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Abstract

It is well known that except in the case of makespan probl ens, there
are hardly any analytical results for flowhop problens. This paper considers
of a class of flowshop problens where job processing time at a nachine is
proportionate to the processing tine on the first machine. W show that for
the pre-enptive version of the problem in order to nminimze any regular
measure of performance, it is sufficient to consider pernutation schedul es.
Al so, results for various other neasures are derived* A characterization of
the optimal solution for the weighed tardiness problemis derived which is
anal ogous to its counterpart in the single machine case. It is indicated as
how this characterization nay be used to devel op heuristics for flowshop

probl emns.



SCHEDULING IN PROPORTIONATE FLOWSHOPS

1.0 Introduction

Flowshop problems have been the center of attention for researchers in
Scheduling Theory for a long period of time. Though flowshop problems are a
special case of general jobshop problems, even these problems have proven
themselves to be too complex to provide many analytic solutions. As has been
established by Lenstra [12], most problems in this area fall in the NP-Complete
class. There are no known polynomially bounded procedures for this class of
problems and it is unlikely that there are any such procedures. Most prior
research in the field of flowshop problems was confined to makespan problems.
The most widely quoted result is due to Johnson [10] to minimize makespan in
two machine flowshop problem and its extension to a special case of three
machine flowshop problem. "Also, Gilmore and Gomory [6] devised an algorithm
with a computational burden of O(nz) for the two machine flowsHop problem
where job waiting is not permitted. There are hardly any other known poly-
nomially bounded procedures for the problems in flowshops. Another most
widely quoted result is due to Conway, Maxwell and Miller [4] proving the
optimality of the same permutation sequence on the first two machines in a
flowshop for any regular measure of performance and the additional result
that the sequence on the last two machines is the same for makespan problems.
The fact that these results were discovered more than two decades ago and no
further significant progress has been made in the case of flowshop problems in
deriving analytical attests to the complexity of these problems. Most of the
recent research in flowshops has been largely directed towards finding optimal

solution using enumerative methods such as branch and bound or developing




"good" heuristics for nakespan problens [1,2,3,5,7,13,14,15]« There is
hardly any significant work done for other inportant measures of perfornance.
This paper addresses scheduling problens in the context of a particular
ki nd of flowshop where task processing time of any job at a nmachine is pro-
portionate to the processing tine on the first machine. Results derived in
this paper relate to the problens where the jobs can be pre-enpted. W show
that in such a case, permutation schedules constitute the set bf dom nant
schedul es for any regul ar neasure of performance and we further derive results
for perfornmance neasures based on conpletion tines and/or the due dates of the
jobs. These results hold good even in cases where job-passing is prohibited.
In case of shops where internediate queues are prohibited (once a job is began
on the first machine, it has to be processed without interruption at any
subsequent machi ne), these results hold good except that the start tines on tie

first machine have to be appropriately del ayed.

2.0 Fennitation Schedules for the proportionate fl owshops

In this section, we consider pre-enptive version of the general problem
for the proportionate flowshop problem W w sh to schedule a set of jobs,
{JltJLtJy‘J } oS0 as to mnimze a regular measure of perfornmance.

Firstly, it is not unusual to find jobs being pre-enpted in practice in order
to ejpedite themthrough the production systenf Secondly, pre-enptive caseis
an iapartamt relaxation of the original problen fromthe coututational poiat

of viewr The follow ng proposition holds good for the pre-enptive case*

PRPPOSI TI 08 1: For ninimzing any regul ar nmeasure of performance, it is

sufficient to consider permtation schedul es.
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Proof: Consider an optimal schedule in which the ordering of jobs is
not the same on the last two machines m—~1 and m. Consider any two jobs Jy
and Jj such that Jj < Jj on machine m and J; < J; on machine m-1 as in

Figure 1.

Machine m-1 Js Jy

Machine m Ji » Jj

FIGURE 1

Since all jobs have the same processing time on any particular machine,
pairwise interchange of any two jobs on a particular machine does not affect
the completion times of any other jobs on that particular machine. So, pair-—-
wise interchange of jobs J; and Jj on machine m—1 does not affect completion
time of any other job on machine m—-1. If such pairwise interchange on machine
m~1 is forbidden by the schedule on machine m—2, we can switch jobs Jy and Jj
on machine m~2 as well and so on back to the first machine. Thus, we can
always form an optimal schedule in which machines m—1 and m have the same
sequence and completion times of jobs on machine m are no greater than the
original given optimal schedule. Now, we extend the same argument inductively
between machines m-1 and m-2, m~2 and m—3,..:2 and 1. Since the completion
times of the jobs are no greater than the completion times in the original
schedule, permutation schedules comnstitute the set of dominant schedules for
any regular measure of performance.

Now we derive some results relating to the completion times of the jobs.

Let B, represent the processing time for any job (piece) on machine k.



Consider any permutation schedule. Let ck represent the completion time for

(1]
the piece in the i th position on machine k. The following result holds:

PROPOSITION II: For any piece.

I=

i 2 J '

c =3 + (1-1) max {p_}
ES IS S q=i,2..3 49

PROOF: In a permutation schedule, same sequence is used on all machines.
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The rest of the proof is by induction. Suppose that in a permutation

schedule C%I] - C%i-l] ='ﬁk for some particular machine k (this is ob&iously

true for k=1 and i=2,3,4....n). We show that CT:} - C%IEI] = ﬁk+1 where
k+1

D is a constant and is given by max(Dk, pk+1).
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In this case, there is no idle tinme on nmachine k-1. Therefore, C?Tt - C%i-l]

- - K
Py ™ max 0% o)

Case 2 : Pl +] <+
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Figure 3
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Thus,
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|
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W had earlier indicated that makespan problenms are the nost wdely
researched area in the case of flowshop problenms. Further, it is well known
that the optinal schedul e need not necessarily be a permutation schedul e
except that the sequence is the same on the first two nachines and al so on
the last two machines. However, when all jobs have equal processing tines
on the first machine, the follow ng proposition holds good in the case of

proportionate flowshop*
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PROPOSITION III: Any permutation schedule provides the minimm

makespan for the proportionate flowshop problem in the case of jobs

equal processing times on the first machine.

PROOF: Let p be the maximum processing time of a job on son
—— max
machine. Work content at this particular machine is np e Also, e
has to undergo processing prior to and subsequent to this machine.
k=n
the minimum processing time for these operations is zk-—'l P ~ pmax'

the minimum makespan is given by

k=m . -
r‘I':='-1pk Pmax * Poax zk=—'1pk t (@ 1)Pmax
From Proposition II, it is clear that the minimum makespan is ac

by any permutation schedule and hence the result

-’

Now we discuss some measures relating to the completion times of

the case of the proportionate flowshop for jobs with equal processing
COROLLARY 1: Any permutation schedule of the pieces minimizes F

PROOF: ¥ if a regular measure of performance and permutation scl
constitute the set of dominant schedules. From Proposition II, it is

that all permutation schedules have the same F.

~ - [il=m =
F (L/n)*(Z [1]=1 C[i}

k=n
™ + 1 -
r}.‘i Pk /2(n l)pm X

COROLLARY 2: y,, is minimized by scheduling the jobs according to

weighted shortest processing time rule.
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PROOF: f; is a regular measure of performance and we need to consider

only permutation schedules. Completion times of jobs in a permutation schedule

is given by
C?l] = 2§:$ Py + (i-1) Poax (application of Proposition II)

i=h m
= *
Fw (L/n)* { Zi=1 W[i]c[i]}
It follows directly from basic algebra that the product of two series

is minimized by arranging one in the ascending order and the other in non-

ascending order.

Just as in the single machine case, we can show in this case also that
arranging the jobs in non increasing order of the weights minimizes the

weighted lateness as shown below:

COROLLARY 3: The Earliest Due Date rule minimizes maximum lateness and

maximum tardiness.

PROOF: Consider any two adjacent jobs Ji and Jj in a given schedule such

. Let t be the completion time of Ji.

that J, < J, and 4, > d
i 3 i hj

| |
Ji l JJ l

cT. =t c®
[1] | [i+1] |
dj dy

< >

Phax
Figure 4

Maximum lateness among jobs Ji and Jj is given by

max{t—di,‘ t+pmx-dj}=t—pmx—dj eee(l)
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Suppose we interchange Ji and Jj. Maximum lateness among Ji and Jj is given by

max { t - dj’ t+p . --..di } eee(2)

It is clear that. (1) > (2). Thus, by interchanging Ji and Jj’ the
schedule is no worse off and in fact, it would improve if the maximum lateness
in the original sequence occurred for Jj. Since Tmax equals max(0, Lmax)’ the

result holds good for maximum tardiness as well.

Another important measure of performance is weighted average tardiness.
Since this is a regular measure of performance, it is sufficient to comnsider
only permutation schedules. Following results relate to this measure of
performance for jobs with equal processing times on the first machine in the

case of proportionate flowshops.

PROPOSITION IV: The optimal pre—emptive solution to the EwiTi problen

is found by solving the linear assignment problem.

PROOF: It is clear from the Propositiom II that C?i] is independent of
the job occupying i th position in the sequence. We can form the cost matrix
tableau for the linear assignment problem (I})i j indicates the penalty incur-
red if J, is in the i th position in the sequence) as follows:

3

k=m
byg =wymx (0, g + A% -d, )

Solving the linear assignment problem using the above cost tableau yields

optimum solution. It may be noted that the solution procedure has a computa-

tional burden of the order of 0(n3).

In fact, the result in the Proposition IV can easily be generalized to

any penalty function of the completion times of the jobs so long as they are
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nondecr easi ng functions of the conpletion times of the jobs and the perfornmance
neasure is additive over the conpletion of the jobs.
Though Proposition |V provides us with a polynomally bounded procedure

for solving the pre-enptive version of EW'Pr problem the follow ng

i

characterization of optinal soldtion for the same problemis interesting

fromthe point of view of devel oping heuristics for the flowshop probl ens.

PROPCSI TION V:  Consi der an optinmal sequence for Em&Ti probl em for jobs
with equal processing times on the first machine for the proportionate fl ow—
shop. Consider any two jobs, Ji and Jj’ i <j (without loss of generality,

assune that job index is same as the locational index in the sequence under

consideration) « Then, the follow ng property nmust be satisfied in an opti mal

sequence-
+ ' +
m ¥ m +
_(di - Cii]) > 1 - (dj —cli}D)
Wa (1) p = wi (31) P
max nax

PROCF: The proof is simlar to the proof provided in the appendi x of
an earlier paper on the nyopic heuristics for the single nmachine tardiness

problem [16] and is omtted here for the sake of brevity.

This property can be considered to be valid for a relaxation of the
general problemin proportionate fl owshops where jobs are permitted to be
preenpted at unit intervals on the first machine and all such preenpted

pi eces have the sane' due date as the original job.

However, if all jobs have equal weights and equal processing times, then
the earliest due date sequence provides an opti mum sequence for the average

tardi ness problea as shown in the next proposition—
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PROPOSITION VI: If all jobs(pieces) have equal weights, the earliest

due date sequence minimizes the average tardiness.

PROOF: From Proposition I, it is clear that we have to consider omnly
permutation schedules. Consider an optimal solution in which two successive

jobs do not follow the earliest due date rule, i.e., Ji < Jj and di > dj.

Ji J

m m
‘a1 I
Figgre 5

Case 1l: Suppose that both Ji and Jj are early or on time. Since Jj

is early or on time and d

3 > dj, pairwise interchange does not degrade the

solution.

Case 2: Both Ji and Jj are tardy. Pairwise interchange does not degrade

the solution since the weights are equal.

Case 3: Ji is tardy and J. is early or on time. This is impossible

j

Case 4: Ji is early or on time and Jj is tardy.

Subcase 4.1

| |

l Ji ‘IJ ‘
i m m |
) i[il ‘;m .
k| Ppax i
Figure 6

Clearly, pairwise interchange improves the solution.




Subcasé 4,2
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R
< 1ax > |
| I
i m i
< c®
] dj [i] d
Figure 7
Cearly, pairwse interchange inproves the solution.
Subcase 4.3
I I
| Jg I I3
il m m
4 °11) d ¢a1
] < >
P
max
. Elgure 8§
Cost of J, and -
Jj in given schedul e = ] ‘max | eves (3)
Contrilxition @ _ m
after interchange = Cla) F Ppax T dy) F (G5 mdy) ceee (4

Subtracting (4) from(3),

Ther ef or e,

m
=4, - Cly

> 0

pai rwi se Interchange results in an iaprovenent.
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Subcase 4.4

d, d
j i
| |
I | | Js
m | | m
C.. C,.
(i] >[J]
<
Phax
Figure 9
Cost of J o
= + - ceoe
and Jj in"given schedule C[i] Poox dj (5)
Contribution =c®  + -4
after interchange [1] Ppax i eees (6)

Since di > di &) (6). Therefore, pairwise interchange improves the

solution.

Thus, in all cases, pairwise interchange does not degrade the solution
and, in fact, may improve it. Since our arguments employ only information
about the individual jobs and not the location, ensurance of local optimum
at all locations in the sequence ensures global optimum and hence the earliest ;5

due date rule is optimal.

3.0 Schedules with no job-passing

There is a special class of flow-shop problems where no job passing is
permitted. That is, once a job is begun on the first machine, it maintains
same priority relative to other jobs for subsequent processing on any other
machine. No job-passing is a matter of practical and design expediency. As
stated by King [11], "this is typically the situation in many manufacturing
plants where jobs are moved from station to station by conveyor.” Even in

Flexible Manufacturing Systems, due to problems involved in computation of
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optimal resource utilization, not more than two or three jobs are_permitted
to pass the others in the sequence [8,9]. Also, since technologically de-
signing input buffers to ﬁachines to accommodate any scheme other than First
Come, First Served is rather complex, in many situations no job—passing

restriction is used.
In case of proportionate flowshops, the following remark holds good.
REMARK 1: Permutation Schedules <> Schedules with no job—-passing.

Hence all results derived in §2.0 equally hold good for jobs with equal

processing times in proportionate flowshops.

4.0 Schedules with no job—waiting

Another special class of flowshop problems are those where job waiting
1s forbidden. Once a job is begun on the first machine, it must be processed
with no waiting at any otﬁer machine. Steelmaking is an example of such a
situation [11,17]. It is clear that schedules with no job—waiting are a sub-
set of schedules with no job-passing. So, here again, it suffices to consider
only permutation schedules for optimizing any regular measure of performance.
But, due to the no-wait condition, it would be necessary have inserted idle
time on the first machine. An exact algorithm for minimizing makespan for the
case of two machines with no job-—wait is given by Gilmore and Gomory [6].
Wismer [17] has shown that the makespan problem for general flowshop problem
with no job waiting can be translated into an equivalent Asymmetric Traveling
Salesman Problem. Lenstra [12] has shown that the Hamiltonian Path problem
is reducible to makespan problem in flowshops with no job—wait, thus estab-

lishing the latter problem to be No—Complete. King and Spachis [11] developed
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heuristics for this problem and tested them against random sequences and other

heuristics.

However, in the case of jobs with equal processing times to be processed
in proportionate flowshop, we can easily extend the results obtained in §2.0

even for situations where job—waiting is not permitted.

PROPOSITION VII: Any permutation sequence for proportionate flow-shop

(all jobs with equal processing times on the first machine) can be scheduled
so that completion times on the last machine are not changed and the jobs do

not form queues at any machine.

PROOF: Consider two adjacent jobs, Ji and Ji+1' Suppose Ji starts on

machine 1 at time t. Then,

m_ . 44T

Ci q=1 Pq

Ji+1 can start on machine 1 only at such a time that once its processing

has begun, it does not have to wait at any other machine. In order to deter-—

mine when complete on machine m, we simply left shift J such that its

Ji+l i+l
processing on machine m can begin immediately after Ji is complete on machine
m (Figure 10) and then right shift it to the minimum possible extent to make

it feasible (Figure 11).

/e 1} J; |Jp4

)

T

2 I 1 I3 41,
: N ! ?
3 Ji ? > Jq ; Ji //: Ji‘*‘l.:
. === T -
1 : ; 1
4 } I |54 i [ i
—_—— e

{—> indicates
overlap

Figure 10 Figure 11
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] ~' VI
Overlap of ‘]'1 and ‘]1+1

on machine j = max { 0, G - [CT +p
L i

q=m
- — p-] }
X iu M J H

=max { O, pj - %a}
Therefore, time difference between conpletion times of two successive jobs on
machine mis given by

p —pb +p =p

"max *m m "max

1
s Ui is given by

.+ (i—D*

c%‘,_u. (—*P o

W note that this value is same as the one derived in Proposition Il with no
constraints on job-waiting. Thus, all the, results derived in 82.0 hold good

even in the case when job-waiting is prohibited. However, the start tinmes on

the first machine will be delayed so that there are no queues at intermediate
machi nes- The start tine for the job in the position i is given by
vem
= ( + f3=17 -7
c:m[ll « A o "g-1Fv
= (-D*p,

5.0 Concl usi on

There are hardly any known analytic results for flowshop problens except
in the case of nmamkespan problem W have derived results for the situation
where job processing tines at any machine are proportiocaate to the time on the
first machi ne* Though we considered the case where jobs are permtted to be
preempted, these results nay be used for devel oping | ower bounds for non-
preenptive cases. Also, the property devel oped for characterizing an opti nmal
solution for the weighted tardi ness problem can be used for devel opi ng heuri s-
tics for the flowshop problens- Qur prelimnary investigations in this direc- .

tion appear to be promising and these aspects are currently being investigated-
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