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Abstract:

This paper defines the Difference of Low-Pass (DOLP) transform and describes a fast algorithm for
its computation. The DOLP is a reversible transform which converts an image into a set of band-pass
images. A DOLP transform is shown to require O(N?) multiplies and produce O(N Log(N)) samples
from an N sample image. When Gaussian low-pass filters are used, the result is a set of images which
have been convolved with difference of Gaussian ( DOG) filters from an exponential set of sizes.

A fast computation technique based on "resampling” is described and shown to reduce the DOLP
transform complexity to O(N Log(N)) multiplies and O(N) storage locations. A second technique,
"cascaded convolution with expansion”, is then defined and also shown to reduce the computational
cost to O(N Log(N)) multiplies. Combining these two techniques yields an algorithm for a DOLP
transform that requires O(N) storage cells and requires O(N) multiplies.

The DOLP transform provides a basis for a structural description of gray-scale shape. Descriptions
of shape in this representation may be matched efficiently to descriptions of shape from other images
to determine motion or stereo correspondence. Such descriptions may also be.matched independent
of their size or image plane orientation.
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1 Introduction

The Difference of Low-Pass (1DOLP) Transform is"a reversible transform which converts an image into a
sct of band-pass images. These band-pass images comprise a three space (the DOIL.P space) which serves as
the basis for an efficicnt technique for matching descriptions of shape [10].

The band-pass images which compose the DOLP space are cach equivalent to a convolution of the image
with a band-pass filter, b,. Each band-pass fiiter is formed by a difference of two size-scaled copies of a
low-pass filter, g,_, and g,. :

b =8~ 8

Each low-pass filter 8, is acopy of the low pass filter g & Scaled larger in size by a scale factor.

In the following scctions we motivate the need for fast computation of a multi-resolution description of
imagc signals, and bricfly describe a representation based the DOLP transform. This representation is the
topic of a companion paper [11]. We then introduce two techniques for speeding the computation of a DOLP
transform. A fast algorithm based on these techniques is described below. This algorithm reduces the
complexity of computing a DOLP transform from O(NZ)l to O(N) multiplics and additions, where N is the
number of sample points in an image.

1.1 Motivation:The Structural Description of Images .

Interpreting the patterns in an image requires some form of matching. If the interpretation is restricted to
two-dimensional patterns, this matching is between descriptions of shapes in the image and object models. If
the interpretation is in terms of three-dimensional objects then techniques for matching among stereo images
or motion sequences may be required. In cither case, the matching problem is simplified if descriptions are
compared at multiple resolutions.

Detecting peaks and ridges in a DOLP Transform provides a structural description of the gray-scale shapes
in an image. Matching the structural descriptions of shapes in images is an efficient approach to determining
the three-dimensional structure of objects from stereo pairs of images and from motion sequences of images
[13]. Matching to a prototype description of an object class is also uscful for recognizing shapes in both
two-dimensional image domains and three-dimensional sccne domains [3]. The motivation for computing a
structural description is to spend a fixed computational cost to transform the information in each image into a
representation in which searching and matching are more efficient. In many cases the computation involved
in constructing a structural description is regular and local, making the computanon amcnable to fast
implementation in special purpose hardware.

Several researchers have shown that the efficiency of scarching and matching processes can be dramatically
improved by performing the search with a multi-resolution. hicrarchy. Moravec [15] has demonstrated a
multi-resolution correspondence matching algorithm for object location in sterco images. Marr and Poggio
[13] have demonstrated correspondence matching using edges detected by a difference of Gaussian filters at

]The symbol O(,) is pronounced "order of". A function, g) is said to be of O(fn)) if there exists a constant, ¢ such that gn) < ¢fn)
for all but some finite (possible empty) set of nonnegative values for a 2].




solution. Rosenfeld and Vanderbrug [21] have described a two stage hicrarchical template matching
hm. Hall has reported using a multi-resolution pyramid to dramatically speed up corrclation of acrial
i[12]. It should also be noted that Burt has rcccx;tly reported using cascaded convolution of "Gaussian-
kernels to construct a form of DOLP transform [4].

re is also experimental evidence that the visual systems of humans and other mammals separate images
sct of "spatial frequency” channcls as a first encoding of visual information. This "multi-channel
" is based on measurements of the adaption of the threshold sensitivity to vertical sinusoidal functions
lous spatial frequencies [7], [22]. Adaption to a sinusoid of a particular frequency affects only the
old sensitivity for frequencies within one octave. This evidence suggests that mammalian visual systems
y a sct of band-pass channcls with a band-width of about one octave. Such a set of channcls would
information from different resolutions in the image. These studies, and physiological experiments
rting the concept of parallel spatial frequency analysis, are reviewed in [6] and [23].

he Structural Description of Shape Based on the DOLP Transform

DOLP transform provides the basis for a representation in which two-dimensional gray scale shape is
sed by a tree of symbols [10]. A description in this representation contains a small number of symbols
root. These symbols describe the global (or low-frequency) structure of a shape. At lower levels, this
ntains an increasingly larger numbers of symbols which represcnt more local events. Finding the
sondence between symbols at one level in the tree constrains the possible set of correspondences at the
igher resolution level.

+ description is created by detecting local positive maxima and negative minima (pcaks) in each band-
nage of a DOLP transform. Local peaks in the DOLP three-space define locations and sizes at which a
' band-pass filter bestfits a gray-scale pattern. These points are encoded as symbols which serve as
arks for matching the information in images. Peaks of the same sign which are in adjacent positions in
nt band-pass images are linked to form a tree. During the linking process, the largest peak along each
1is detected. This largest peak serves as a landmark which marks the position and size of a gray-scale
(or shape). The paths of the other peaks which are attached to such landmarks provide a further
otion of the shape of the form, as well as a continuity with structural forms at other resolutions. Further
1ation is encoded by detecting and linking two-dimensional ridge points in each band-pass image and
dimensional ridge points within the DOLP three-space.

. Fast DOLP Transform

ull DOLP transform of an image composed of N samples, produces K = Log(N) band-pass images
ysed of N samples each, and requires O(Nz) multiplics and additions, where, S is a "Scale Factor” which
aussed below. Two techniques can be used to reduce the computational complexity of the DOLP
om: "resampling” and "cascaded convolution with expansion”.

;ampling is based on the fact that the filters used in a DOLP transform are scaled copies of a band-
d filter. As the filter’s impulse response becomes larger in the space domain, its upper cutoff frequency
wises, and thus its output can be resampled with coarser spacing without loss of information. The
cntial growth in the number of filter cocfficients which results from the exponential scaling of size is




offset by an cxponential growth in distance between points at which the convolution is computed. The result
is that cach band-pass image may be computed with the same number of multiplications and additions.
Resampling cach band-pass image also reduccs the total number of points in the DOI.P space from
N Log¢(N) samples to 3N samples. :

Cascaded convolution exploits the fact that the convolution of a Gaussian function with itsclf produces a
Gaussian scaled larger in size by V2. This method also employs an operation, referred to as "expansion”, in
which the cocefficients of a filter are mapped into a larger sample grid, thereby expanding the size of the filter.
This operation can be used without introducing distortion under certain conditions when the ﬁltcr is band-
limited, and is to be convolved with a band-limited signal. :

1.4 Organization of this Paper

Scction 2 defines the DOLP transform and shows that its computation requires O(N2) multiplies and
O(N Log(N)) storage locations. Each of the two fast computation techniques are described and their
complexity is analyzed in section 3. A fast algorithm based on both of these techniques is then described and
shown to require O(N) multiplies and O(N) Storage locations. An example is then presented of the band-pass
images that result from this fast algorithm in section 4. 3

2 The DOLP Transform

This section defines the DOLP transform and shows that its computation requires O(NZ) multiplies and
O(N Log(N)) storage locations. This is followed by a description of cach of the two fast computation
techniques and an analysis of the computational complexity of the algorithms based on each tcchnique. A
fast algorithm based on both of these techniques is then described and shown to requirc O(N) multiplies and
O(N) Storage locations.

2.1 The DOLP Transform Definition

The DOLP transform expands an N x N image signal p(x,y) into LogS(N) band-pass images B k(x,}')- Each
band-pass image is equivalent to a convolution® of the image p(x,y) with a band-pass impulse response, .
by(xy). .
B () = p(xy) * byxy) @
The DOLP transform is illustrated in the data flow graph shown in figure L. o

For k=0, the band-pass filter is formed by subtracting a circularly symmetric lew-pass filter g (x,») fmm a
unit sample positioned over the center coefficient at the point (0,0).

bo(xy) = 8(xY) - go(xy) @

2The filters described in this paper are all non-recursive finite impulse response (FIR) filters. Convolutions are computed for each
sample point in the image: witen the filter coefficients extends beyond the edge of the image, a default border vaiuc (typically E}i

supplied in place of the image value,
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Figure 1: The Difference of Low-Pass (DOLP) Transform

This data flow graph illustrates the computational process for a DOLP transform. The
transform produces LogS(N) band-pass images. Each band-pass image is produced by
convolving the image with a band-pass impulse response (filter) which is a size-scaled
copy- of a prototype filter. This prototype is formed from a difference of two size-scaled
copies of a low-pass filter. :

The filter bo(x,y)'-givcs a high-pass image, B (x,y). This image is equivalent to the result produced by the
edge detection technique known as "unsharp masking” [20]. -
By = pxy)* (8(x.Y) - 8.(x3)) 3
= Axy) = 0(xy) * g(x7) '

For band-pass levels 1 < k < K the ban.dw filter is formed as a difference oftwosnze-scaled es of the
low-pass filter.

by(xy) = g [(3) - g(x3) | | @

Each low-pass filter, gk(x,y)xsay of the circularly symmetric low-pass filter g,(x,») scaled larger in size
by a factor raised to the k™ power. Thus for each k, the band-pass impulse response by(x.y), is a size scaled
copy of the band-pass impulse responsc, b;_(x.y). This property is necessary for the configuration of peaks in
a DOLP transform of a shape to be invariant to the size of the shape [10].

The scale factor is an important parameter which affects several aspects of the DOLP transform. For a




two-dimensional DOLP transform, this scale factor, denoted S has a typical vaue of Vé- . In the case of a
onc-dimensional DOLP transform, the scde factor is denoted S, and has a typical value of 2. This scae
factor is discussed again a the end of this section.

For two-dimensional circularly symmetric filters which are defined by sampling a continuous function,-size Ig
scding can defined as increasing the density of sample points over a fixed domain of the function. In the /
Gaussian filter, this has the effect of increasing the standard deviation, a, relative to the image sample rate.

In principle the DOLP transform can be defined for any number of band-pass levels K. A convenient value
ofKis

K = Logs(N)

where S is equal to the sample distance S, for a one-dimensional DOLP transform, or the square of the
sample distance S; for atwo-dimensional DOL P transform.

- .7
§=8, =8

This value of K is the number of band-pass images that result if each band-pass image, S,, is resampled at
asampling distance of S*. With this resampling, the K”* image contains only one sample.

The DOLP transform is reversible. The original image may be recovered by adding all of the band-pass
images, plus alow-pass residue. This low pass residue, which has not been found to be useful for describing
the image, is obtained by convolving the lowest frequency (largest) low-pass filter, g"xy) with the image.

K-l

Hxy) = (03) % gplcy)) + 2 B ) . (5)

k=0

Reversibility proves that no information is lost by the DOL P Transform.

Because convolution and subtraction are associative the DOLP transform may aso be computed by
convolving the original image with an exponentially size-scaled set of low-pass filters and subtracting eadt
low-pass image from the next to form the set of band-pass images. This technique is illustrated in figure X.
One of the fast computational techniques for a DOLP transform which are described below is based on the
idea of computing the convolutions of the image with progressively larger low-pass filters which are
implemented asacascade of convolutions with small low-pass filters*

2*2 Discussiion: The Scale Factor

TTie parameter S, used to determine the number of levelst is crucia to both the scaling of Iow—passm :
anil resampling of the band-pass and low-pass images. These two ideas are related when peaks and ridgs
from the DQLP transform arc to be used to describe the shape of a form so that it can matched ifidepe«§«f
of the size of the form. In such an application it is important that the density of samples be a fixed fntctkstf
the size of the baad-pass impulse response. It is convenient to define a single variable, S = S* = 8|th )
amplify the expression for K aswell asfor some of the analysis given below*
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Figure!: The DifFerence Method for Computing
the Difference of Low-Pass (DOLP) Transform

Because convolution and subtraction are associative the DOLP transform may also be
computed by convolving the original image with an exponentially size-scaled set of
low-pass filters and subtracting each low-pass image from the next to form the set of
band-pass images. The data flow graph for this process shows the reversibility of the
DOLP transform. This approach is aso the basis for a fast computation technique for
the DOLP transform called "Cascaded filtering with expansion”. With this technique
the sequence of low-pass images are obtained by repeated convolution with a small
kernel filter,

Marr [14] argues that a value of S;= 16js "optimum"? for a difference of Gaussian band-pass filter. For
two-dimensional signals the value S,= V2 has virtualy the same effect,while providing some additional
benefits.

3M art calls this value optimum in the sense that it simultaneously minimizes S- white maximizing the energy in the filter. A curve of

filter energy with respect to ratio of standard deviations exhibits a"kncc" in the region of L6» [14]. For snailer ratios the energy of the

resulting filter Mk rapidly, while for larger values It is nearly constant



The most important benefit of using S,= V2 is that V2 is the smallest naturally occuring resample
distance on a two-dimensional cartesian gnd Thus by using S = \/ 2 we can resample cach band-pass image
at a distance that is a constant fraction of the band-pass fi hcx size. This yiclds a configuration of peaks and
ridges in a DOLP transform that is invariant to the size of a shape, except for cyclic distortions due to
sampling cffects. Such descriptions of shapes can be matched independent of the size of the shape.

An additional benefit from using S, = V2 comes from the Gaussian auto-convolution scaling property.
When a Gaussian function is convolvcd with itself the result is the Gaussian function scaled larger in size by
V2. We will show below that this property can be used to greatly reduce the computational cost of a DOLP

transform,

2.3 Complexity of DOLP Transform

In this section we derive formulae for the memory requirements and computational costs of the DOLP
transform. A first step in obtaining these quantities is the calculation of the number of cocfficients in cach
filter. We do this for both the one and two-dimensional cases and then produce a general result that holds i

both cases.

Let R, refer to the radius of the filter, and let X refer to the number of coefficients, for both the one ang
o-duncnsmnal cases. Also, let §; refer to the size scalmg factor for the one-dimensional filters and S, refy

to this factor for two-dimensional ﬁlters as above.

In the one-dimensional case, the number of coefficients is specified by the radius of the filter.
X, =2 R, + 1
The radii at each band-pass level k are related to the radius R, of the smallest level by
R, =R, S}
Thus the number of coefficients for the k™ band-pass filter is
X, =(X,-1Sf+1
Since X, > 1 we can simplify the mathematics by using the approximation:
=X, S]{
In the case of the two-dimensional filters for images, the low-pass ﬁlter g,(x v, 1s specified to be circul
symmetric. If the coefficients are nonzero for all points (x, y) such that X+ y < R? o then,
X, ~wR2 -
This approximation becomes more accurate as R, increases.

The band-pass filters for levels 1 through K-1 are specified to be size scaled copies of the level  §
Each filter is to be scaled larger in size by a factor of S,. Thus R, is related to R, by




Sy Xk
R, =R,Sk

As a result the number of cocfficients at level k is

- 2k
X, =X, S2

If we dcfine the variable, S, such that S = S% = Sl, as before, then in both the onc-dimensional and

two-dimensional case,

. - k
X, =X, S

This approximation becomes more accurate as k increases.

As described above, the DOLP transform is defined to produce band-pass levels O through K-1, where K

Since the DOLP transform produces K band-pass images of N samples each, the memory requirement M is

6

The number of rnultiplic-s for producing each band-pass image is proportional to the number of cocfficients
in the filter for that level. The total number of multiplies for the convolutions, denoted C (for cost), is given

is
P
b K = Logg(N)
in
ad M=NK=NLogS(N)
fer
by:
C=NX,(1+1+S+S8*+..+55}h
K-l
SX N+ 2 §5)
k=0
sk-
=X, N(1 +—i)
S-1
Using our typical value S=2,
la K.
143K
S-1
and the cost becomes:
C=X,N2K = x_ N2-&,®™
fi and thus

C=X,N?

M
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Figure 3:
Techniques for Reducing the Cost of a DOLP Transform
Two mde;;endent techniques can be used to reduce the computational cost of a
DOLP transform; Resampling and Cascaded Convolution with Expansion. These two
techniques can be combined to produce an algorithm which for computing a DOLP
transform in O(N) multiplies which requires O(N) storage cells.




3 Fast Computation Techniques

We have developed two independent techniques to reduce the computational cost of a DOI-P Transform.
Each of these techniques reduces the number of multiplies and additions for an N sample DOLP transform
from O(N?) multiplies to O(N Log(N) ) multiplies and additions. Combined, these techniques alow the
DOLP transform to be computed with O(N) multiplies and O(N) additions.

The two techniques are:

» Resampling: Computation of the band-pass images at rcsamplc points which are spaced at a fixed
fraction of the filter radius.

» Cascade Convolution with Expansion: Use of the autoconvolution scaling property of the
Gaussian low-pass filter and a remapping of the filter coefficients to obtain the impulse response
of a larger filter from a cascade of small filters.

These two techniques may be applied independently to reduce the computational cost of a DOLP transform,
as illustrated in figure 3. When combined, these two techniques provide an agorithm which will compute a
DOLP transform in O(N) multiplies with a storage requirement of O(N) cells. In the following sections we
describe algorithms for computing a DOLP transform based on each of these techniques separately. We then
describe the algorithm which employs both techniques.

This section begins with a discussion of resampling a cartesian two-dimensional signd at a distance of V2.
A linear systems modc|_for such resampling is presented. We then describe the Sampled DOLP transform,
and show that with V2 resampling, a DOLP transform can be computed with O(N Log(N)) multiplies and
that this DOLP transform can be stored in O(N) storage cells.

We tmen' discuss the scaling property of the Gaussian filter, and show that a Gaussian impulse response of
size SV2 can be formed by convolving a Gaussian filter of sze S with itself. Thistechnique is referred to as
cascaded convolution. A second scaling operation known as the expansion operator is then introduced. We
show that a combination of expansion and cascaded convolution can aso be used to compute a DOLP
transform of an N sample image in O(N Log(N)) multiplies.

Finaly, these two techniques are combined to produce an algorithm which will compute a DOLP
transform which requires O(N) samples in O(N) multiplies. This technique is referred to as "Cascaded
Convolution with Expansion and Resampling.

3.1 Resampling

The number of samples that is needed to represent a discrete signal is determined by the frequency content
of that signal. As Nyquist demonstrated, [16J, a signal which has been convolved with a filter which
attenuates the higher frequency components may be represented by a smaller number of samples. Very little
information is lost when a band-limited signa isjpsampled because the original samples may be recovered by
interpolation. In this section we describe the %2 sampling operation and then present the algorithm for the
sampled DOLP transform* '




10

3.1.1 Sampling at V2
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Figure4: Example of S*{p(x,y)} (Circles)
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Txisisthe sample grid for level 3 of the sampled DOLP transform.
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In general, ¢ach level k, for 2

produced by k-1 applications of b
defined by

- -1
Thoselevelsfor which k isodd will have points which are given by

xmod V2 = 0
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and
y mod 2kD/2 = g

Such sampling may be done for any value S which is a distance between points on the original sample grid.
For example, if we sclect points that are scparatcd by a dlthmCC in the x dimension of 2 and in the y
dimension of 1, then our resample distance is S~ V221 = /5. Ifa two-dimensional scalc factor other
than S \/2 is used, the valuc S = 52 must bc substituted for the 2 in the above expressions. In this case
the suc of the low-pass filters should bc scaled by this same factor if the DOI.P transform is to be used to
producc a description of shape that can be matched at any size.

3.1.2 Linear Systems Model for Resampling

. Sa{?

1/

/Sﬁl{}

> U

Figure 5: Nyquist Boundaries for Successive applications of \/5 ReSampling

The effects of resampling are best described in the spadal‘ frequency domain. Let us describe the transfer
function ( Discrete Time Fourier Transform ) of a two dimensional function, h(x,y) as [17]

o0 o0
Huy) = 20 2 hxy)eiusem @®
u=-0 y=-0

The continuous variables u and v are referred to as the spatial frequency variables. Figure 5 shows the the
range of unique spatial frequency components in the (u, v) plane that is generated by the transfer function of
a two~dimensional signal. A two-dimensional function sampled on a cartesian grid has a transfer function
which is unique within the square region of the (u, v) plane bounded by ( £#, =« ). Thc boundaries of this
region are referred to as the Nyquist boundarics. The resampling operation S\/-{ } gencrates a new Nyquist
boundary, shown by the diamond shaped rcgion in Figure 5. The \/ 2 rcsampling operation has the effect of
"folding™ or aliasing any signal energy outside this new Nyquist boundary. This folded signal cnergy is added
to the signal, and appears as energy at a lower frequency. Such a distortion is not reversible and will
introduce crrors when used with techniques which are bascd on detecting peaks and ridges.
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~ Aliasing is minimized by filtering the two-dimensional scqucncc so that there is very little signal cnergy
outside the Nyquist boundary when the signal is rcsamplcd "This minimizes the reflected signal energy that
results in aliasing. Mathematically, the operation is modelled as first convolving the signal with a band-
limited filter, and then sclecting only the subsct of points at which the filter signal is resampled. For
implementation on a scrial processor, the computational cost may be reduced by only evaluating the
convolution expression at those points where the filter is centered over the resample points. This "resampled
convolution” is illustrated by the function S\/;{} placed in boxes adjacent to the convolution boxes in Figure

6.

3.1.3 Complexity of the Sampled DOLP Transform

A convolution may be cxpressed as a scquence of inner products of the filter cocfficients with
neighborhoods of the signal. By only computing these inner products for the instances where the filter is
centered over resampled points, it is possible to reduce the computational complexity of a DOLP transform to
O(N Log(N) ). In such a Sampled DOLP transform, the distance between resample points increasc by the
same scale factor as the band-pass filters. The computational complexity and memory rcquircments for the
Sampled DOLP Transform may be evaluated by considering the steps in the algorithm. In this section we
present such an analysis for any value of S.

The band-pass signals, B,(x,y) and B,(x,y), are computed as described for the DOLP transform, requiring
XN and S X, N multiplies respectively. B (x,y) is computcd only for sample points in p(x,y) on alternate
diagonals. The convolution at level 2 is with a filter with X, S2 coefficients. However, the convolution is only
evaluated at the N/S sample points on alternate diagonals. Thus the cost is S X, N multiplies, as it was with
level 1. Atlevel 3, the band-pass impulse response is computed for sample points spaced at a distance of 32
There are N/S? such points and the filter has X, S3, so the cost is $ X, N multiplies.

In gencral at each level k, for 2 < k < K-1, the band-pass filter has X, S¥ coefficients, and the
convolution is computed at N/S(“ ) sample points, for a cost of X, S N multiplies and additions at each
band-pass level. Since there are K = Logs(N) band-pass levels, the total cost is

C=X,N(S( Log((N) - 1) +1) multiplies and additions 9
Band-pass levels 0 and 1 each have N samples. For levels 2 through K-1 the number of memory cells
required drops by a factor of S for each level.
M=N(1+1+US+Us?+ s +.)

K-1

=N(1+Z—1;)

k=03

hnmpmﬂemﬁ%ﬂamumwnhaﬁnmdum filter so that a frequency region of any finite size is identically zero I}
However, nsum)cmbefhcxwmmmmnmubxmmmrmpmuetoamgeoﬁrcqucnms.
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Ftgure 6. Data How Graph for Algorithm for Computing Resampled DOLP Transform

The boxes marked with Sy*MI-| follbwing each convolution indicate that the
convolution is computed only for resample points specified by V2 resampling at level
L( See text)

= N(1 L ‘ (10)

For our typical value of S'= 2,

M=NA+1+212+214+ 18+.)
=31IN




14

3.2 Cascaded Convolution with Expansion

Much of the cost of a DOL.P transform results from the large number of coefficients in the filters for larger
values of k. Resampling compensates for the exponential increase in the filter size by an exponential increase
in the space between sample points. A second technique for reducing the complexity of a DOLP transform to
O(N L.og N} multiplics is referred to as "cascaded convolution with cxpansion”. This method exploits two
mathematical propertics: (1) the size-scaled replication of the Gaussian functional form as the result of the
convolution of a Gaussian function with itself. (2) a scaling operation that is bascd on remapping the
cocfficients of a filter into a new sample grid, leaving zero or undefined samples between the samples of the
remapped filer.

In the following sections we first discuss the two-dimensional circularly symmetric Gaussian filter, and its
properties under convolution. We then describe the cxpansion operator and the algorithm for ‘cascaded
convolution with expansion, together with an analysis of its complexity.

3.2.1 The Two-Dimensional Circularly Symmetric Gaussian Filter

In cascaded convolution, an impulse rcsponse covering a large support is obtained by repeatedly
convolving the signal with copies of an impulse response over a smaller support. This algorithm will only -
producc size scaled copics of the low-pass impulse response if Gaussian low-pass filters are used. This may be
shown by the Gaussian autoconvolution scaling property, described below.

The Gaussian function is most commonly known in its one-dimensional form

o0& L et-wnd
oV2w

where p is refered to as the mean and o as the standard deviation.

The term 1/oV/27 scales the Gaussian function so that it has unit area.

A discrete two-dimensional Gaussian filter may be obtained by assuming a zero mean and applying the
substitution

2
o2 =R and
2a
The coefficients are then obtained by sampling the continuous function at the points given by the discrete
waﬂabi%xmdywhere?:x2+y2_<_az.

Implicit in this filter is multiplication by a unifqm circular window (or aperture or support), the disk

cplxy) & {1 for x+y’<R?
0 otherwise
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To control the filter gain, the filter cocfficients arc normalized so that they sum to 1.0. This is done by
summing the cocfficients and then dividing cach coefficient by the sum.
Thus the normalized two-dimensional Gaussian low-pass filter defined over a circular support is given by:
2 2
go(xy) = (I/A) cp(xy) €7 IR

Where A is a gain factor given by

2,22
A=Dl Do cxy) e + IR

K| <R yj<R
The circularly symmetric function cp(x,y) has a transfer function [19]

27RI(RVul++?)

ViZ 42

CR(u, V) =

where J l(') is the first order Bessel function.

The Gaussian filter g,(x,) has a transfer function which is a Gaussian function convolved with the transfer
function of its aperture (or support) [19].

°(u V) lCR(U V) * ( \/ )e -R u +V%/4a
A RV#w .

An experimental procedure has shown that the paramcters R=4.0 and a = 4.0 work quite well for
cascaded convolution with expansion [10]. With these parameters, the transfer function of the impulse
response has its first zero crossing .in a circle of radius approximately equal to . This gives a filter with a
pass-band and transition region which just fits within the Nyquist boundary.

The Gaussian is the only two-dimensional function which is both circularly symmetric and scparable into
one-dimensional components. If the Gaussian kernel is multiplicd by a square support rather than a circular
disc, then the entire impulse response can be separated into a cascade of one-dimensional compone ]
this case, the corrclation operation can be implemented with significantly fewer multiplies by rep%acmg the
convolution with a (2R +1) x (2R +1) circular filter by two convolutions with 2R +1 point one-dimensi
filters ( one for each dimension). This requires a total of only 4R+ 2 multiplications for ecach ptcture pmm
instead of 4R2+4R +1 muitiplications [17]. The square support degrades the circular symmetry of the
The result is some additional aliassing along the axes when the filtered sequence is resampled.

3.2.2 Cascaded Convolution

It can be easily shown that a Gaussian function convolved with itself yields a Gaussian function whose
standard deviation is V/2 larger than the original function. For example, in one dimension, the convolution
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1 e-t2/2a2 *' 1 e-lzfzo‘z
oV2m oV2w
may also be expressed as the product of Fourier transforms

e-uzw2/2 ° e—02w2/2 _ e-azwz

The inverse Fouricer transform of this product is

1 e-12/4 02 :

a2V
Returning to standard form requires the substitution

a% = 2¢% or o, = V2ao.

Thus the standard deviation, and hence the function width, have been expanded by a factor of \/E. Note
also that autoconvolution preserves the unit area normalization; the amplitude has been multiplied by a factor
of 1/V2. The discrete Gaussian filter is of finite extent, and thus is not an exact Gaussian. For this reason
the Gaussian scaling property only holds as an approximation for the discrete Gaussian filter.

Cascaded convolution provides an inexpensive method to obtain the convolution of an image with gl(x,y)
That is, low-pass image 1 is obtained from low-pass image 0 by a second convolution with g (x,y), yielding the
effective filter,

8(%y) = go(%3) * go(%y)

However, low-pass image 2 then requires two additional convolutions with g,(x,y), and low-pass image 3
requires four more such convolutions with g,(x,y). This exponential growth may be averted by resampling
each low-pass image by V/2 before the next convolution, or by expanding thegn()gy) onto a larger sample
grid with the V/2 expansion operator.

3.2.3 The Expansion Operator

In addition to cascaded convolution we also employ a technique refered to as "expansion” in the algori
described below. Expansion is possible because we are using low-pass filters that are designed with a high

ping dom nmaﬁ'mtthc numbe: ofsampiesmaﬁlterormevalmufm

wnpm. Algwuhmamdm‘bedbﬁgwh%apammmdasaModofm&mg&a*

response larger in size by a factor of V2. Expansion by V/2 is necessary in order to convolve a filter with 2

m@emmm csampled to 2 V2 sample grid, as is required when cascaded convolution is used with
mpling me,kmﬁmmbhmmmmwmwnmwmﬁeammwmchsww

mnmivad wuh aconventional cartesian grid. The only restriction is that the high frequency energy

by expansion must be attenuated by other filters in the cascade.
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The cxpansion opcration may be modeled as a spatial scaling followed by a resampling. A simpler analysis
can be performed by considering the spacing between cocfficients.  Both analysis produce the same result:
The transfer function of the filter is scaled smaller in frequency by the expansion, and copics of the transfer
function appear reflected over a new Nyquist boundary imposed by the space between samples. The
conditions under which cxpansion can be used without distorting the image arc always the same. The
composite cascade filter must have a very high attenuation everywhere outside of the new Nyquist boundary
of the sample grid onto which the filter cocfficients are mapped.

Let us define (x,y) as points in the cartesian grid in which a filter is defined, and (xc,yc) as the
corresponding points in a V2 grid onto which the filter is remapped. A single application of the
V2 expansion operation maps cach row from a filter on a cartesian sample grid into every other diagonal of
the V2 grid. This mapping takes cach cocfficient from point (x,y) of a filter g(x,y) and places it at point
(x-y,x+y)ofafilterg (xe,ye) Points ofg (x Y ) which receive no cocfficient under this mapping arc ‘declared
to be undefined or zero.

Let us define this mapping as the function E\/E {}. Since
X, =X=Y
Yo =Xty

we obtain

Thus this function may be defined by

E\ {8t} = g(xy) = { 8((=x,+y)/2, (x,+y)/2) Forx,Mod2 =y Mod2
undefined otherwise

This mapping is illustrated by Figure 7. This figure shows the correspondcnce between points in the
mapping. The dashes ("-") indicate the points which are not defined in the new filter.

The algorithm for cascaded filtering with expansion employs recursive application of the V2 expansion
‘operation. Each expansion enlarges the smallcst distance between samples by V2 and alternates the
direction of that smallest distance between =45° and 0°,90°. For this, we can define a more general
expansion operator: E\/gk{.}. This more gencral operator expands the filter to the same grid as an image
which has been V2 sampled k times.

Each application of the \/ 2 expansion operation rotates the filter by 45 For a circularly symmetric filter
this rotation has no cffect and we can express an expansion of V2% as k recursive applications of the
V2 expansion.
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(11) -01) (1,1
(-10) .(00) (10)
L1 0-1D)(L,-1)

maps into

A

«(L1)
01 - (10)
(L) - (00 - .(1-1)
(-10) - .(0-1)
o(-1-1)

Figure 7. Example of mapping given by EV@'{'}

;
{
b

The generd V2 expansion operation, Ey*-£{ g(x,y)}, may be expressed informaly as follows. For esch
point (x,y) at which the filter g~ xj ) is defined, define a new point in g*x.y) at (x-y, x+y) and copy the
value from ga./X,y) into the point

Thismapping may be expressed more formaly as follows: When k is odd, the filter is mapped onto agrid
whose axes are +45°, and whose smallest distance between samplesis 2*? The pointson thisgrid are those at

which ,
Xemod2<**1>"2= v Taod&+W! = 0.

For even K the expanded filter will be mapped onto a grid whose axes are at 0° and 90°. The distance }
between samples along these axes will aso be 2'°'2. The mapping E” *{g(x,y)} may be defined as:

For even t

E 7k} = g(x,7) = g(iA ; 7 (*emod 2) = 0and (yemod2) =0

undefined otherwise

Foroddfc ’

2(k+ w2 2(k+1
undefined Otherwise

B /7 e} = g,x,) = { B Tt Ty oy mod 244072 =y mod 28412




19

3.2.4 Frequency Domain Effects of V2 Expansion

The V2 cxpansion opcrator has a well defined effect on the transfer function of its argument. As with
V2 sampling, a new Nyquist boundary is created: which is a 45° rotation and a V2 shrinking of the old
boundary. Inside this new Nyquist boundary is a copy of the old transfer function scaled smaller in size by a
factor of V2. Outside this new Nyquist boundary is a reflection of the scaled transfer function. This is
illustrated by Figure 8 below, which shows the 3 dB contour of a low-pass filter before and after the expansion
operation. Figures 9 and 10 show plots of the transfer functions of the Gaussian low-pass filter (R =4, a =4),
before and after the cxpansion operation. Note the four lobes in the corners of Figure 10. These are the
reflections of the pass region. If these were to show up in the composite filter they could cause a large
stop-band response, which would alter the locations of peaks and ridges in the resulting band-pass images.

3dB Contour

X/ %

_— W N

>y ::> O >

Figure 8: Effect on Transfer Function of E\/; Expansion
Operator

E\/;{.} scales the size of the transfer function by V2 so that it approximates the larger Gaussian filter,
g,(x. y) within the new smaller Nyquist boundary. That is

RE/7{g.(x0}} = A (xy)}

within

x < l u+v l < @ The new Nyquist boundary.
Where 7} is the transfer function [17].

For the parameter valucs R=4, a=4 the pass-band is well within this new Nyquist boundary, and the
reflection of the pass-band falls into the stop-band of the previous filter. That is, outside of the new Nyquist

boundary,

i i
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Figure9: Transfer Function G,(u,v) for R = 4.0, &« = 4.0 Before V2 Expansion

Ago(xy) * g,(x.y)}
will be very small (i.e. less than -60 dB where the reflected nodes are present, for R=4, a=4) and thus the |
product o :

RE /7 {8.(x)}1} Ago(xy) *g.(x.1)}
will also be very small outside the new Nyquist boundary. As a result, the impulse response at low-pass level '
2 is approximated by '

8,(x.y) = go(xy) * g.(x.y) * E, ;5 {8, (x.y)}

Figure 11 is a plot of the transfer function of the level 2 low-pass filter. As can be seen the response in the
corners is so small that it does not register in this plot. The filter was constructed by convolving g, (x,y) with
itself ( @ =4, R = 4), and then convolving an expanded version g,(x.y) with this composite filter. Thus thisi
the same impulse response which would occur at low-pass level 2 of a DOLP transform computed using '
cascaded convolution with expansion. A logarithmic plot of the amplitude of G,(u,v) is shown in Figure 1.
This plot spans 120 db in amplitude with the vertical marked on the left at intervals of 10 db. The responsein
the corner regions are attenuated more than 100 dB from the peak.




21

Figure 10: Transfer Function G,(u,v) of filter After \/5 Expansion

Notice that the pass region at the center of the Nyquist plané has been scaled smaller
by V2. The corners of the Nyquist plane contain copies of the size-scaled pass region.
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Figure 11: Filter Gz(u,v) forR =4.0,a =40
8,(x.y) = go(xy) * go(xy) * E, /7 {8,(x.¥)}




R L s B € i L £ B g i R

Figure 12: Plot of 20 Logo[G,(u,V)]
Scale (shown at left) spans -120 dB.
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3.2.5 Complexity Analysis of Cascaded Convolution with Expansion

The algorithm for cascaded convolution with cxpansion is iflustrated by the flow graph in Figure 13. Its
computational complexity may be seen by an analysis of the steps in the algorithm.

Low-pasé image 0, L ,(x.y) ,is produccd from the original image, p(x.y) ,by convolution with g (x,) .

Lo(xy) = p(xy) * 8.(xy)
Band-pass level 0, B ,(x,3), is then produced by subtracting £ (x,) from p(x,y) .
B (xy) = p(xy) = Lo(xy)

The convolution requires N X, multiplies and additions, and the subtraction requires an additional N
additions.

Low-pass level 1 is then formed by convolving low-pass level 0 with the low-pass filter.
Li(xy) = Lo(xy) * go(%y)
Band-pass level 1 is then formed by subtracting low-pass level 1 from low-pass level 0.
By(xy) = Lo(x3) - Ly(xY) '

As with band-pass level 0, the convolution requires N X, multiplies and additions while the subtraction
requires an additional N additions.

Low-pass level 2 is then formed by convolving low-pass level 1 with an expanded version of the low-pass
filter. The expansion operation scales the filter larger by a factor of V2 without increasing the number of
coefficicnts.

LZ(JC,_Y) = Ll(xvy) * E\/E{go(xu}')}
Band-pass level 2 is then formed by subtracting low-pass level 2 from low-pass level 1.
B(xy) = Ly(xy) - L(xy)

Since expansion does not alter the number of coefficients this convolution also requires N X, multiplies and
additions and the subtraction requires an additional N additions.

Low-pass level 3 is then formed by convolving low-pass level 2 with a twice expanded version of the
low-pass filter. Two applications of the expansion operation scales the filter larger by a factor of 2 leaving the
original filter coefficients on a grid with every other row and column set to zero.

Lyxy) = Lyfxy) * E, FHg(x 1)}
Band-pass level 3 is then formed by subtracting low-pass level 3 from low-pass level 2.
Byxy) = Ly(xy) - Ly(xy)

Since expansion does not alter the number of coefficients this convolution also requires N X, multiplies and
additions and the subtraction requires an additional N additions.

In a similar manner, each band-pass image k is produced by first creating low-pass image k by convolving
low-pass image k-1 with a copy of the low-pass filter which has been expanded k-1 times.




>
\_
Eﬁf{gom #)
éE/a[‘X, 9 ?@—% %q{x, g
“ , A
)
: i/a (%5 4)
\({ o

Figure 13: Data Flow Graph for Cascaded Convolution with Expansion .

This fast algorithm uses cascaded convolution and \/-2_ expansion to compute a
DOLP transform in O(N Log(N)) multiplies
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L (xy) = L (%) * E\/5k-D{go(x)}

Low-pass imagc k is then subtracted from low-pass image k-1 to produce band-pass image.k.

B (xy) =Ly \(x) = L, (xy)

Since cxpansion docs not alter the number of cocfficients cach convolution requires N X, multiplics and
additions and cach subtraction requires an additional N additions.

Since thercare K = LogS(N) band-pass imaggs, the total cost is

C=X,N LogS(N) multiplies and
X, + DN LogS(N) additions.

Since cascaded convolution does not involve resampling the any of the images, the memory costs for
computing a DOLP transform in this mannecr are not affected. As with equation (6), the memory
requirements are

M=N Logg(N) memory cells .

3.3 Resampling and Cascaded Convolution with Expansion

The computational cost and memory requirements for a DOLP transform can be reduced substantally by
resampling cach low-pass image before each cascaded convolution. The savings in computational complexity
result because there resampling reduces the number of points at which the convolution is cvaluated for ecach
new level, while cascaded convolution holds the number of filter coefficicnts constant. In this fast algorithm
recursive expansion of the low-pass filter is not necded. In the odd number levcls, expansion is given
implicitly by the resampling. In the even numbered levels, 4 single V2 expansion is needed to place the filter
coefficients on the same sample grid as the data. '

3.3.1 The Algorithm and Complexity Analysis

The algorithm for resampling and cascaded convolution with expansion is illustrated in the data flow graph
shown in Figure 14. This algorithm runs as follows. Low-pass and band-pass levels 0 and 1 are computed as
described above for cascaded convolution with expansion. That is, low-pass level 0 is constructed by
convolving the picture with the low-pass filter g,(x.y).
Lo(xy) = p(xy) * g(xy)

Band-pass level 0, B ,(x,y), is then produced by subtracting L ,(x,y) from p(x.) .
B(xy) = Hxy) - Lo(xy)

Thus the band-pass impulsec response at level 0 is

bo(xy) = 8(xy) - (%)

Low-pass level 1 is then formed by convolving low-pass level 0 with the low-pass filter.
L(xy) = Lo(xy) * g(xy)
Band-pass level 1 is then formed by subtracting low-pass level 1 from low-pass level 0.
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Figure 14: Data Flow Graph for Composite Fast Algorithm Using
Resampling and Cascaded Convolution with Expansion
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B (xy) = Lo(xy) - Ll(x,y)
The impulse response at band-pass level 1is
b(xy) = go(x.y) = (8o(X:3) ¥ & x.5))

Both band-pass level 0 and band-pass level 1 require X, N multiplies and (X, + 1) N additions. They each
produce N band-pass samples.

For cach band-pass level 2 through K -1, the low-pass image k-1 is first resampled at \/5 by the operation
S\/;{.}. This resampling reduces the number of sample points by a factor of 2 from the low-pass image at
k-1. For odd levels, resampling leaves the data on a cartesian grid, and thus no cxpansion is necessary. The
low-pass image or level k is thus formed by simply convolving the filter with the low-pass image from level -
k-1 -

Li(xy) = L (x3) % 8o(%))
On cven levels, resampling places the data onto a V2 sample grid. To convolve an image on a V2 sample
grid, the low-pass filter coefficients must be remapped to a V2 grid by the expansion operation.

‘t'k(x'y) = Lk_l(x-}’) *Eﬁ{go(xvy)}

In both cases the band-pass image is then formed by subtracting the result of the convolution from the
previous low-pass image.

B (xy) =L, (x3) - Ly (%)

For Sz = \/-2-, each resampling reduces the number of sample points by 2, and thus reduces the number of
multiplies and additions by a factor of 2. Thus the total number of l_nultiplies and additions is given by

C=X,Ny(1+1+1/2+1/4+1/8+...)
= 3N X, multiplies
and
IN(X, + 1) additions.
As with the resampling algorithm described above, the total number of memory cells required is
M=3N |

3.3.2 The Impuise Responses for Cascaded Convolution with Expansion and Resampling

In the cascaded filtering algorithms described above, the band-pass images are formed by subtracting
adjacent low-pass images. The band-pass impulse responses are thus equal to a difference of low-pass impulse
responses which are produced by cascaded filtering. Because a finite impulse response Gaussian filter is only
an approximation of the Gaussian function, the low-pass impulse responses for levels 1 through K are only
approximations of scaled copies of the level 0 low-pass impulse

The low-pass impulse response at level 1 is
g(%y) = 8(x)) * 8.(%Y)

Thus at low-pass level 1, a V’—f scaling in size of g,(x,y) is approximated by the simple cascaded convolution
of g, (x.y) )
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Low-pass level 2 is formed by resampling low-pass level 1 at a samplc distance of \/5 and then convolving
with an cxpandcd version of the low-pass filter g, (x,y).

gxy) = Ey/7{8a(x3)} *S, /7{8.(x3) * g, (x3)}

The low-pass image from level 2 is then resampled at a distance of \/ 2 for asccond time, which places it on
* asample grid with a unit distance of 2. This low pass image is then convolved with the low pass filter g_(x,y).

The resampling provides a remapping of the filter cocfficients and so no cxpansion is needed at this level.
Thus the size scaling of g, by a factor of 2V/2 is approximated by

83(%3) = 8a(%3) *S F{E /7 {8a(x 1)} ¥S, /7{8(x.3) * go(x1)}}

In general, the impulse responsc at low-pass level k, from k=2 to K~1 is given by the following recursive
relationships depending on whether k is even or odd:
Forevenk:
gxy) = E /7 {e.(oy)} *S, /7{g, ()}
And for odd k:
gxy) = 8o(%3) * S\ 7{g, (x3)}

3.3.3 The Size of the Impulse Responses

Size scaling the kernel low-pass impulse response by resampling the contmuous Gaussian function at a
denser sample rate would yield a sequence of radii R, given by

R, =R 2%/? .

The sequence of radii is somewhat different with cascaded filtering. In this case, the expansion operation
maps the furthest coefficient, at say, (R,0), to a new point at (R,R). This gives an increase in radius of V2.
Convolution with the composite low pass filter then adds this new size to that of the composite filter.

That is, at level 0 the radius is R,. At level 1 the composite filter is the auto-convolution of 8.(x.y), and its
Tadius is thus 2R ,-1. The level 2 composite filter is formed by convolving the level 1 composite filter with an
V2 expanded version of 8- The radius of the level 2 composite filter is thus 2R, + V2R, - 2. A general
formula for the radius atany level k> 0 is

D
R, =R, -k +R, 2 (V2)!

n=_0

4 An Example of the DOLP Trar;sform

Figure 15 shows a resampled DOLP transform of an image of a teapot that was produced using the fast
computation techniques. In this Figure the image at the lower right is the high frequency image, B (x,»).
The upper left corner shows the level 1 band-pass image, B (x, ), while the upper right hand corner contains
the level 2 band-pass image, 3,(x.). Underneath the level 1 Band-pass image are levels 3 and 4, then 5 and 6,
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cte. Figure 16 shows an cnlarged view of band-pass levels 5 through 13. This cnlargement illustrates the
unique peaks in the low frequency images that occur for cach gray-scale form.

Thesc images were formed using both resampling and cascaded convolution with cxpansion. Fach band-
pass impulsc response is composed of a difference of Gaussian low-pass filters with a ratio of scales of S, =
V2. These band-pass images were computed by forming low-pass images with the cascaded convolution
with cxpansion technique and then subtracting to form the Band-pass images. The use of V2 resampling is
apparent from the reduction in size for cach image from level 3 to 13. In the even numbered images, on the
right of cach pair, the image is actually on a v/2 sample grid. To display these V2 images, cach pixel was
printed twice, creating the interlocking brick texture evident in Figure 16.

5 Summary and Conclusions

This paper has defined the Difference of Low-Pass ( DOLP ) transform. The DOLP transform is a
reversible transform that scparates a signal into a sct of band-pass components. The DOLP transform serves
as the basis for a representation for two-dimensional shape that is described in a companion paper [11]. The
DOLP transform is shown to requirc O(Nz) multiplies and produce O(N Log(N)) samples.

The DOLP transform is interesting because shapes ( and signals ) which are represented by encoding peaks
and ridges ( or zero-crossings ) in the DOLP transform can be matched ecfficiently despite changes in size,
orientation, or position, and despite corruption by image noise. One of the biggest obstacles to use of the
DOLP transform for describing and matching shapes in images was the apparent computational and memory’
costs. In this paper we have described two independent techniques which may be used to reduce the
computational complexity and storage costs of a DOLP transform. The technique of resampling is shown to
reduce the computational complexity of a DOLP transform to O(N Log(N)) multiplies and the storage
requirements to O(N) samples. The technique of cascaded convolution with expansion is also shown to
reduce the computational cost of a DOLP transform to O(N Log(N)) multiplies, but does not affect the
storage requirements. It is then shown that these .two techniques may be combined to produce a DOLP
transform in O(N) multiplies that requires O(N) samples.

Cascaded convolution has been investigated recently as a technique for efficiently realizing large digital
FIR filters[l]. In particular, Burt[S] has employed a cascaded convolution of a kernel which is an
approximation to a Gaussian to obtain larger "Gaussian-like" filters. Such a process requires a doubling in
the number of convolutions with the fixed size kernel for each increase of V2 in filter size. Our use of the
expansion function, however, permits a composite Gaussian filter of size SV2 to be formed from a composite
Gaussian of size S by one convolution of the kemel filter. This technique is general and should be of benefit
whenever low-pass kernel filters are cascaded to form larger impulse responses.

The scale factor of V2 for filter size results naturally from both fast techniques. In resampling, it occurs
because it is the smallest distance larger than one between samples on a cartesian grid. It is the smallest rate at
which a two-dimensional discrete sequence can be resampled without interpolation. The factor V2 also
occurs with cascaded filtering. It is the increase in size scale provided by convolving a Gaussian low-pass filter
with itsclf. This happy coincidence indicates that V2 is a very convenient value for the scale factor for a
DOLP transform that is to be used to represent images for matching: And, indeed, this factor turns out to
work quite well [10] for representation and matching with the DOLP transform.
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The most important result of this work is that it makes available the representational power of the DOLP
transform without a prohibitive cost in computation. For a 256 by 256 image, if the separable form of the
Gaussian filter is used, the total cost of computation for the 16 band-pass images is

C = 3 x 18 x 256% = 3538 million multiplies
compared to

C = 18 x 256* = 77,309.41133 million multiplies

without the techniques of cascaded convolution with expansion and resampling. Thus, the calculation of a
DOLP transform in under a second is made possible by implementing these fagt techniques on commercially
available high-speed vector processing peripherals.
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