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Abstract
A gray-level image processing system has been constructed to provide capability for inspection, object

orientation, object classification, and interactive control tasks in an inexpensive, stand-alone system with

moderate processing speed. The POPI-YH system offers a range of functions including algorithms for

preprocessing, feature extraction, image modeling, focusing, automatic pan, tilt, and zoom, interactive com-

munication with other devices, and convenient user interaction. The host processor is a Motorola 68000

processor with Multibus communication between principal modules, an image data bus for acquisition and

storage and a pipeline bus for image preprocessing and programmable transform operations. The software

structure provides hierarchical control over multiple i/o devices, file management of system storage, an image

management package and a vector package. Performance of the system is evaluated using convolution filters,

adaptive modeling, histogram modification, and connectivity analysis. Cellular logic operations, piccevvise

gradient segmentation, automatic focusing, and adaptive spatial filtering examples are described in detail. 'Hie

system is being applied to a number of practical industrial applications.



1. Introduction

Image processing and computer vision systems offer tremendous potential in the development of in-

tegrated systems which sense and adapt to external events. Visual feedback permits such robotic systems to

evaluate, plan and execute courses of action based on sensory perceptions. In practice, such capabilities allow

a robotic system to inspect and evaluate work in progress, to acquire and orient objects under visual control,

and to plan manipulation or navigation in complex environments.1*2"1 ' and
12, 13. 14,15,16, 17, 18.19,20.21,22,23

The application of computer-based vision systems and their integration into complex systems has been

limited by a number of factors inherent in current systems:

• SPHF.D. Most implementations require inspection speeds of about 1-10 seconds for manufacturing
tasks and less than 1 second for robot control tasks.

• FUNCTION. While existing systems do recognition of gross silhouette shape in binary systems or
image transformation and preprocessing in gray-level systems, no commercial systems do general
forms of gray -level object recognition or inspection.

• H HXIBILITY. The nature of industrial inspection tasks varies widely and systems must be in-
herently adaptable to many different tasks in order to be cost-effective,

••ROBUSTNKSS. The system should offer robust performance under changing lighting or other en-
vironmental conditions. Binary vision systems arc particularly sensitive to such factors.

• USER iNTlfRACTlON. The system should provide user interactive modes of operation to be useful as
both an experimental tool for the development of applications as well as an on-line monitor of
inspection results.

• SYS'JKM iviTR/vcnON. Integration of a vision system into a more complex environment depends

strongly on the ability to interface and communicate. The lack of effective communications links
in many current systems impairs the speed and flexibility of resulting integrated systems.

• COS!'. The cost of both development and production-line sysicms affects the feasibility of adop-
tion. Current vision systems are major investments as components in a robotic system and have
discouraged many prototype industrial applications.

The development of gray-level vision system algorithms, hardware, and software is still a difficult

research task.24* ^*26'27*28t B Algorithms for such scene interpretation and object identification exist only for

highly structured environments and have most often been developed on large, general-purpose computing

machines. Imaging data Is inherently complex due to the ajnbiguity which occurs between an observed



two-dimensional image and a given three-dimensional scene30'31-32'33. The observed image depends not only

on the geometry of the scene but also on light source geometry, surface orientation, surface reflectivity, and

spectral distribution. Practical experiments on object description from imaging data require two or three

cameras and significant assumptions about the scene characteristics.30'33'10'11'12'14 At CMU v/c have-

designed and constructed a gray-level processing system which will serve as an experimental tool in the

development of algorithms, modular hardware elements, and interactive software. The principal goals of the

system are to provide inexpensive gray-level capability for inspection, object orientation, object classification,

and interactive control tasks in a stand-alone system with moderate processing speed. Inherent in these goals

were decisions not to build special purpose hardware for the basic system structure, but to build functional

hardware units utilizing commercially available components wherever possible. The software structure

should provide for a complete range of system functions including digitization, frame storage, preprocessing,

feature extraction, segmentation, image modeling, classification, automatic focus, pan, tilt and zoom, display,

storage, communications with other automated devices and convenient user interaction. In addition, the

software structure should be largely independent of particular modular hardware components so that

hardware enhancements may be added without major restructuring of the software.

The general characteristics of the resulting system are described in this paper. The system currently is in

routine use for algorithm development with particular attention to model-based approaches to object orien-

tation and classification. The system communicates w»th the Flexible Assembly Station34, an experimental

system for investigating research issues in sensor-based assembly, and is used for interactive control of robots

as w?1! as on-line inspection of assembly components. The gray-level vision system has been applied to a

number of specific industrial problems under funding from industrial sponsors and affiliates of The Robotics

Institute.

ITiis paper provides an overview of the hardware and software organization of POPllYH, die CMU gray-

level vision system. It includes a quantitative evaluation of the basic system with some discussion of projected

enhancements by new board designs. Applications of the system in the performance of cellular logic opera-

tions , picccwisc gradient segmentation1', automatic focusing and adaptive spatial filtering are also

presented.

2. Hardware
There arc a number of alternatives to consider in the design of a vision system. Some of the early work

was geared to the use of general purpose computers coupled to a frame-buffer display system. Although this

lype of system offers advantages such as mass storage capabilities, extensive software libraries and good

operating systems that hide the hardware from the user, it tends to be too slow for on-line applications such as



industrial inspection tasks. The main characteristic of such systems is that the operations must be perfonned

serially in a single processing unit.

The extreme alternative is to dedicate a processing unit for each picture clement26. Designs of this type

have proven to be extremely fast but difficult to program, so they have found places only in laboratories or

special applications. Other alternatives include pipelined and parallel multiprocessor architectures such as

crossbar switches and time-shared busses.37 The POPKYK vision system is a loosely coupled multiprocessor

system under the MULTIBUS convention. Figure 2-1 shows the block diagram of the main subsystems and

figure 2-2 shows a photograph of the current POPHYH vision system.

BUS

10 MS

Bit Pad

User's Terminal Remote
Host Compyter

Figure 2-1: Hardware Configuration of CM U's POPEYE vision system



Figure 2-2: holograph of the POPKYE vision system

2 . 1 . Main Processing Unit (MPU)

An in-house design based on Motorola's MC68000 16/32 bit microprocessor, the MPU functions as the

flow controller of the entire system, it features a 10MHz CPU, 8 KB of KPROM for the monitor (sec the

Software section) and 4 KB of RAM for the stack. It also features two serial lines and five counter/timers.

l i e serial lines are typically used to communicate with the user's terminal and the host computer, a DEC

VAX 11/750 running UNIX, Three of the timers are used by the system as a real time clock and the other two

?re available to the user.

The MPlTs functions include downloading code from the host computer io the other processors, inter-

action with the user, real-time events and orchestrating die flow of information within the system.

2.2. Main Memory (MM)

Two memory boards,' providing a total of 640 KB, comprise the system's main memory. The memory Is

divided into OS KB (Centra! Data Corporation's CDC-128K) used for programs and system utilities, and 05

MB (Chrislin Industries' Cf 512) used for data. Space on the latter board Is obtained from system calls to a

dynamic allocation package*



2.3. Secondary Storage (SS)

A 10 MB Winchester drive (Shugart Associates' SA-1004) and a 1 MB (loppy-disk drive (SA-800) give

the system 11 MB of on-line secondary storage. The disk controller, manufactured by Data Technology Corp.

(type DTC-14031X) may be connected to up to four drives. The data transfer is done via direct memory access.

(DMA) between the MM and the disk controller's MULTIBUS adapter (DTC-86). The adapter controls the

transfer. Other features include copying data between the drives without going through main memory.

2.4. Input/Output Control (IOC)

The rest of the Input/Output (other than communicating v/ith the user's terminal or the host computer)

is handled by a board made by Monolithic Systems Corp. This 7.80-bascd I/O controller (MSC-8007) has 32

KB of dual-ported RAM which it uses to communicate with die MPU. The board's collection of I/O devices

includes three serial lines (normally connected to a printer, a bit-pad and a general purpose serial link) and

two parallel ports which are typically used to communicate with die Image Positioning subsystem described

below.

The IOC has a floating-point processor, capable of 10000-40000 flops, which is used mainly by the

on-board /.80. 32 KB of HPROM will contain the I/O drivers and some low-level algorithms for the Image

Positioning subsystem.

2.5. Image Acquisition and Display (IAD)

Four boards, ail manufactured by Matrox Electronic Systems, Ltd., provide the capability of digitizing

and displaying images in real time (60 fields per second). The frame grabber (an FG-Of) digitizes a 256 x 256

pixel image directly from the TV camera with up to 256 levels of gray (8-bit quantization) in 1/60 of a second.

It accepts its input from one of four cameras under software selection.

The 8-bit picture elements (pixels) arc transferred via a fast bus, hereafter called the Matrox Bus, to the

frame buffer (two RGB-256 boards) which continuously displays its contents on a TV monitor. Kach board

holds four bits of the eight bit resolution. The frame buffer has both composite video and RGB outputs and

ilms It may be used to display color or black-and-white images. The color map is fixed by the hardware,

which provides three bits fur red, three for green and two for blue.

The last board of the IAD Is a one-bit overlay plane {MSEC-512) used to nondestructivcly display

cursors, viewport boundaries and other temporary objecis. When an overlay pixel is set to I the correspond-

ing area of the screen is at full brightness, regardless of the pixel's frame-buffer value.



2.6. Image Positioning (IP)

In order to add flexibility to the IAD subsystem, the TV camera was mounted on a pan/tilt head (Vicon

V30QPT) and fitted with a remote zoom/focus lens (Vicon VI2.5-75). These two elements constitute the

image positioning subsystem used in object tracking and automatic focusing algorithms. A small hardware

interface connects the parallel port of the IOC to the standard controller (VI29-8PP) provided by the

manufacturers of the head and lens. This provides the user with control over the pan and tilt parameters of

the head and the zoom and focus parameters of the lens. The pan/tilt head is large enough to hold two

cameras for stereo vision applications.

2.7. Array Processor (AP)

An array processor was added to POPEYE for number crunching applications. The two-board set

manufactured by Sky Computers. Inc (SKYMNK-hf) is capable of up to 1 Mflops and it is utilized by the

system to perform vector calculations and Fourier analysis on raw data.

The AP has a rather sophisticated DMA controller to retrieve the data and store the results in main

memory. It is possible to specify not only the number of consecutive words (n) but a number of words (ni) to

be skipped before retrieving the next n words. The user may also specify the number of (n + m) combinations

to be used in a single command. This complex addressing scheme is especially useful for image processing

tasks.

2.8. Image Pre-processing Units (IPUs)

When implementing image pre-processing algorithms, one often has to deal with very large amounts of

data and. while the operations tend to be simple and repetitive, it is necessary to perform them very quickly to

achieve the required overall performance.

We arc constructing two Image Pre-processing Units (IPUs), consisting of an MC68000 processor, an

image page and a pipeline page (sec Figure 2-3). Kach of the two pages is 64 KB long so they can accom-

modate a 256 x 256 x 8 bit image. The image page may be loaded from, or dumped to, the Matrox Bus in

l/60th of a second. It is normally used to hold die input data to be processed by the MC68000 processor or

the results uf the pre-processing algorithm.

The on-board 12 MHz MC68000 has 32 KB of RAM from which it executes instructions. ITiis memory

and the image page arc mapped Into the MULTIBUS memory space so they may be loaded or read by the

MPU. In a normal application, the MPU first downloads code from the host computer Into this program

memory so the IPU can execute it
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Figure 2-3: Block Diagram of the Image Pre-processing Units

The other 64 KB of memory, the pipeline page, is only accessible to the on-board MC68000 and a fast

bus caPcd the Pipeline Bus. It is thus possible to connect the two IPUs back to back by means of the pipeline

bus. In such a configuration, one IPU would receive the raw image in its image page and perform a

pre-processing algorithm storing the results in its pipeline page. The other IPU would cake the data from that

pipeline page and perform a second pre-processing algorithm putting the results in its image page from which

they may be displayed in 1/60 of a second This is possible because each MC68000 has access to the pipeline

bus, and thus to the other f PlTs pipeline page.

2.9. Programmable Transform Processo r (PTP)

A number of vision algorithms require that an image be transformed cither logically or mathematically.

Most of these transfomis are relatively straightforward, applying a number of simple operations to a neigh-

borhood around the pixel being analyzed.

The PTP is a micFoprogrammablc processor specifically designed to implement either logical or math-

ematical traesforms over a programmable neighborhood. A block diagram of the PTP is shown in Figure 2-4

It is capable of convolving a 3 x 3 mask with the full Image in less than 240 msccs or running a cellular-logic
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Figure 2-4: Block Diagram of the Programmable Transform Processor

cycle In little over 100 msec*. The design includes a 3 x 4 pixel pipeline, an 8 x 8 flash multiplier, an- 8-bit

ALLJ and a powerful neighbor-address generator which may calculate up u> 16 neighbor-pixels4 addresses in

parallel to the main computations. The control store holds IK 64 bit (iwords and Is mapped onto the

MULTIBUS and it is loaded by the MPU during an initialization phase. It is implemented with very high

speed RAM permitting typical microcyclc times of less than 200 nsecs.
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2.10. Future enhancements

In the future we will add a 10 Mb Kthcrnct controller to speed up the communication link to the host as

well as to give the system access to a number of resources available at Carncgic-Mcllon University. Within the

Robotics Institute we will have a Three Rivers Computers Corp. PKRQ and several special processors linked

via die 10 Mb Kthcrnct. Also, a gateway to the 3 Mb Kthcrnct is planned which would link us to more than a

dozen VAXcn and other resources, including a 60 page per minute laser printer.

For color vision, we have acquired a filter wheel which will enable us to obtain three component color

images corresponding to the three primary hues. A controllcd-lighting environment is planned to perform

critical experiments.

3. Software

The software for the KOPKYE vision system can be divided into four levels: host level support, device

level support, object level support and applications programming. (Refer to Figure 3-1.) Rach level consists

of several programs and subroutine libraries. The total software effort has grown to approximately 400 pages

of code, written mostly in C, all of which was written, edited and compiled on the host computer. This

machine serves as a support facility for several projects of this type, running C cross-compilers for four

different machines. In addition, it is linked to CMUs Kthcrnct, allowing it to keep abreast of system software

updates, bulletin board information and electronic mail traffic.

Much of the software for POPi-Yiz was consciously patterned after similar components in UNIX. In several

cases, we were able (or forced) to port source code from the VAX to the POPEYE system.

Software engineering practices arc strongly adhered to throughout the vision system software, including

manual entries for each program and subroutine, a header page for each module of source code and verbose

and plentiful comments.

3*1. Host Level Support

3.1.1. Editing and Compiling

All the programs that run on POPHYK'S main processing unit arc written, edited and compiled on the host

machine. Almost all the code is written in C with only small utilities where efficiency Is a major consideration

being written in M68000 assembly language.

The C cross compiler package for the 68GQQ is very similar to the native C compiler for the VAX in that it

consists of a translator, post optimizer, assembler, linking loader, and symbol table maintained The loader
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Figure 3-1: Software Configuration of CMU's POPI-YI. vision system

oscs the same subroutine library fontiat as the UNIX loader, which allows us to use the same archivcr. Hie

cross compiler loader also allows external s>mbol references to be resolved by searching the symbol table Files

from other programs, something which is very useful In generating programs for a single process, single user

environment Often, a program which tests the algorithm of the day may be changed, recompiled,

downloaded and executed every few minutes, so it helps to divide the program into two segments. A small

piece which contains only the algorithm implementation can be quickly recompiled and downloaded, while a

second, larger piece containing support utilities such as image display subroutines can sit in main memory
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unchanged. This is a great boon, as downloading code even at 9600 baud is painfully slow.

3.1.2. Debugging

Another important piece of host level support is the symbolic debugger. Building a debugger for our

environment provjed to be a much more complicated task than building a standard debugger, since the host

machine must communicate with the MPU in the vision system, polling memory locations, stopping and

restarting execution, single stepping cither through assembly language instructions or through lines of source

code and setting and deleting break points. 'Ilius, the debugger is actually a distributed software system, or a

"cross-debugger" (sec Figure 3-2).

MC68000

Interface

Host

Interface

Exception

Processing

Source Code

Manipulation

MDB/User

Communication

Path

User's Terminal

. Figure 3-2: Representation of the Cross-1 Xrbuggcr System

At present, when a program dies unexpectedly, the monitor prints a cryptic diagnostic on the user

terminal which shows the contents of the program counter, status register and possibly some other infor-

mation. Given the address where the program died, the debugger will search the symbol table file for that

program* figure out which subroutine contains the address and disassemble the subroutine. Like its UNIX

counterpart, the debugger can manipulate several programs with their associated symbol tables and ex-

ecutable segments.

The compiler also supports the debugging effort by placing labels in the assembly language output that

correspond to the beginning of each line of source code. This allows the debugger to execute the program on
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a line by line basis.

Although incompletely implemented at present, future plans include extension of the debugger to its full

interactive capability.

3.1.3. Downloading and Uploading

At the end of the compilation process, an extra phase of the C cross-compiler produces an ASCII version

of the executable program in Motorola VKRSABUG format. At the request of the MPU, the host machine

dumps this file over the serial line connecting the two processors. The MPU executes a subroutine which

reads the file, decodes the VKRSABUG records and loads the executable code into main memory. This again

is a distributed software system, though not nearly as complicated as die debugger.

In addition to trading in VERSABUG format, the host machine also implements a generalized

upload/download protocol designed to support the debugger communications and the transfer of image data.

'Five black and white camera attached to POPF.YI- can be used with color filters to obtain component color

images, which can then be uploaded to the host machine, rccombincd and displayed on the Grinncll color

frame buffer system.

3.1.4. Language Development

Many of the applications programs for POPI-YI- arc simple enough to need only a single character menu

driven Input paradigm. In certain cases, however, the input is structured enough to warrant a parser and/or a

lexical analy/er. 'ITic ho:>t UNIX system has tools for building just such items, and which output code in

C. With only minor modifications relating to i/o, this code can be cross-compiled and executed on POPEYE's

MPU. An example of a program which uses both the parser generator and lexical analyzer generator will be

described later.

3.1.5. Hardcopy

Often, hardcopy of some entity such as an image, a line scan or a histogram plot is desired. The high

resolution laser printer connected to CMlTs Ethernet is used for this purpose. The information is uploaded

IO the host in one of several data formats, converted by some program or sequence of programs into a

printable file and finally shipped over the Ethernet to the printer. The printable files can also be included as

illustrations in documents. Because of printer limitations, images must be binarized before being printed.
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3.2. Device Level Support

3.2.1. The Monitor

At the heart of the device level software lies the monitor. This program is stored in KPROM in the MPU

and is executed on power-up and on receipt of fatal exceptions such as bus errors. The monitor provides

enough capability to download and execute programs through the implementation of the following features.

• TALK-THRU MODE. The monitor can make a software connection between the two serial lines on
the MPU board to allow the user access to the host as if there were no vision system between the
two. This is die mode of operation during logins, editing and compiling. After editing and
recompiling a program, the user can exit talk-thru mode and return to POPEYE.

• DOWNLOADING. When the user wishes to download and execute a program, he gives the name of
the program to the monitor. The monitor requests the program from the host and enters
download mode. During the downloading process, the monitor takes apart the VHRSABUG
format file produced by the cross-compiler and sets the executable code into main memory. If
desired, the monitor will automatically execute tire program at the end of the file transfer. If the
execution of the program is successful, the monitor regains control in normal mode after termina-
tion. If not, the monitor regains control through an exception handler, urps a message to the user
terminal and again returns to normal mode.

• DHBUGGING. For simple hand debugging jobs, the monitor allows the user to examine and
change the contents of memory on an 8, I6 or 32 bit word basis. In the future, the monitor will
also support die lowest level of the cross-debugger communications protocol. This is a par-
ticularly dufxuli problem since communications between the user terminal and die host must be
maintained while silently allowing the debugging program on the host to access the contents of
main memory. (Refer back to Figure 3-2.)

• DYNAMIC MEMORY ALLOCATION. To make the applications programs smaller, cleaner and easier
to write, a dynamic memory allocation package was installed in the monitor. The package is
initialized before the execution of each program and provides whatever space the program may
request for temporary storage. For example, the image manipulation package, to be described
shortly, uses the allocator to obtain space for storing image data in main memory.

To maintain independence of hardware coo figuration, the monitor knows nothing about any hardware

outside of the MPU.
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3.2.2. Device Drivers

The remainder of the device level support layer is a collection of device drivers for the various hardware

subsystems described in section 2. 'ITic drivers arc stored on the disk as files and read into main memory

when a particular device is opened.

• The serial i/o package communicates with the terminal, host, printer, bitpad and general purpose

serial line. Serial i/o is interrupt driven.

parallel i/o package communicates with a special purpose hardware interface to provide the
MPU with control over the pan/tilt head and the motorized zoom lens. Thus, a user program can
independently control the pan and tilt angles and tire zoom and focus parameters of the lens. A
tracking program which exercises this control will be described insection 5. Parallel i/o may be
interrupt driven or polled.

• The disk i/o package handles the lowest level of data transfers to and from the disks and consists
of a primitive space manager and the interface to the DMA controller. A copy command is
available to make disk backups simple.

• 'ITic frame i/o package talks to the image acquisition and display subsystem, controlling the
transfer of data to and from the frame buffer and main memory and the grabbing of frames from
up to four television cameras.

• The array processor i/o package merely sets up DMA commands for the hardware.

3.3. Object Level Support

The object level support layer consists of the vector manipulation package, the file handling system and

the image manipulation package. Together, these three pieces provide user programs with an elegant inter-

face to the hardware capabilities of CM Us POPEYE vision system.

3.3.1. The Vector Manipulation Package

The vector manipulation package is the simplest of the three pieces and provides access to the capabilities

of the array processor subsystem without the headaches of talking directly to the hardware. The hardware is

manipulated at the lowest level by vendor supplied microcode which resides on the MULTIBUS boards.

Above the microcode lies the device driver, and above the driver lies a layer of assembly language sub-

routines, supplied in part by the vendor as a library. These routines implement functions such as data format

conversion, vector algebra routines and the FFF algorithm.
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3.3.2. The File Handling System

POPKYK's file structure is one of die parts diat was consciously modeled after UNIX. In the spirit of UNIX,

it unifies the myriad of details relating to both disk storage and program i/o into a single framework. This

allows the devices attached to the system to be regarded as files. Input to a running program (a process)

always comes from a file, but often the "file" actually points through to the user terminal. Pulling the next

character from the input causes the serial line device driver to get a character from the terminal. Likewise, the

output from a process always goes to a file, but again, the file could actually be the terminal.

Our primary motivation for attaching a disk controller to the vision system was the need to store images.

In addition, once die si/.c of our applications programs grew to die point that downloading became uncom-

fortable, the natural tiling to do was to store the programs on disk. Our first inclination was to buy a

UNIX-like operating system for the 68000 and be done with worrying about files. Unfortunately, often an

operating system slows down the raw speed of a computer system, thus diminishing its performance. It was

decided that POPKYH would be a single user, single task, machine. In addition, after researching the details of

file storage on UNIX, we decided that certain aspects of the file system were unattractive. We had grown

accustomed to the fast image access rhat comes from contiguous file storage. In UNIX, files can be fragmented

and strewn about all over the disk. In a multiprocess, multiuser environment where garbage compacting is

impractical, this storage scheme makes sense. In our environment, however, speed of access is more highly

valued. What we ended up with is a file system with the convenient tree structure of UNIX, along with the

option of specifying files to be contiguous.

3.3.3. The Image Manipulation Package

The last and largest piece of the object level support layer is the image manipulation package, a sub-

routine library which provides primitives for the manipulation of Images on disk, in main memory and on the

screen. The following conventions have been established. (Refer to Figure 3-3.)

A collection of pixels on disk is called an image. To the file handling system, an image is just another file,

save that it is stored contiguously. The contents of the file can be created by any means: grabbing frames

from the camera, processing another image and random number generation are all valid means of image

creation. Presently, images arc constrained to be a multiple of 16k bytes in length. This means that a 256 x

256 pixel image typical of POPEYf: is of length 4, while a 512 x 512 pixel image typical of the Grinncll system

attached to the Vax is of length 16.

To process an image, the pixels must be moved from disk to main memory, where they reside in a

ttindow. Windows can be of arbitrary size and shape. The pixels are again stored contiguously. To aid in

processing a window, there exists another object, a rectangular subset of the pixels in a window called a pane.
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Figure 3-3: Representation of the Image Manipulation System

Once the pixels is a window have been moved to main memory, the Pane can be moved about within die

window, thus eliminating the need to reread the pixels from die disk or from the frame buffer each time the

area of interest changes.

To view the contents of a window on the monitor, a viewport is created and linked to the window.

Viewports must have identical dimensions to the windows to which they arc linked, but are free to occupy any

position on the screen. The size and location of a viewport may be changed interactively by using the cursor

movement commands of the terminal Several viewports may be linked to a single window. Changes made to

the concents of a window will be reflected in each viewport to which it is linked.

The last type of object the Cursor, is used for pointing to specific locations on the screen.

3,4. Application Programs

The remainder of the vision system sofiware is a collection of application programs and subroutines. A

large piece in this category is a subroutine library full uf garden-variety linage processing algorithms such as

high pass and low pass filter convolution kernels, 'the Sobcl edge detector, a temporal averaging subroutine to

reduce the effects of camera noise, histogram manipulation subroutines, a contrast enhancement package,

binarization and cellular logic transform operators and a temporal differencing subroutine. All of these

subroutines operate on one or more of the objects described previously.

Above this rather standard library h a collection of more advanced image processing algorithms which
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we have written for our own purposes.

• The standard binary cellular logic idea has been extended to operate on grey scale images, result-
ing in Adaptive Cellular Logic, or ACL. This is useful for performing a more intelligent binariza-
tion than can be obtained by simple thresholding as well as for edge detection and blob smoothing
in grey scale images.

• Several data compression schemes have been implemented for the purpose of reducing die
amount of processing necessary to perform pattern recognition to a level compatible with real
time control. This is the subject of section 5.2.

* A small interpretive language for multipass image filtering has been specified and implemented.

This is described in section 5.4.

• A large support program of the type described earlier in conjunction with compiling and
downloading has been provided as a base for algorithm development. ITiis program contains
most of the subroutines described above, including the software for controlling the pan/tilt head
and zoom lens, so that test programs may remain small. The support program is capable of
downloading and executing test programs without returning to the monitor, and so does not have
to be reinitialized after each program call,

« A general purpose command interpreter package h<»s been written to make the construction of
menu driven programs as painless ns possible. The package includes facilities for recognizing and
executing commands, changing variables during execution and on-line help information. As
mentioned earlier, users intending to build programs for general use — especially demonstration
programs — arc encouraged to use this package. Thus, some uniformity between pieces of
application software is achieved. First-time users have little or no trouble running demonstration
programs on POPEYE.

# A simple tracking algorithm utilizing the image positioning system was implemented to sec how
close the processing power of the vision system could pull toward real time. The program grabs a
frame from die camera and simultaneously hinarizes and computes the area and center of energy
uliile reading the pixels from the frame buffer. The area and center of energy arc compared to
their previous values and the differences used to deliver control signals to the image positioning
system. Movement in the x direction generates pan signals, movement in the y direction generates
tilt signals and movement in the t direction (change in area) generates zoom signals. While
processing the full 256 x 256 pixel frame size, the sampling period is just under one second and all
processing is done in the MPU. To achieve faster rates, some of the computations should be
transferred to die IPUs and the FTP.

• Two automatic focusing algorithms have been implemented These will be described in section
53*
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In many industrial production environments it is desirable to use automated vision systems for inspection

jobs which arc considered dangerous, boring or unreliable when carried out by humans. A number of the

application programs have come from the implementation of industrial inspection algorithms for these tasks.

'Typically, a concept demonstration is carried out that evaluates speed of performance, computational com-

plexity and cost of implementation. 'Hie application packages written for this system have served not only to

demonstrate the feasibility of specific inspection algorithms, but have also driven the software development of

the system to a significant extent Many of the amenities now present on the system were originally

developed for specific demonstrations. Conversely, several of the image processing algorithms developed and

implemented for research purposes have found their way into industrial inspection packages.

3.5. Future Plans

The following pieces of software are expected to be integrated into CMLTs POPHYF. vision system en-

vironment in the near future.

• The Hthcrnct i/o package will provide a device level interface to the 10 megabyte Kthcrnct when
the capability becomes necessary. The Kthernct will be needed for high speed data transfers
between POPI-YI- and the Pcrq. 'Itic Pcrq has a high resolution bit mapped screen and a
microprogrammablc processor, making it a desirable complement for the vision system.

• The IFUs installed in the system require simple device drivers. The existing software for
downloading code will be used to load the 32 kB program space. (Refer back to section 2.8).

• Since the PTP is a microcodablc machine, it requires a microassembler. This is a medium sized
development project. The microassembler should provide for the symbolic manipulation of
microinstructions and perform rudimentary error checking to prevent the programmer from
damaging the hardware. In addition, we plan to define a microsubroutinc format for use with an
archivcr and linking loader so programmers may build libraries of useful transform subroutines.

• After all the hardware, device drivers and support software becomes operational we will be faced
with a familiar but difficult problem:, programming a multiprocessor system. ITiis is a major
research problem we do not expect to solve the first lime around. We would like to sec support
for multiproccsning in the form (if an editor, a compiler and a debugger. Ada is being considered
as a language for multiprogramming, although a custom extension to C may be in order. Our first
approach, however, will be to write some applications software and use it to evaluate the extent to
which a rooiiprotessor support is needed
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4. Performance
It is always difficult to evaluate a computer system since every architecture has its strong and weak

points. The problem is more complex if the system to be evaluated is a multiprocessor, as in our case. In our

discussion about the system's performance, we chose to evaluate the system in the context of its applications.

The vision system was specifically designed to be used in image processing tasks so it seems useful to

compare it with other systems used in those tasks. When appropriate, we will perform comparisons with a

display-type system consisting of a frame buffer (like those manufactured by Grinncll or Dc Anza) and a

general purpose computer (typically a single-user PDP-11 or a multi-user VAX 11). We will also try to

compare POPKYI- with an analysis-type system such as those manufactured by Vicom or Quantcx that execute

a number of prc-dcfined algorithms very quickly.

It is important at this point to note that since the POPEYE vision system was designed to be a tool in the

development and testing of vision algorithms, it was essential that it be programmable. The system was not

intended to be used for any other purpose, unlike the Vax host of the display-type system. With this in mind,

well look at four image processing tasks: convolution filters, adaptive modeling, histogram modification and

connectivity.

4.1. Convolution Filter

In tills type of problem, a 3 x 3 mask is convolved with a 256 x 256 pixel image. This is a repetitive

operation that may be implemented in hardware. Since it is commonly used, most analysis-type machines

have such a hardware device. Therefore they arc able to perform the convolution in real time (30 msccs).

Assuming that tHc image has been acquired already, the vision system is able to do the convolution and

display the result in 300 - 350 msccs which compares favorably with a display-type machine. Our Grinncll-

VAX i 1/780 combination takes anywhere from 2 to 5 sees of CPU time, depending on the system load.

4 .2 . Adaptive Modeling

In this task, we would like to model the image using some data dependent model. An example would be

a 2-D auto-regressive (AR) model l l ie data dependency of the algorithm does not allow an efficient

hardware implementation, so the analysis-type machines do not perform well It may be necessary to piece

together the algorithm from lower level routines but this assembly seldom allows the user to efficiently utilize

the pipelined architecture of the system- The display-type machine does not perform any worse than in the

convolution problem since both tasks must be programmed In software. Again the system's load will deter-

mine its performance,
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The POPF.YH vision system offers a few advantages over the other systems: First, due to its large main

memory space, it can keep the entire image in RAM, allowing a floating-point number per pixel if necessary;

second, the PTP may perform the raw computations on the image while an IPU determines the model

parameters; third, the user still controls the data flow through "the MPU so intermediate results may be made

available to him.

4 .3 . Histogram Modification

In this task a pixel by pixel (or point) transformation is done on the image. Unless the transformation is

fixed and doesn't depend on the raw data, two phases arc necessary: calculation of the histogram and pixel

modification.

An analysis-type machine could implement the two phases in a pipeline of processes, making it possible

to achieve real-time rates (30 msccs) unless the modification function is complex and data dependent. In that

case there is an intermediate step of calculating the function which would be handled by a programmable

processor. For the display-type system, the user must progiain both phases separately and probably write

temporary files between them; although easy to do, this approach is time consuming.

CM Us l*OP!*YS: vision system would use one IPU to calculate the histogram and the modifying function

while another uses the results to perform the pixel modification. 'Ilie two IPUs would uien operate as a

pipeline. If the modification to be performed is simple equalization, processing times as low as 50 msecs per

iniage ma> be obtained.

4.4. Connectivity

In this problem we try to decide whether a pixel belongs to a cluster of pixels or not. A criterion, typically

similarity in intensity value, is used to determine if a pixel is part of any of the known clusters. This is a data

dependent operation and is therefore difficult to implement in hardware unless the image is binary. A

display-type system is programmed to perform the algorithm and its execution speed depends only on the raw

speed and load of the host computer.

The implementation In the PQPEYE vision system is straightforward doe to the logical transform opera-

tions available in the PIP subsystem. The PTP will execute an optimized connectivity algorithm In less Chan

KBIBSCCS.
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4.5. Conclusions

It was shown that POPHYK compares very well with other architectures when dealing with image process-

ing tasks. Hven though it is in general slower than the analysis-type systems, its programmability makes it an

ideal candidate to evaluate different vision algorithms. A few examples will be presented in section 5.

It should be mentioned that even though the display-type system exhibited lower performance than the

other two systems, it is often supplied with a library of functions directly callable from an application

program, lliis type of system is also not limited by memory which makes it very well suited to off-line image

processing like satellite cartography or multi-color imaging such as that used in medical applications.

On a system like POPF.YE, the user must develop all the software (at least once) which often takes a

considerable amount of time and effort. One of the advantages is that it is possible to clone similar systems —

possibly scaled down versions — to be used in the field.

5. Examples

5.1. Cellular Logic Operations

A large number of image processing problems may be solved with simple binary images. The main

problem with binary vision systems is that light variations affect the choice of threshold. The vision system,

being a gray level system, deals with these problems in a very simple way: n presents the gray level image to

ihc vscw allowing him to choose the threshold based on any criterion he wants. Furthermore, the image is

typically kept with the full 8 bits of resolution so another threshold may be chosen at a later time.

One of the reasons why someone may want to solve a problem via binary vision is that all the posible

operations with binary pixels arc boolean in nature and thus capable of being performed in hardware. Preston

ct al.-*8"36 have defined a number of elementary neighborhood operations for binary images. They arc based

on two local measures on a neighborhood: the factor number (f-nitiri) and die crossing number (c-num).

In the local neighborhood of a pixel, the f-num will be the number of Is found while the c-num will be

the number of i-0 or 0-1 transitions found while traversing the neighborhood in die clockwise direction.

Based on the f-nuin and the c-num of a pixel (say u^)% two boolean variables/y and cy arc defined as

iff {f-num of Wy)>«p

IQ otherwise

fl iff (c—num of iiu)>$
cij ^ i

^0 otherwise
where 0 < qp < 8 and 0 < ^ £ 9 are the two thresholds that determine the properties of the particular cellular
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logic operator (CLO). The two most common CLOs arc the reduce (RKD) operator and die augment (AUG)

operator.

The RHD operator is defined by the boolean equation

Note that due to the \ND operator, only pixels which were originally 1 may change (to 0). If we use the

convention that a region consists of Is embedded in a background of 0s, the number of pixels in a region may

only be reduced (hence the name of die operator). The inverse operator (AUG) may only change pixels that

were 0 (to 1) and is defined as

where f\j is f-num redefined so it counts the number of 0s in the neighborhood. ITiat is,

v __ (I iff (MAX - (f-num of M/j))>9
J ij — i

{Q otherwise.

Mere MAX is the number of pixels in the neighborhood. Preston has shown the behaviour of the RKD

CI -O with different threshold combinations.

The PIP has been designed to execute both CLOs very rapidly (around 100 msccs. per CLO over a 256 x

256 pixel image). Furthermore, we arc currently studying the extension of the cellular logic ideas to gray level

linages and liic PI P will be jusi as fast wiih gray level data. In the next section we'll present an example that

utilizes die cellular logic operations.

5.2. Gradient Segmentation

POPEYE has been used to implement the Pieccwisc Gradient Segmentation Algorithm19 illustrated in

figure 5-1. The algorithm consists of six major steps.

l.ONF DiMhNSiONAl R:..\rLRH EXTRACTION, Hie algorithm starts by extracting one dimensional
features from the original image. On each of the two major directions, along rows and columns,
the image is analyzed. Hie image is modeled using fixed-length blocks of pixels to make the
procedure less computationally expensive. For each block *c calculate the mean intensity, the

standard deviation from the mean and 'the slope of the best linear regression fit to the pixels of the
block. This slope is related ID the intensity gradient component in the modeled direction. This first
step is implemented on the IPUs with each one modelling in one of the two major directions.

1 GRADIENT TO INTENSITY MAPPING, The output of the previous step is an array of models for each

of the two analyzed directions: horizontal and vertical From the slopes of die linear regression fit

we generate aa slope map, an intensity display of the model slopes where the largest positive slopes
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Figure 5-1: Block Diagram of ihe Piece-wise Gradient Segmentation Algoriihm

arc assigned the maximum brightness value of 255 and the largest negative slopes are assigned the
minimum value of 0. Thus the pixels with a value of 128 belong to regions of constant intensity
(no intensity slope), lliis step and the previous step arc implemented simultaneosly on tine IPUs.

3, T!3ti:S! IOI.DING OF "OIE SLOPE MAE Each slope map is next Ihrcsholded to obtain up to Five binary
linages corresponding lo regions of zero $fope» small positive aBd negative slopes and large posi-
tive and negative slopes. Although prelimiftarf results have sftown thai the threshold is not



25

strongly dependent on the lighting conditions, it is nevertheless a data-dependent operation. The

thresholding is done by the PIP at the same time it performs the first cycle of the next step:

cellular logic operations.

4. CI-I.LUI.AR LOGIC OPKRATIONS ON THE BINARY IMAGES. ITiis step uses the cellular logic operations
described in the previous example. An AUG cycle with factor number of two followed by a RED
cycle with the same parameters arc done first to filter spurious blocks set to 1 by noise or in-
accuracies in the modeling. Then eight AUG cycles with factor number of four followed by eight
RKD cycles are used to smooth the ragged regions obtained from the simple thresholding. This
stage in the algorithm is performed in the PIP as discussed previously.

5. CONNECTIVITY ANALYSIS. Once the regions have been cleaned up, we proceed to extract their two
dimensional geometrical features (area, perimeter, center of gravity, first- and second-moment
invariants and first cross moment) along with a description of their spatial relations with one
another. A fast one-pass algorithm has been designed to be used in the PIP as discussed in the
performance section. The IPUs retrieve the results from the PIP and add to them the typical
model parameters (mean intensity and standard deviation) so the MPU can retrieve all the infor-
mation from the IPUs' image page.

6. GENERATION OF" A RELATIONAL DESCRiFi ION. Finally, a structural description of all the slope
regions (up to five in each direction) is formed in memory by the MPU. This representation may
be used to classify an object, determine its orientation or even perform scene interpretation as
explained in reference19.

Figure 5-2 shows the photograph of a paper cup lighted from one side. It is easy to sec how the shading

makes it impossible for simple thresholding to provide an adequate representation of the object. The figure

also shows two of the five possible regions obtained from the horizontal models, they correspond to the small

positive and negative slopes.

5.3. Automatic Focusing

Seveial automatic focusing algorithms have been used by various researchers in the past, all of which

depend on a quality of focus criterion whose value Is monotonkally related lo the high frequency content of

the image. It Is usually assumed that the point of best focus lies at the point of largest high frequency content

Horn39 at MIT used a one dimensional FFT whose input points were circularly arranged in the image.

Tcnenbaum40 at Stanford-used a thrcsholdcd \crsion of the Sobel gradient operator. Both were successful.

Several focusing methods arc described below.

• HISTOGRAM ENTROPY MINIMIZATION. The histogram is tallied over a window of the knagc and
its entropy computed The sharper the focus of the image, the more definite the peaks in the
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Figure 5-2: Small positive and negative slope regions of a paper cup (photo).

histogram become. The entropy, a measure of the "randomness" of a probability density function,

is related to the shape of the peaks. In image processing, we use the histogram as an estimate of

the probability density.

HIGH FREQUENCY CONTENT MAXIMIZATION. All the focusing algorithms described here some-

how depend on high frequency content, but none so obviously as the Fourier Transform. The

usual scheme is to compute a one or two dimensional FFT, estimate the power spectrum density
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from the squared magnitude of the FIT, sum the high frequency terms, and then maximize tlie

sum by rcfocusing.

• Ti IRHSIIOI.DF.D GRADIENT MAGNITUDE The steepness of dark to light and light to dark tran-
sitions in an image is dependent on the quality of focus. In two dimensions, the steepness is found
by computing the gradient. By summing the gradient estimates over a window of the image,
another estimate of the quality of focus is obtained. Unfortunately, since the gradient sum is
constant by definition, die gradient estimates obtained at each point must be thrcsholdcd, thereby
making the operation nonlinear. The nonlincarity makes the algorithm difficult to analyze.

• ADAPTIVE SKGMHNTATION. One of the newer schemes for describing an image has been
developed recently here at CMU, and is referred to as adaptive segmentation. ITiis is a generaliza-
tion of the gradient segmentation algorithm described previously.

Typically, an image will contain large homogeneous sections. The general idea of segmentation is
to cluster all the pixels in these sections into one bin, thereby reducing the amount of data which
needs processing. ITic hard part is defining what we mean by homogeneous. Several successful
ideas have been tried so far, and some seem to be applicable to focusing. In particular, descrip-
tions that yield information concerning the variance of the pixel values in certain areas can be
used to eximnirethc variance, thereby focusing the input image.

OCRLI.ULAR LOGIC. One of the most attractive features of cellular logic is its deftness at edge
detection. Edges arc the single most important features of images which strive to be in focus, and
successful attciiipis at automatic focusing using cellular logic have already been made in the image
processing laboratory of a nearby hospital. The insights gained from study there are being applied
to tlie focusing problem at CMU.

The histogram entropy and thrcsholdcd gradient magnitude algorithms have been implemented. Due to

aliasing on the spatial frequency domain, the histogram entropy algorithm is useful only in the region near the

point of best focus, but suns very quickly. The gradient algorithm is slower by a factor of approximately 5, but

focuses as well as humans can.

5.4. Adaptive Spatial Filtering

Often ao image has enough noise in it to foil whatever algorithm is attempting to make sense of it The

natural thing to try is removing the noise* By far the most common technique used by image processing

wizards to reduce the amount of noise present in an image is spatial averaging. The two algorithms most often

used are the simple four and eight pixel replacements of Equations 1 and 2, where the pixels are labelled as ii

Hgyre 5-3,
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The action of the spatial filtering algorithms is easily interpreted in die context of Laplace's equation.

Consider the intensity of an image as a function of the two spatial variables as a surface in three dimensional

space. To reduce noise, what's needed is to minimize die curvature of die surface at every point. The best we

can hope for is zero curvature, so we set some estimate of die curvature to zero, 'liiis is exactly what Laplace's

equation does (Kquation 3).

(3)

Kquation 4 is one of the most grotesque yet still acceptable approximations to the second derivative available.

" * I T
(4)

Combination of Equations 3 and 4 ycilds Equation 1, the four pixel averaging scheme. The eight pixel scheme

comes from taking into account the derivatives in the diagonal directions as well

The principal drawback inherent in spatial averaging is the tendency to blur the image. Since the

processed value of each pixel depends on the values of its neighbors as well as on Its own, the energy in the

image spreads out after each filtering pass. Both algorithms arc actually low-pass filters, and may be analyzed
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as such. In the four pixel case, the /.-transform of Kquation 1 yields Hquation 5, where /^ and z2*arc the z

transform variables of m and n.

z7l)I(zltz2)

+ ^j^) ^i) (5)

To find the frequency response, replace z by e1*0 to get Hquation 6.

)ifO)2) = 1 ( COSC*! + COSC02) (6 )

By incorporating some "intelligence" into the filtering algorithm, if s possible to remove noise in certain

areas of the image while leaving others untouched. For example, homogeneous areas of the image could be

riliereci without sacrificing edge character, an operation clearly needed when performing edge or line detec-

tion. This type of smart filter, called an adaptive spatial averaging, or ASA filter, is actually two filters: one

which decides which areas of the image are to be filtered, and another which performs the filtering.

A small interpretive language to implement the idea of two pass filtering was written with the aid of the

compiler writing lools on UNIX. Figure. 5-4 gives a syntax summary of the language. A small set of utility

commands is included to a\oid returning to the support program every time the user wants to do something

simple like clearing or updating die screen. A simple conditional statement and a library of filtering functions

enable the processing engine to use one filter to select certain pixels for processing by a second filter, or to

mark the selected pixels so the user can see what's going on. Currently implemented filters include the Sobel

edge operator and several low and high pass convolution kernels. Lp8, for example, is an eight point

neighborhood average.

command: <simplecmd> or <filter> or <statement>
simp 1 ecmel: read, show, clear, pause, sleep <o>, quit or tD
filter: Ip4, Ip8, hp4» hp8f pixel or sobel
statement; clip <opxn> or

if <cond> then <action> or
<var1ab1e> = <n>

cond: <fi1ter> <op> <n> or (cond)
op: <, <s, >, >=» s or Is

action; <fi1ter> or mark <n>
n: an Integer

Figure 5-4: Syntax of the Adaptive Spatial Filtering Language

The usefulness of the language is certainly not limited to ASA operations, since the library of Fillers can
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be easily expanded. It is our intention to extend the capabilities of the language in the near future. Mlic

following arc two examples of input to the interpreter.

i
| Produce a binarized edge map of the image.

i
sobel | Run the Sobel edge operator.
read I Read the new image into memory.
if (pixel < 200) then mark 0 J Mark low edge-strength pixels black.
if (pixel >= 200) then mark 255 | Mark high edge-strength pixels white.

Alternatively, a program producing the same results with less computation since it only makes two passes

over the window is given below.

I
I Produce a binarized edge map of the image (fast version).
!
if (sobel < 200) then mark 0 ] Mark low edge-strength pixels black.
read j Read the new image into memory.
if (pixel > 0) then mark 255 j Mark high edge-strength pixels white.

The second example marks pixels with a high edge strength, pauses, updates the screen and then filters

ail the pixels with a low edge strength using a low pass filter. The result is that only the homogeneous or

slightly shaded areas of the image undergo spatial averaging.

!
| Adaptive Spatial Averaging Example

I
if (sobel > 200) then mark 255 | Show which pixels will be filtered.
pause j Let the user look for a bit.
show J Put the old image back up.
if (sobel <= 200) then Ip8 j Perform the ASA passes.

6. Conclusions
The POPI-VF \hkni system described in this paper has been developed at CMU as an experimental tool

for die study of visual inspection, object orientation, object classification, and interactive control tasks. The

design goals of the system were to provide flexibility in the development of algorithms and systems concepts

with reasonable speed of performance and moderate cost. The resulting hardware/software system now serves

as a scmi-portablc stand-alone system which may conveniently be utilized in different laboratories for studies

of specific applications. The POPiryi- system provides an integrated gray-level vision system capability for the

Flexible Assembly Laboratory and is used in conjunction with robotic manipulators, a binary vision system,

tactile and force sensors for sensor-based control and assembly experiments.

The capabilities of the POPl-YE system arc evolving through the addition of custom boards. The multiple

bus architecture offers useful alternatives for the design of boards with varying complexity and cost. As
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specific strategics for recognition and interpretation of images for industrial applications evolve, we anticipate

refined implementation of hardware and software mechanisms for these purposes. Recent applications of the

system to industrial problems have included the characterization of a coating process using variance measures

of local texture, inspection of glass integrity using edge-follov/ing teclmiques, the determination of object

orientation for robot acquisition using piccewise gradient modeling and histogram modification methods, and

the validation of assembly procedures using image subtraction to isolate component parts under manipulator

control.
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