them into

jobs of unit processing time and assign each the weight w./p. The due dates for

these jobs are set at d.,d.-1,d.-2,._d.-p.+ 1). Let t be the completion time for the
J l i t t * 1 C

job Jp

Consider the interchange of the current job J. with another job J. which is due

to be completed at t +X. Since* all jobs are of equal length, such interchange does not

affect the completion time of any other job. Let w. and d. be the weight and the due

date of job J..

PROPOSITION AJ: Let t be the completion time of X Consider another job J.

completing X time units after J Then, an optimal sequence should satisfy the

following property—

w.
X

PROOF: We have to consider eight subcases. These are as follows:

Case I: Both jobs are late in either position. Since both jobs are late in either

position, the job with higher weight must precede the job with lower weightfFigure

AJ)

It is clear that in this case the apparent priorities of both jobs are same as their

weights and the condition is satisfied.

Case II: Both jobs are eariy in either positionfFigure A.2). In this case, we are

indifferent as to which job is scheduled first Schedule first the job with highest
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apparent priority.

Case 111: Both jobs are early in the current position and late in position t +X

(Figure A3).

Cost if J. completes at t and J. completes at t +X = w.(t +X-d.) + 0
I K C J K C J C j

•jX ji - <icV+

\ A

Cost if J. completes at t +X and J. completes at t = w.(t +X-d.) + 0
I r C J n C I C 1

- w.x ji - 'icfc'Y (i

i i

Schedule J. at t and J. at t +X if
I C J C

* }
v A / \ A

Case IV: One job is late and the other is early in either positionfFigure A.4), ft Is

clear that the job that is late should be scheduled first Note that the job that is early

has zero apparent priority and the job that is late has full weight as its apparent

priority.

Cases V and VI: One job Is late in either position and the other is early in earlier

position and late in later position(Figure A.5)

Cost if j completes at t = w.(t +X-d.)

and J, completes at t +X

Cost if J completes at t = wft +X-d.| + w.(t -d.)
I r c i c J j c j

and J completes at t +X
j C

We schedule J at t and J at t +X if
i C j C
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V

Ji

Figure A.I

Ji

Figure A.2

J. 1
i
\

Jl
J.

Figure A>3

1
I
I
1
J
1
1

J i

Zc+A j
di

Figure A.4

d.

Ji

d.

Figure A.5

1

I 1
I i
I

t i
J

I
I
1
I

s c rf,
Figure A>6

d'.
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w.(tc+X-d.) < w.(tc+X"d.) +w.(tc-d.)

VJ.

Since J. is late at t and d.-t ^ X, the above expression may be rewritten as

i -
X

> W j

X

Cases VII and VIII: One job is early in either position and the other is early in earlier

position and late in later position (Figure A.6). It is clear that J. should be scheduled at

t , since d.-t > X, apparent priority of J. will be greater than zero.

So, in all the cases discussed above, job with higher apparent priority should be

scheduled in the current position.

PROPOSITION A.11: If all jobs have unit processng times and equal weights, the

EDD sequence minimizes the average tardiness.

PROOF: Consider two adjacent jobs in an optimal sequence such that J.

precedes J. and d. > dL

Figure A, 7

Case 1: Suppose both J and J. are early or on time. Since J. is early or on

time and d, > d, patrwtse interchange does not degrade the solution,

Case II: Both j , . and J are tardy, Pairwise interchange does not degrade the

solution since both processing times and weights are equal.
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Case HI: J. is tardy and J. is early or on time. This is impossible since d. > d.

and completion time of J. < J..

Case IV: J. is early or on time and J. is tardy. If J. is on time, then pairwise

interchange does not degrade the solution. If J. is early, then pairwise interchange

improves the solution.

Thus, in all cases, pairwise interchange does not degrade the solution and, in

fact rnay improve it Since our arguments employ only information about the individual

jobs and not the location in the sequence[2] , the EDD sequence is optimal


