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Abstract

A gray-level image processing system has been constructed to provide capability for inspection, object
orientation, object classification, and interactive control tasks in an inexpensive, stand-alone system with
moderate processing speed.  The porLYl: system offers a range of functions including algorithms for
preprocessing, feature extraction, image modeling, focusing, automatic pan, tilt, and zoom, interactive com-
munication with other devices, and convenient user interaction. The host processor is a Motorola 68000
processor with Multibus communication betweceun principal modules, an image data bus for acquisition and
storage and a pipeline bus for nuge preprocessing and programmable transform operations. The software
structure provides hicrarchical control over multiple i/0 devices, file management of system storage, an image
management package and a vector package. Performance of the system is evaluated using convolution filters,
adaptive modeling, histogram modilication, and connectivity analysis. Cellular logic operations, piccewise
gradient segmentation, automatic focusing. and adaptive spatial filtering examples are described in detail. The

system is being applied to a number of practical industrial applications.




1. Introduction

Image processing and computer vision systems offer tremendous potential in the development of in-
tegrated systems which sense and adapt to external events. Visual feedback permits such robotic systems to
evaluate, plan and exccute courses of action based on scnsory perceptions. In practice, such capabilities allow
a robotic system to inspect and cvaluate work in progress, to acquire and orient objects under visual control,

1.2,3,4.5.6.7,.8.9.10. 11

and to plan manipulation or navigation in complex cnvironments. and

12, 13. 14,15, 16, 17, 18. 19, 20, 21, 22, 23

The application of computer-based vision systems and their integration into complex systems has been

limited by a number of factors inherent in current systems:

e SPEED. Most implementations require inspection speeds of about 1-10 seconds for manufacturing
tasks and less than 1 second for robot control tasks.

e FUNCTION. While existing systems do recognition of gross silhouctte shape in binary systems or
image transfuormation and preprocessing in gray-level systems, no commercial systems do géneral
forms of gray-level object recognition or inspection.

e L EXIBILITY. The nuture of industrial inspeciion tasks varies widely and systems must be in-
hereatly adaptabie to many different tasks in order to be cost-cifective,

o ROBUSTNISS. The systemn should offer robust performance under changing lighting or other en-
vironmenta! conditions. Birary vision systems are particularly sensitive to such factors.

o USER INTERACTION. The system should provide user interactive modes of operation to be useful as
both an cxperimental wol for the development of applications as well as an on-line menitor of
inspection results.

2 SYSTEM INTFRACTION. Integration of a vision system into a more complex environment depends
strongly on the ability  interface and communicate. "The lack of effective commuunications links
in many current systems impairs the speed and flexibility of resulting integrated systems.

e COSI. The cost of both development and production-line systems affecis the feasibility of adop-
tion. Current vision Systems arc major investments as compoicents in a robotic system and have
discouraged many prototype industrial applications. '

The development of gray-level vision system algorithms, hardware, and software is still a difficult
rescarch task.2% 25 2. 27.28.29 Algorithms for such scene interpretation and object identification exist only for
highly structured environments and have most often been developed on large, gencral-purpose computing
machines. Imaging data is inhorently complex duc to the ambiguity which occurs b«ctwcén an observed




two-dimensional image and a given three-dimensional scene®*®1-32'33_ The observed image depends not only
on the geometry of the scene but dso on light source geometry, surface orientation, surface reflectivity, and
spectral distribution.  Practica experiments on object description from imaging data require two or three
cameras and significant assumptions about the scene characteristics.33310111214 At CMU vic have-
designed and constructed a gray-level processng sysem which will serve as an experimental tool in the
development of algorithms, modular hardware elements, and interactive software. The principal goals of the
system are to provide inexpensive gray-level capability for inspection, object orientation, object classfication,
and interactive control tasks in a stand-alone system with moderate processing speed. Inherent in these goals
were decisons not to build specid purpose hardware for the basic sysem structure, but to build functional
hardware units utilizing commercidly available components wherever possible.  The software structure
should provide for a complete range of sygem functions including digitization, frame storage, preprocessing,
feature extraction, segmentation, imege modeling, classfication, automatic focus, pan, tilt and zoom, display,
storage, communications with other automated devices and convenient user interaction. In addition, the
software structure should be largdy independent of particular modular hardware components so that
hardware enhancements may be added without mgor restructuring of the software.

The genera characteristics of the resulting sysem are described in this paper. The system currently is in
routine use for algorithm development with particular attention to model-based approaches to object orien-
tation and classification. The sysem communicates wsth the Flexible Assembly Station®, an experimental
system for investigating research issues in sensor-based assembly, and is used for interactive control of robots
as W21 as on-line’ingpection of assembly components. The gray-level vision system has been applied to a
number of specific industrial problems under funding from industrial sponsors and &ffiliates of The Robotics
Institute.

ITiis paper provides an overview of the hardware and software organization of FOHIYH, die CMU gray-
level vison system. It includes a quantitative evauation of the basic system with some discussion of projected
enhancements by new board designs. Applications of the sysem in the performance of cellular logic opera
tions’™ % , piccewisc gradient segmentationr', automatic focusing and adaptive spatid filtering are dso
presented.

2. Hardware

There arc a number of dternatives to consider in the design of a vison system. Some of the early work
was geared to the use of generd purpose computers coupled to a frame-buffer display system. Although this
lype of sysem offers advantages such as mass storage capabilities, extensive software libraries and good
operating systems that hide the hardware from the user, it tends to be too dow for on-line applications such as




industrial inspection tasks. 'The main characteristic of such systems is that the operations must be performed

serially in a single processing unit.

The extreme alternative is to dedicate a processing unit for cach picture clement®. Designs of this type
have proven to be extremely fast but difficult to program, so they have found places only in laboratorics or
special applications. Other alternatives include pipelined and parallel multiprocessor architcctures such as
crossbar switches and time-shared busses.’” The POPEYE vision system is a loosely coupled multiprocessor
system under the MULTIBUS convention. Figure 2-1 shows the block diagram of the main subsystems and

figure 2-2 shows a photograph of the current POPEYE vision system.
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Figure 2-1: Hardware Configuration of CMU’s POPEYE vision system



Figure 2-2: Photograph of the POPEYE vision system

2.1. Main Processing Unit (MPU)

An in-housc design based or Motorola’s MC68000 16/32 bit microprocessor, the MPU functions as the
fiow controller of the endre system. It features a 10MHz CPU. 8 KB of EPROM for the monitor (sec the
Software section) and 4 KB of RAM for the stack. It also features two serial lines and five counter/timers.
"The serial lines are typically used to communicate with the user’s terminal and the host computer, a DEC
VAX 11/750 running UNIX. Three of the timers are uscd by the system as a real time clock and the other two

are available to the user.

The MPU's functions include downloading code from the host computer to the other processors, inter-

action with the user, real-time cvents and orchestrating the flow of information within the system.

2.2. Main Memory (MM)

Two memory boards, providing a total of 640 KB, comprise the system’s main memory. The memory is
divided into 128 KB (Central Data Corporations CDC-/28K) used for programs and system utilities, and 0.5
MB (Chrislin Industrics’ C/-5/2) used for data. Space on the latter board is obtained from system calls to a
dynamic allocation package.




2.3. Secondary Storage (SS)

A 10 MB Winchester drive (Shugart Associates SA-1004) and a 1 MB (loppy-disk drive (SA-800) give
the system 11 MB of on-line secondary storage. The disk controller, manufactured by Data Technology Corp.
(type DTC-14031X) may be connected to up to four drives. The data transfer is done via direct memory access.
(DMA) between the MM and the disk controller's MULTIBUS adapter (DTC-86). The adapter controls the
transfer. Other features include copying data between the drives without going through main memory.

2.4. Input/Output Control (I0C)

The rest of the Input/Output (other than communicating v/ith the user's terminal or the host computer)
is handled by a board made by Monolithic Systems Corp. This 7.80-bascd 1/0 controller (MSC-8007) has 32
KB of dual-ported RAM which it uses to communicate with die MPU. The board's collection of 1/0 devices
includes three seria lines (normally connected to a printer, a bit-pad and a general purpose seria link) and
two parallel ports which are typicaly used to communicate with die Image Positioning subsystem described
below.

The 10C has a floating-point processor, capable of 10000-40000 flops, which is used mainly by the
on-board /.80. 32 KB of HPROM will contain the I/O drivers and some low-level algorithms for the Image
Positioning subsystem:

2.5. Image Acquisition and Display (IAD)

Four boards, al manufactured by Matrox Electronic Systems, Ltd., provide the capability of digitizing
and displaying images in real time (60 fields per second). The frame grabber (an FG-Of) digitizes a 256 x 256
pixel imaige directly from the TV camera with up to 256 levels of gray (8-bit quantization) in 1/60 of a second.
It accepts its input from one of four cameras under software selection.

The 8-hit picture elements (pixels) arc transferred via a fast bus, hereafter called the Matrox Bus, to the
frame buffer (two RGB-256 boards) which continuously displays its contents on a TV monitor. Kach board
holds four bits of the eight bit resolution. The frame buffer has both composite video and RGB outputs and
ilms It may be used to display color or black-and-white images. The color map is fixed by the hardware,

which provides three bits fur red, three for green and two for blue.

The last board of the IAD Is a one-bit overlay plane {MSEC-512) used to nondestructivcly display
cursors, viewport boundaries and other temporary objecis. When an overlay pixd is set to | the correspond-

ing area of the screen is at full brightness, regardless of the pixel's frame-buffer value.




2.6. Image Positioning (IP)

In order to add flexibility to the IAD subsystem, the TV camera was mounted on a pan/tilt head (Vicon
V30QPT) and fitted with a remote zoom/focus lens (Vicon VI12.5-75). These two elements constitute the
image positioning subsystem usad in object tracking and automatic focusing algorithms. A smdl hardware
interface connects the pardld port of the IOC to the standard controller (VI29-8PP) provided by the
manufacturers of the head and lens. This provides the user with control over the pan and tilt parameters of
the head and the zoom and focus parameters of the lens. The pan/tilt head is large enough to hold two
cameras far stereo vison applications.

2.7. Array Processor (AP)

An aray processor was added to FOFEYE for number crunching applications. The two-board set
manufactured by Sky Computers. Inc (SKYMNK-hf) is capable of up to 1 Mflops and it is utilized by the
system to perform vector calculations and Fourier andlysis on raw data.

The AP has a rather sophigticated DMA controller to retrieve the data and store the results in main
memory. It is possible to ecify not only the number of consecutive words (n) but a number of words (ni) to
be skipped before retrieving the next n words. The user may dso spedify the number of (n + m) combinations
to be used in a angle command. This complex addressing scheme is especialy useful for image processing
tasks. '

2.8. Image Pre-processing Units (IPUs)

When implementing image pre-processing agorithms, one often has to deal with very large amounts of
dataand. while the operations tend to be Smple and repetitive, it is necessary to perform them very quickly to
achieve the required overal performance,

We arc congtructing two Image Pre-processing Units (IPUs), consisting of an MC68000 processor, an
image page and a pipeline page (sec Figure 2-3). Kath of the two pages is 64 KB long so they can accom-
modate a 256 x 256 x 8 bit image. The image page may be loaded from, or dumped to, the Matrox Bus in
1/60th of a second. It is normaly used to hold die input data to be processed by the MC68000 processor or
the results uf the pre-processing agorithm.

The on-board 12 MHz MC68000 has 32 KB of RAM from which it executes instructions. 1Tiis memory
and the image page arc mapped Into the MULTIBUS memory space so they may be loaded or read by the
MPU. In a norma application, the MPU first downloads code from the host computer Into this program

memory o the IPU can execute it
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Figure 2-3: Block Diagram of the Image Pre-processing Units

The other 64 KB of memory, the pipeline page, is only accessible to the on-board MC68000 and a fast
bus caPcd the Pipeline Bus. It is thus possible to connect the two IPUs back to back by means of the pipeline
bus. In such a configuration, one IPU would receive the raw image in its image page and perform a
pre-processing algorithm storing the results in its pipeline page. The other IPU would cake the data from that
pipeline page and perform a second pre-processing algorithm putting the results in its image page from which
they may be displayed in 1/60 of a second This is possible because each MC68000 has access to the pipeline
bus, and thus to the other f PITs pipeline page.

2.9. Programmable Transform Processor (PTP)

A number of vison algorithms require that an image be transformed cither logicdly or mathematically.
Most of these transfomis are relatively straightforward, applying a number of sSsmple operations to a neigh-
borhood around the pixel being analyzed.

The PTP is a micFoprogrammablc processor specificaly designed to implement either logical or math-
ematical traesforms over a programmable neighborhood. A block diagram of the PTP isshown in Figure 2-4

It is capable of convolving a3 x 3 mask with the full Image in less than 240 msces or running a cellular-logic
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Figure 2-4: Block Diagram of the Programmable Transform Processor

cycle in little over 100 msees. The design includes a 3 x 4 pixel pipeline, an 8 x 8 {lash multiplicr, an 8-bit
ALU and a powerful ncighbm&vﬂdrc&s generator which may calculate up 10 16 neighbor-pixels’ addresses in
parallel to the main computations. The control storc holds 1K 64 bit pwords and is mapped onto the
MULTIBUS and it is loaded by the MPU during an inidalization phase. It is implemcnted with very high
speed RAM permitting typical microcycle times of less than 200 nsecs.
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2.10. Future enhancements

In the future we will add a 10 Mb Ethernet controller to speed up the communication link to the host as
well as to give the system access to a number of resources available at Carncgic-Mcllon University. Within the
Robotics Institute we will have a Three Rivers Computers Corp. PEERQ and several special processors linked
via the 10 Mb Ethernet. Also, a gateway to the 3 Mb Ethernet is planned which would link us to more than a

dozen VAXcen and other resources, including a 60 page per minute laser printer.

For color vision, we have acquired a filter wheel which will enable us to obtain three component color
images corresponding to the three primary hucs. A controlled-lighting environment is planned to perform

critical experiments.

3. Software

‘The software for the POPEYE vision system can be divided into four levels: host level support, device
level support, object level support and applications programming. (Refer to Figure 3-1.) Each level consists
of several programs and subroutine librarics. The total software effort has grown w approximately 400 pages
of code. written mostly in C, all of which was written, ediied and compiled on the host computer. 'This
machine serves as a support facility for several projects of this type, running C cross-compilers for four
different machines. In addition, it is tinked to CMU’s Ethernet. allowing it to keep abreast of system software

updates, bulletin hoard iniormation and clectronic mail traffic.

Much of the software for POPEYE was consciously patternced after similar components in UNIX. [n scveral

cascs, we were able (or forced) to port source code from the VAX to the POPEYE system.

Software engincering practices are strongly adhered to throughout the vision System software, including
manual entrics for cach program and subroutine, a header page for cach module of source code and verbose

and plentiful comments.

3.1. Host LLevel Support

3.1.1. Editing and Compiling
All the programs that run on POPEYE'S main processing unit are written, edited and compiled on the host
machine. Almost all the code is written in C, with only small utilitics where efficiency is a major consideration

being writicn in M68000 asscmbly language.

The C cross compiler package for the 68000 is very similar to the native C compiler for the VAX in that it
consists of a translator, post optimizer, assembler, linking loader, and symbol table maintainer. The loader
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Figure 3-1:  Software Configuration of CMU’s POPEYT. vision system

uscs the same subroutine library format as the UNIX lcader, which allows us to usc the same archiver. The
cross compiler loader also allows cxternal symbol references to be resolved by searching the symbol table files
from other programs, something which is very uscful in generating programs for a single process, single user
cnvironment. Often, a program which tests the algorithm of the day may bc changed, recompiled,
downloaded and exccuted cvery few minutes, so it helps to divide the program into two scgments. A small ‘
picce which contains only the algorithm implementation can be quickly rccompiled and downloaded, while a

sccond, larger picce containing support utilitics such as image display subroutines can sit in main memory
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unchanged. This is a great boon, as downloading code cven at 9600 baud is painfully slow.

3.1.2. Debugging

Another important picce of host level support is the symbolic debugger. Building a debugger for our
environment proved to be a much more complicated task than building a standard debugger, since the host
machine must communicate with the MPU in the vision system, polling memory locations, stopping and
restarting execution, single stepping cither through assembly language instructions or through lines of source
code and setting and deleting break points. ‘Thus, the debugger is actually a distributed software system. or a

"cross-debugger” (see Figure 3-2).

Exception
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MC68C00 Host
Interface Interface
,k/ |
N Pregram
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MDB/User

Source Code

. 3 Communication
Manipulation
Path

User
Interface

User's Terminal

. Figure 3-2: Representation of the Cross-1)ebugger System

At present, when a program dies unexpectedly. the monitor prints a cryptic diagnostic on the user
terminal which shows the contents of the program counter, status register and possibly some other infor-
mation. Given the address where the program dicd, the debugger will scarch the symbol table file for that
program, figurc out which subroutinc contains the address and disassemble the subroutine. Like its UNIX
counterpart, the debugger can manipulate several programs with their associated symbol tables and ex-

ccutable segments.

The compiler also supports the debugging cffort by placing labels in the assembly language output that

correspond to the beginning of cach line of source code. This allows the debugger to exccute the program on
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a line by line basis.

Although incompletely implemented at present, future plans include extension of the debugger to its full

interactive capability.

3.1.3. Downloading and Uploading

At the end of the compilation process, an extra phase of the C cross-compiler produces an ASCII version
of the exccutable program in Motorola VERSABUG format. At the request of the MPU, the host machine
dumps this file over the serial line connecting the two processors. "The MPU executes a subroutine which
reads the file. decodes the VERSABUG records and loads the executable code into main memory. This again

is a distributed software system, though not nearly as complicated as the debugger.

In addition to trading in VERSABUG format, the host machinc also implements a generalized
upload/download protocol designed to support the debugger communications and the transfer of image data.
The black and white camera attached to POPEYE can be used with color filters to obtain component color
images, which can then be uploaded to the host machine, recombined and displayed on the Grinnell color

framc buffer system.

3.1.4. Language Development

Many of the applications programs for POPLEYE are simple enough to nced only a single character menu
driven input paradigin. In certain cases, however, the input is structured enough to warrant a parser and/or a
lexical analyzer. The host UNIX system has tools for building just such items, and which output code in
C. With only minor modifications relating to i/0, this code can be cross-compiled and exccuted on POPEYE'S
MPU. An cxample of a program which uses both the parser generator and lexical analyzer generator will be
described later.

3.1.5. Hardcopy

Often, hardcopy of some entity such as an image, a line scan or a histogram plot is desired. The high
resolution laser printer connected to CMU's Ethernet is used for this purpose. The information is ufﬂoadcd
to the host in one of scveral data formats, converted by some program or sequence of programis into a
printable file and finally shipped over the Ethernet to the printer. The printable files can also be included as

illustrations in documents. Because of printer limitations, images must be binarized before being printed.
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3.2. Device Level Support

3.2.1. The Monitor
At the heart of the device level software lies the monitor. This program is stored in EPROM in the MPU
and is executed on power-up and on reccipt of fatal exceptions such as bus errors. The monitor provides

cnough capability to download and exccute programs through the implementation of the following features.

e TALK-THRU MODE. The monitor can make a software connection between the two scrial lines on
the MIPU board to allow the user access to the host as if there were no vision system between the
two. This is the mode of operation during logins, cditing and compiling. After cditing and
recompiling a program, the uscr can cxit talk-thru mode and return to POPEYE.

® DOWNLOADING. When the uscr wishes to download and exccutce a program, he gives the name of
the program to the monitor. 'The monitor requests the program from the host and cnters
download mode. During the downloading process, the monitor takes apart the VERSABUG
format file produced by the cross-compiler and sets the excecutable code into main memory. If
desired, the monitor will automatically exccute the program at the ond of the file transfer. If the
execution of the program is successful. the monitor regains control in normal inode after termina-
tion. If not, the monitor regains control through an exception handler, urps a message to the user
terminal and again returns to normal mode.

e DIEBUGGING. For simple hand debugging jobs, the monitor allows the user to examine and
change the contents of memory on an 8, 16 or 32 bit word basis. In the future, the monitor will
also support the lowcest level of the cross-debugger communications protocol. This is a par-
ticularly difficult problent since communications between the user terminal and the host must be
maintained while silently allowing the debugging program on the host to access the contents of
main memory. (Refer back to Figure 3-2.)

e DYNAMIC MEMORY ALLOCATION, 'To make the applications programs smaller, cleaner and casier
to write, a dynamic memory allocation package was installed in the monitor. The package is
initialized before the execution of cach program and provides whatever space the program may
request for temporary storage.  For example, the image manipulation package, to be described
shortly, uses the allocator to obtain space for storing image data in main memory.

To maintain independence of hardware configuration, the monitor knows nothing about any hardware
outside of the MPU.
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3.2.2. Device Drivers
‘The remainder of the device level support layer is a collection of device drivers for the various hardware
subsystems described in section 2. ‘The drivers are stored on the disk as files and read into main memory

when a particular device is openced.

e The serial i/0 package communicates with the terminal, host, printer, bitpad and genceral purpose
serial linc. Scrial i/0 is interrupt driven.

o The parallel i/0 package communicates with a special purpose hardware interface to provide the
MPU with control over the pan/tilt head and the motorized zoom lens. Thus, a user program can
independently control the pan and tilt angles and the zoom and focus parameters of the lens. A
tracking program which cxercises this control will be described insection S. Parallel i/0 may be
interrupt driven or polled.

e The disk i/0 package handles the lowest level of data transfers to and from the disks and consists
of a primitive space manager and the interface to the DMA controller. A copy command is
available to make disk backups simplc.

e The frame i/0 package talks to the image acquisition and display subsystem, controlling the
wansfer of data to and from the frame buffer and main memory and the grabbing of fraines from
up t four television cameras.

s The array processor i/0 package merely sets up DMA commands for the hardware.

3.3. Object Level Support
The object level support layer consists of the vector manipulation package, the file handling system and
the image manipulation package. Together, these three picces provide user programs with an clegant inter-

face to the hardware capabilitics of CMU’s POPEYE vision systein.

3.3.1. The Vector Manipulation Package

The vector manipulation package is the simplest of the three picces and provides access to the capabilities
of the array processor subsystem without the headaches of talking dircetly to the hardware. ‘The hardware is
manipulated at the lowest level by vendor supplied microcode which resides on the MUILTIBUS boards.
Above the microcode lies the device driver, and above the driver lies a layer of assembly language sub-
routines, supplied in part by the vendor as a library. These routines implement functions such as data format

conversion, vector algebra routines and the FFT algorithm.
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3.3.2. The File Handling System

POPEYEs file structure is one of the parts that was consciously modeled after UNIX. In the spirit of UNIX,
it unifics the myriad of details relating to both disk storage and program i/0 into a single framework. This
allows the devices attached to the system to be regarded as files. Input to a running program (a process)
always comes from a file, but often the "file” actually points through to the user terminal. Pulling the next
character from the input causes the scrial line device driver to get a character from the terminal. Likewisc, the

output from a process always goes to a file. but again, the file could actually be the terminal.

Our primary motivation for attaching a disk controller to the vision system was the need to store images.
In addition, once the size of our applications programs grew to the point that downloading became uncom-
fortable, the natural thing to do was t(; store the programs on disk. Our first inclination was to buy a
UNIX-like operating system for the 68000 and be done with worrying about files. Unfortunately, often an
operating system slows down the raw speed of a computer system, thus diminishing its performance. It was
decided that POPEYE would be a single user, single task, machine. In addition, after researching the details of
file storage on UNIX, we decided that certain aspects of the file systein were unattractive. We had grown
accustomed to the fast image access that comes from contiguous file storage. In UNIX. files can be fragmented
and strewn about all over the disk. In a multiprecess, multiuser environment where garbage compacting is
impractical, this storage scheime makes sense. In our envirenment, however. speed of access is more highly
valued. What we cnded up with is a file system with the convenient wee structure of UNIX, along with the

option of specifying files to be contiguous.

3.3.3. The Image Manipulation Package
The lasx and largest piece of the object level support layer is the image manipulation package, a sub-
routine library which provides primitives for the manipulation of images on disk, in main memory and on the

screen. ‘The following conventions have been cstablished. (Refer to Figure 3-3.)

A collection of pixels on disk is called an image. To the file handling systcin, an image is just another file,
save that it is stored contiguously. The contents of the file can be created by any means: grabbing frames
from ﬁ‘w mfa, processing another image and random number generation are all valid means of image
cmmm. i’&mﬁy‘ images arc constrained to be a multiple of 16k bytes in length. This means that a 256 x
256 w&m& image typical of POPEYE is of length 4, while a 512 x 512 pixel image typical of the Grinnell system
hed to the Vax is of length 16.

To process an image, the pixels must be moved from disk to main memory, where they reside in a
window. Windows can be of arbitrary sizc and shape. The pixels are again stored contiguously. To aid in
processing a window, there exists another object, a rectangular subset of the pixels in a window called a pane.
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Figure 3-3: Representation of the Image Manipulation System

Orce the pixels is a window have been moved 1o main memory, the Pane can be moved about within the
window, thus climinating the need to rercad the pixels from the disk or fiom the frame buffer cach time the

arca of intcrest changes.

To view the contents of a window on the monitor, a viewport is created and linked to the window.
Viewports must have identical dimensions to the windows to which they are Tinked, but are free to occupy any
pusition on the screen.  The size and location of a viewport may be changed inccractively by using the cursor
movement commands of the terminal. Several \;icwpons may be linked 10 a single window. Changes made to

the contents of a window will be reflected in cach viewport to which it is linked.

The last type of object, the Cursor. is used for pointing to specific locations on the screen.

3.4. Application Programs

I'he remainder of the vision system software is a collecrion of application programs and subroutines. A
large picce in this category is a subreutine library full uf garden-varicty image processing algorithms such as
high pass and low pass filtcr convolution kernels, the Sobel edge detector, a temporal averaging subroutine o
reduce the cffects of camera noise, histogram manipulation subroutines, a contrast cnhancement package,
binarization and ccllular logic transform operators and a temporal differencing subroutine. All of these
subroutines operate on one or more of the objects described previously.

Above this rather standard library is a collection of more advanced image processing algorithms which



we have written for our own purposes.

 The standard binary cellular logic idea has been extended to operate on grey scale images, result-
ing in Adaptive Cellular Logic, or ACL. Thisis useful for performing a more intelligent binariza-
tion than can be obtained by simple thresholding as wdl as for edge detection and blob smoothing
in grey scae images.

» Several data compression schemes have been implemented for the purpose of reducing die
amount of processing necessary to perform pattern recognition to a level compatible with red
time control. This is the subject of section 5.2.

* A gmall interpretive language for multipass image filtering has been specified and implemented.
This is described in section 5.4.

* A large support program of the type described earlier in conjunction with compiling and
downloading has been provided as a base for algorithm development. ITiis program contains
most of the subroutines described above, incl uding the software for controlling the pan/tilt head
and zoom lens, so that test programs may remain smal. The support program is capable of
downloading and executing test programs without returning to the monitor, and so does not have
to be reinitialized after each program call,

« A general purpose command interpreter package hss been written to make the construction of
menu driven programs as painless ns possible. The package includes facilities for recognizing and
executing commands, changing variables during execution and on-line help information. As
mentioned earlier, users intending to build programs for general use — especialy demonstration
programs — arc encouraged to use this package. Thus, some uniformity between pieces of
application software is achieved. First-time users have little or no trouble running demonstration
programs on FOFEYE

# A simple tracking agorithm utilizing the image positioning syssem was implemented to sec how
close the processing power of the vision system could pull toward real time. The program grabs a
frame from die camera and simultaneously hinarizes and computes the area and center of energy
uliile reading the pixels from the frame buffer. The area and center of energy arc compared to
their previous values and the differences used to deliver control signals to the image positioning
system. Movement in the x direction generates pan signals, movement in the y direction generates
tilt signals and movement in the t direction (change in area) generates zoom signas. While
processing the full 256 x 256 pixe frame size, the sampling period isjust under one second and dll
processing is done in the MPU. To achieve fagter rates, some of the computations should be
transferred to die IPUs and the FTP.

» Two automatic focusing algorithms have been implemented These will be described in section
53+
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In many industrid production environmentsit is desirable to use automated vision systems for ingpection
jobs which arc considered dangerous, boring or unreliable when carried out by humans. A number of the
application programs have come from the implementation of industrial ingpection algorithms for these tasks.
Typicdly, a concept demongtration is carried out that evaluates speed of performance, computational com-
plexity and cogt of implementation. 'Hie application packages written for this sysem have served not only to
demonstrate the feasibility of gpecific ingpection agorithms, but have also driven the software development of
the system to a dignificant extent Many of the amenities now present on the sysem were originaly
developed for specific demongtrations. Conversdly, severa of the image processing algorithms developed and
implemented for research purposes have found their way into industrial inspection packages.

3.5. Future Plans
The following pieces of software are expected to be integrated into CMLTs PFORHYFE. vision system en-
vironment in the near future.

* The Hthernet i/o package will provide a device level interface to the 10 megabyte Kthernct when
the capability becomes necessary. The Kthernct will be needed for high speed data transfers
between POR-Yl: and the Pecrg. 'ltic Porg has a high resolution bit mapped screen and a
microprogrammabl c processor, making it a desirable complement for the vison system.

* The IFUs ingaled in the sysem require simple device drivers. The existing software for
downloading code will be used to load the 32 kB program space. (Refer back to section 2.8).

* Since the PTP is a microcodablc machine, it requires a microassembler. This is a medium szed
development project. The microassembler should provide for the symbolic manipulation of
microinstructions and perform rudimentary error checking to prevent the programmer from
damaging the hardware. In addition, we plan to define a microsubroutinc format for use with an
archiver and linking loader so programmersmay build libraries of useful transform subroutines.

* After dl the hardware, device drivers and support software becomes operational. we will be faced
with a familiar but difficult problem:, programming a multiprocessor system. ITiis is a mgor
research problem we do not expect to solve the first lime around. We would like to sec suppdrt
for multiproccsning in the form (if an editor, a compiler and a debugger. Ada is being considered
asalanguage for multiprogramming, athough a custom extension to C may be in order. Our firs
approach, however, will be to write some applications software and use it to evaluate the extent to
which a rooiiprotessor support is needed
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4. Performance
It is always difficult to cvaluate a computer system since every architecture has its strong and weak
points. The problem is more complex if the system to be evaluated is a multiprocessor, as in our case. In our

discussion about the system’s performance, we chose to evaluate the system in the context of its applications.

The vision system was spccifically designed to be used in image processing tasks so it secems uscful to
compare it with other systems used in those tasks. When appropriate, we will perform comparisons with a
display-type system consisting of a frame buffer (like those manufactured by Grinncll or De Anza) and a
general purpose computer (typically a single-user PDP-11 or a multi-user VAX 11). We will also try to
compare POP-I".YF. with an analysis-type svstem such as those manufactured by Vicom or Quantex that exccute

a number of pre-defined algorithms very quickly.

It is important at this point to note that since the POPEYE vision system was designed to be a tool in the
development and testing of vision algorithms, it was essential that it be programmable. The system was not
intended to be used for any other purpose, unlike the Vax host of the display-type system. With this in mind,
we'll ook at four image processing tasks: convolution filters, adapuve modeling, histogram modification and

connectivity.

4.1. Convolution Filter
In this type of problem, a 3 x 3 mask is convolved with a 256 x 256 pixel image. This is a repetitive
operacon that may be implemented in hardware. Since it is commonly used, most analysis-type machinces

have such a hardware device. Thercfore they are able to perform the convolution in real time (30 msccs).

Assuming that the image has been acquired already, the vision system is able to do the convolution and
display the result in 300 - 350 msecs which comparces faverably with a display-type machine. Our Grinnell-
VAX 117780 combination takes anywhere from 2 to 5 secs of CPU time, depending on the system load.

4.2. Adaptive Modeling

In this task, we would like to model the image using some data dependent modcel. An example would be
a 2-D auto-regressive (AR) model. The data dependency of the algorithm does not allow an cfficient
hardwarc implementation, so the analysis-type machines do not perform well. It may be necessary to picce
together the algorithm from lower level routines but this asscmbly seldom allows the user to efficiently utilize
the pipelined architecture of the system. The display-type machine does not perform any worse than in the
convolution problem since both tasks must be programmed in software. Again the system’s load will deter-

mine its performance.
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The POPEYE vision system offers a few advantages over the other systems: [<irst, due to its large main
memory space, it can keep the entire image in RAM, allowing a floating-point number per pixcl if necessary;
sccond, the PI'P may perform the raw computations on the image while an IPU determines the model
parameters; third, the user still controls the data flow through the MPU so intermediate results may be made

available to him.

4.3. Histogram Modification
In this task a pixel by pixel (or poinf) transformation is done on the image. Unless the transformation is
fixed and doesn't depend on the raw data, two phases arc necessary: calculation of the histogram and pixel

modification.

An analysis-type machine could implement the two phascs in a pipeline of processes, making it possible
to achicve real-time rates (30 msecs) unless the modification function is complex and data dependent. In that
case there is an intermediate step of calculating the function which would be handled by a programmable
processor. For the display-type system, the user must program hoth phases separately and probably write

temporary files between thein; although casy t do. this approach is time consuming.

CMU’s popiYE vision system would use one [PU to calculate the histogram and the modifying function
whilc another uses the results to perform the pixel modification. The two [PUs would then operate as a
pipeline. If the maedification te be performed is simple cqualization, processing times as low as 50 msecs per

image may be ohtained.

4.4. Connectivity

In this problem we try to decide whether a pixel belongs to a cluster of pixels or not. A criterion, typically
sirnilarity in intensity value, is used 1 determine if a pixel is part of any of the known clusters. This is a data
dependent operation and is therefore difficult w implement in hardware unless the image is binary. A
display-type system is programmed to perform the algorithm and its execution speed depends only on the raw

speed and load of the host computer.

The implementation in the POPEYE vision system is straightforward duc to the logical transform opera-
tions available in the PTP subsystem. The PTP will execute an optimized conncctivity algorithm in less than
100 msecs.



4.5. Conclusions

It was shown that POPHYK compares very well with other architectures when dealing with image process-
ing tasks. Hven though it is in general dower than the analysistype systems, its programmability makes it an
ided candidate to evaluate different vision algorithms. A few examples will be presented in section 5.

It should be mentioned that even though the display-type system exhibited lower performance than the
other two systems, it is often supplied with a library of functions directly callable from an application
program, lliistype of sysem is aso not limited by memory which makes it very well suited to off-line image
processing like satellite cartography or multi-color imaging such as that used in medical applications.

On a sysem like FOFRYE, the user must develop dl the software (at least once) which often takes a
considerable amount of time and effort. One of the advantages is that it is possible to clone smilar systems —
possibly scded down versions— to be used in the field.

5. Examples

5.1. Cellular Logic Operations

A large number of image processing problems may be solved with simple binary images. The main
problem with binary vison systems is that light variations affect the choice of threshold. The vison system,
being agray levd system, deals with these problems in a very simple way: n presents the gray level image to
ihc vscw dlowing him to choose the threshold based on any criterion he wants. Furthermore, the image is
typicaly kept with the full 8 bits of resolution so another threshold may be chosen at a later time.

One of the reasons why someone may want to solve a problem via binary vision is that dl the posi ble
operations with binary pixels arc boolean in nature and thus capable of being performed in hardware. Preston
ct d.-+*%® have defined a number of elementary neighborhood operations for binary images. They arc based
on two locad measures on a neighborhood: the factor number (f-nitiri) and die crossing number (c-num).

In the locd neighborhood of a pixel, the f-num will be the number of Is found while the c-num will be
the number of i-0 or 0-1 transitions found while traversing the neighborhood in die clockwise direction.
Based on the f-nuin and the c-num of a pixel (say ")y two boolean variablesly and cy arc defined as

: ! 1iff {f-num of Wy)>qp
Y IQ otherwise
fl iff (c—num of iju)=>$
G~
0 otherwise
where 05 gqp<8 and Q<" £9 are the two thresholds that determine the properties of the particular cellular
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logic operator (CL.O). The two most common CLOs are the reduce (RED) operator and the augment (AUG)

operator.

The RED operator is defined by the boolean equation
vij: u,-‘]-/\ (_f;"I'VCiJ‘).

Note that duc to the ANI operator, only pixels which were originally 1 may change (to 0). If we usc the
convention that a region consists of 1s embedded in a background of Os, the number of pixcls in a region may
only be reduced (hence the name of the operator). The inverse operator (AUG) may only change pixels that

were 0 (to 1) and is defined as
vij=uiV (Ve

where f7; ;is f-num redefined so it counts the number of Os in the necighborhood. That is,

, {1 iff (MAX = (f=mum of u;))> o
ij= .

0 otherwise.
Here MAX is the number of pixels in the neighborhood. Preston® has shown the behaviour of the RED

C1.0 with di{ferent threshold combinations.

The PTP hus beer: designed to execute beth CLOs very rapidly (around 100 msecs. per CLO over a 256 x
256 pixel image). Furthermore. we are currently studying the extension of the cellular logic ideas to gray level
images and the PTP will be just as fast with gray level data. In the next section we'll present an example that

utitizes the celtular logic vperations.,

5.2. Gradient Segmentation
POPEYE has been used to implement the Piecewise Gradient Segmentation Algorithmw illustrated in
figure §-1. The algorithm consists of six major steps.

1. ONE DIMENSIONAI FEATURE EXTRACTION, The algorithm starts by cxtracting once dimensional
features from the original image. On cach of the two major directions. zﬂ(mg rows and columns,
the image is analyzed. The image is modeled using fixed-length blocks of pixels 10 make the
procedure less computationally expensive. For cach block we calculate the mean intensity, the
standard deviation from the mean and the slope of the best lincar regression fit to the pixels of the
block. This slope is related to the intensity gradicnt component in the modeled direction. This first
step is implemented on the 1PUs with cach one modelling in onc of the two major directions.

2. GRADIENT TO INTENSITY MAPPING. The output of the previous step is an array of models for cach
of the two analyzed directions: horizontal and vertical. From the slopes of the linear regression fit
we generate a slope map, an intensity display of the model slopes where the largest positive slopes
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Figure5-1: Block Diagram of ihe Piece-wise Gradient Segmentation Algoriihm

arc assigned the maximum brightness value of 255 and the largest negative slopes are assigned the
minimum value of 0. Thus the pixels with a value of 128 belong to regions of constant intensity
(no intensity slope), lliisstep and the previous step arc implemented simultaneosly on tine |PUs.

3, T!3ti:S 101.DING OF "OE . OFE MAE Each slopemapiis next. Ihrcsholded to obtain up to Fve binary
linages corresponding lo regions of zero $ope» small positive aBd negative slopes and large posi-
tive and negative slopes. Although prelimiftarf results have sftown thai the threshold is not
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grongly dependent on the lighting conditions, it is nevertheless a data-dependent operation. The
thresholding is done by the PIP a the same time it performs the fird cycle of the next step:
cdlular logic operations.

4. Ci:1.LUILAR LOGIC OPKRATIONS CN THE BINARY IMAGES. I Tiis step uses the cellular logic operations
described in the previous example. An AUG cycle with factor number of two followed by a RED
cycle with the same parameters arc done firg to filter spurious blocks set to 1 by noise or in-
accuracies in the modeling. Then eight AUG cydes with factor number of four followed by eight
RKD cycles are usad to samooth the ragged regions obtained from the simple thresholding. This
gtage in the agorithm is performed in the PI P as discussed previoudly.

5. CONNECTIVITY ANALYSIS. Once the regions have been cleaned up, we proceed to extract their two
dimensional geometrical features (area, perimeter, center of gravity, firg- and second-moment
invariants and first cross moment) dong with a description of their spatial relations with one
another. A fagt one-pass agorithm has been designed to be used in the PIP as discussed in the
performance section. The IPUs retrieve the results from the PIP and add to them the typical
model parameters (mean intendty and standard deviation) so the MPU can retrieve al the infor-
mation from the IPUS image page.”

6. GENERATION CF' A RELATIONAL DESCRIF ION. Findly, a structura description of al the dope
regions (up to five in each direction) is formed in memory by the MPU. This representation may
be used to dasdfy an object, determine its orientation or even perform scene interpretation as
explained in reference®.

Figure 52 shows the phaotograph of a paper cup lighted from one side. It is easy to sec how the shading
makes it impossible for smple thresholding to provide an adequate representation of the object. The figure
aso shows two of the five possible regions obtained from the horizontal models, they correspond to the small
positive and negative dopes.

5.3. Automatic Focusing

Seveid automatic focusng agorithms have been used by various researchers in the past, dl of which
depend on a qudity of focus criterion whose vaue Is monotonkally related lo the high frequency content of
the image. It Is usudly assumed that the point of best focus lies at the point of largest high frequency content
Horn* a MIT used a one dimensiond FFT whose input points were circularly arranged in the image.
Tcnenbaum® at Stanford-used a thresholded \crsion of the Sobel gradient operator.  Both were successful.

Severd focusing methods arc described below.

* HISTOGRAM ENTROPY MINIMIZATION. The histogram is tallied over a window of the knagc and
its entropy computed The sharper the focus of the image, the more definite the peaks in the

[ L



Figure 5-2: Small positive and negative slope regions of a paper cup (photo).

histogram become. The entropy, a measure of the "randomness” of a probability density function,
is related to the shape of the peaks. In image processing, we use the histogram as an cstimate of

the probability density.

o HiGH FREQUENCY CONTENT MAXIMIZATION. All the focusing algorithms described here some-
how depend on high frequency content, but none so obviously as the Fourier Transform. The
usual scheme is to compuic a one or two dimensional FFT, estimate the power spectrum density
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from the squared magnitude of the FIFT, sum the high frequency terms, and then maximize the
sum by refocusing.

o THRESHOLDED GRADIENT MAGNITUDE. The stecpness of dark to light and light to dark tran-
sitions in an image is dependent on the quality of focus. In two dimensions, the steepness is found
by computing the gradient. By summing the gradient cstimates over a window of the image,
another cstimate of the qua‘lity of focus is obtained. Unfortunately, since the gradient sum is
constant by definition, the gradient estimates obtained at cach point must be thresholded, thereby
making the operation nonlincar. The nonlincarity makes the algorithm difficult to analyze.

o ADAPTIVEE SEGMENTATION. Onc of the newer schemes for describing an image has been
developed recently here at CMU, and is referred to as adaptive segmentation. ‘This is a genceraliza-
tion of the gradient secgmentation algorithm described previously.

Typically, an image will contain large homogencous sections. The gencral idea of segmentation is
to cluster all the pixels in these sections into one bin. thereby reducing the amount of data which
needs processing. The hard part is defining what we mean by homogencous. Several successful
ideas have been tried so far, and some scem to be applicable to focusing. In particular, descrip-
tions that yield information concerning the variance of the pixel values in certain arcas can be
used to exrremize the variance, thereby focusing the input image.

o CELLULAR 1.OGIC. One of the most attractive features of cellular logic is its deftness at cdge
detection. Edges are the single most important features of images which strive to be in focus, and
successful atterapts at automatic focusing using cellular logic have already been made in the image
processing laboratery of a vearby hospital. The insights gained from study there are being applied
to the fucusing problem at CMU.

The histogram entropy and thresholded gradient magnitude algorithms have been implemented. Due to
aliasing on the spatial frequency domain, the histogram centropy algorithm is uscful only in the region near the
point of hest focus, but runs very quickly. The gradient algorithm is slower by a factor of approximately 5, but

focuscs as well as humans can.

5.4. Adaptive Spalial Filtering

Often an image has cnough noise in it to foil whatever algorithm is attempting to make sense of it. The
natural thing to try is removing the noise. By far the most common technique used by image processing
wizards to reduce the amount of noise present in an image is spatial averaging. The two algorithms most often
used are the simple four and cight pixel replacements of Equations 1 and 2, where the pixels are labelled as in
Figure 5-3.
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Figure 5-3: Pixel Map for the Standard Spatial Averaging Algorithms
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The action of the spatial filtering algorithms is easily interpreted in the context of Laplace’s equation.
Consider the intensity of an image as a function of the two spaual variables as a surface in three dimensional
space. To reduce noise, what's needed is 1o minimize the curvature of the surface at cvery point. The best we
can hope for is zero curvature, so we set some estimate of the curvature to zero. 'This is exactly what Laplace’s

cquation does (Iquation 3).

9% a4 _
7w Ty =0 ®

Fquation 4 is onc of the most grotesque yet still acceptable approximations to the sccond derivative available.

Nim:la—zimn""’.m—in ‘ (4)

0% |
'3—_;2_ m.n 4

Combination of Fquations 3 and 4 ycilds Equation 1, the four pixcl averaging scheme. The cight pixel scheme

comes from taking into aceount the derivatijves in the diagonal directions as well.

The principal drawback inherent in spatial averaging is the tendency to blur the image. Since the
processed value of cach pixel depends on the values of its neighbors as well as on its own, the energy in the
image spreads out after cach filtering pass. Both algorithms are actually low-pass filters, and may be analyzed
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as such. In the four pixel case, the z-transform of Equation 1 yiclds Equation 5, where z, and 7, are the z

transform variables of m and n.

X=i(z+z1 +25+27) lz2,2)

-1 -1
=4 AT+ 2l ) 5)

To find the frequency response, replace 7 by d“ to get Equation 6.

Hlw,w,) = L (cos w, + cosw,) ©)

By incorporating some "intelligence” into the filtering algorithm, it’s possible to remove noise in certain
arcas of the image while leaving others untouched. For example, homogencous arcas of the image could be
filtered without sacrificing edge character. an operation clearly nceded when performing edge or line detec-
tion. This type of smart filer, called an adaptive spatial averaging, or ASA filter, is actually two filters: one

which decides which arcas of the image are to be filtered, and another which performs the filtering.

A small interpretive language w implement the idea of iwo pass filiering was written with the aid of the
compiler writing tools on UNIX. Figure. 5-4 gives a syntax summary of the language. A small sct of utility
commands is included o avoid returning to the support program every time the user wants to do something
simnple like clearing or updating the screen. A simple conditional statement and a library of filtering functions
enable the processing engine to usc onc filter to seclect certain pixels for processing by a second filter, or to
mark the sclected pixels so the user can see what's going on. Currently implemented filters include the Sobel
edge operator and several low and high pass convolution kernels. 1.p8, for cxample, is an eight point

necighborhood average.

command: <simplecmd> or <filter> or <statement>
simplecmd: read, show, clear, pause, sleep <n>, quit or D
filter: 1p4, 1p8, hp4, hp8, pixel or sobel

statement: clip <op><n> or

if <cond> then <action> or
<variable> = <n>

cond: <filter> <op> <n> or (cond)
op: <, <=, >, >=, = o |=
action: <filter> or mark <n>

n: an integer

Figure 5-4: Syntax of the Adaptive Spatial Filtering Language

The uscfulness of the language is certainly not limited to ASA operations, since the library of filters can
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be eadly expanded. It is our intention to extend the capabilities of the language in the near future. Mlic
fallowing arc two examples of input to the interpreter.

|

| Produce a binarized edge map of the inage.

|

sobel Run the Sobel edge operator.
read Read the new inmage into nmenory.

I

I
if (pixel < 200) then mark O J Mark |ow edge-strength pixels black.
if (pixel >= 200) then mark 255 | Mark high edge-strength pixels white.

Alternatively, a program producing the same results with less computation since it only makes two passes

over the window is given below.

| Produce a binarized edge map of the inmage (fast version).
|

if (sobel < 200) then mark O ] Mark [ow ed'ge—strength pi xel s bl ack.

read j Read the new inmage into nmenory.

if (pixel > 0) then mark 255 j Mark high edge-strength pixels white.

The second example marks pixels with a high edge strength, pauses, updates the screen and then filters
al the pixels with a low edge strength using a low pass filter. The result is that only the homogeneous or
dightly shaded areas of the image undergo spatial averaging.

!

| Adaptive Spatial Averaging Exanple

if (sobel > 200) then mark 255 | Show which pixels will be filtered.
pause j Let the wuser look for a bit.

show J Put the old inage back up.

if (sobel <= 200) then |p8 j Perform the ASA passes.

6. Concl usi ons

The POR-VF \hkni system described in this paper has been developed aa CMU as an experimental tool
for die study of visua inspection, object orientation, object classification, and interactive control tasks. The
design gods of the system were to provide flexibility in the development of algorithms and systems concepts
with reasonable speed of performance and moderate cost. The resulting hardware/software system now serves
as a scmi-portablc stand-alone system which may conveniently be utilized in different laboratories for studies
of specific applications. The POFiryi= system provides an integrated gray-level vision system capability for the
Flexible Assambly Laboratory and is used in conjunction with robotic manipulators, a binary vision system,

tactile and force sensors for sensor-based control and assembly experiments.

The capabilities of the POR:YE system arc evolving through the addition of custom boards. The multiple

bus architecture offers useful aternatives for the design of boards with varying complexity and cost. As
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specific strategics for recognition and interpretation of images for industrid applications evolve, we anticipate
refined implementation of hardware and software mechaniams for these purposes. Recent applications of the
system to industrid problems have included the characterization of a coating process using variance measures
of locd texture, inspection of glass integrity usng edgefollov/ing teclmiques, the determination of object
orientation for robot acquisition using piccewise gradient modeling and histogram modification methods, and
the validation of assembly procedures usng image subtraction to isolate component parts under manipulator

control.
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