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Abstract

The coating of a fluorescent lamp with fluorcscent paint is an example of a complex industrial
process. Improved control of this process could lead to reduction in the cost of producing a lamp.
Modcling the proccss is necessary for improved control. As a first step, a study of the coating process
at the Westinghouse Fairmont Works in Fairmont, West Virginia has been made. The study
included two criterion, or dependent, variables and 12 predictor, or independent variables. Analysis
of the study data has produced a lincar regression model with five independent variables which
accounts for 58% of the variation in coating thickness. Also, a set of lincar classification functions has
been found which correctly classify 92% of visual defects from 12 input variables, using the training

data.

These preliminary models have been used to design a controlied cxperiment. The controlled
experiment will allow the significance of seven independent variables in determining optical density

and visual defeccts to be cstablished conclusively.
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Chapter 1
The Coating Process

1.1. Introduction

The Carnegie-Mcllon University Robotics Institute rescarch effort to study the fluorescent lamp
coating process at the Fairmont Works of the Westinghouse Electric Company is aimed at modeling
and developing a control system for the process and providing data for an Intelligent Management
System. It is believed that improved control of the process could result in substantial benefits
including reduction of material loss, improved performance of the finished lamps, and reduced
training costs for machine attendants [Wimberly 81]. The objective of this project is to develop a
statistical input-output model from production data. This model is intended to be static rather than
dynamic. Such a model is appealing becausc detailed know]edge of the physicé] processes involved is
not required. Standard statistical mcthods are applied to devclop the model from records of the
input and output variables. The model is designed to serve as the basis for the development of a

dynamic model and camputer‘conﬁdﬂed system

The modecling effort entails three steps. The first step is to study the process and identify the
relevant input and output variables. The second step is to design an experiment to provide the
production data. This step includes both the planning of the experiment and the specification of the
instruments required to carry it out. The third step is to conduct the experiment and analyze the
results. This report covers the work donc from Scptember 1981 to May 1982, and summarizes
completion of the first two steps.

-




experimental modeling of the coating process is practical, and that others who may work on making
such a modd will find the information provided here useful.

The ultimate god of this work is a control system for the coating process. The static modd which
is the topic of the present work can be used to determine set-points for such a control system. The
process variables would then be maintained to these set points by individua closed-loop systems.
The st points are derived from the regresson mode developed in Chapter 3. The regression model
does not imply that any combination of the process variable values is acceptable; rather, the modd is
vdid over only alimited range of values. The nomina vaue of the process variable over which the
regresson model is calculated can be taken as the starting point. These vaues can be adjusted
gradudly until the regresson modd is satisfied. The process variable values which saisfy the model
can then be used as set-points. Closed-loop control requires a dynamic model of the process. Such a
model can be developed from observations of the input and output variables of the process. The
datic model described in subsequent chapters can suggest which variables arc significant, paving the
way for future development of a dynamic model and feedback control system. The isues are
amplified in [Box 70].

1.2. Overview of the Report

In this chapter a description of the. coating process on Line 1 a Fairmont, West Virginia is
presented. Chapter 2 describes a preliminary study of the process made in November of 1981.
Chapter 3 contains a review of the datisticd methods used to anadyze the study data, and the
preliminary models derived arc presented. In Chapter 4 a design for a controlled experiment and the
requirements for hardware to carry it out are set forth. Conclusions and a summary of the report are
found in Chapter 5.

1.3. The Coating Process

The coating of a fluorescent lamp with fluorescent paint is a multi-step process. A block diagram
of the processis shown in Figure 1-1. Each of the steps is discussed in turn. The process begins with
an tincoated glass tube, open at each end The tubes are suspended verticaly on a conveyor (chain)
by an operator. From this point the tubes are washed, coated with paint, dryed, etched with a
trademark, and baked The glass is treated with sulfur dioxide gas to reduce friction between tubes*
die ends of the tubes are brushed, and the tubes are then inspected visualy for defects. Except for
mounting and inspection, each step of the process is completely automatic. Tubés pass through the

process at a rate of severa thousand per hour.

v ML
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Figure 1-1: The Coating Process

The quality of the coated tubes is accessed by coating thickness and freedom from visual defects.
Coating thickness can vary from tube to tube, and from end to end in an individual tube. Coating
which is tco thick or too thin results in poor performance of the completed lamp, and, in the casc of a
thick coating, waste of fluorescent paint. The presence of visual defects in the coating, such as

uncoated arcas, bubbles, or veils is unacceptable.

1.3.1. The Wash Process

In the first step of the coating process, the tubes are washed to remove dust that may have
accumulated during their storage. The tubes enter the wash enclosure end up (Figure 1-2). Hot wash
water (190 °F) is discharged from nozzles above the tubes. The wash water is made up of de-ionized
water and a surfactant. De-ionized water is added from time to time to make up lost volume. After
flowing over the tubes, the wash water falls into a tank where it is re-heated and pumped back
through the As time passes, impuritics collect in the water. The water is changed daily to
limit the buildup. The tubes pass through the wash in about 15 seconds and then pass to the paint
coating area. The passage takes about three minutes. During this time, excess water drips out and
the tubes are at least partially dry by the time they reach the paint coating turrct. A blast of
compressed air is directed onto the twbe hanger to remove water caught between the hanger and tube.
Impurity of the wash water is monitored by a conductivity meter. Should the conductivity rise above
a setpoint, the machine operator adds de-ionized water to the wash. Wash water temperature is
monitored by a thermocouple and controlled by a comercially available controller.
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Figure 1-2: The Wash Process

1.3.2. The Paint Coating Process

The paint coating system shown in Figure 1-3 consists of a mixing tank, a line tank, a delivery
pump, a pain? turret and a recovery basin. The paint is mixed in 100 gallon lots in a mixing tank. The
paint is made up of de-ionized water and a water-soluble lacquer. The lacquer is added to produce
the desired viscosity. The fluorescent material is added as a powder. The paint then consists of
fluorescent paint particles held in suspension in the water-lacquer mixture. Paint is periodically

transferred to the line tank from the mixing tank by an elcctric pump.

When the paint reaches the coating line, a portion is bled off to the drip basin, and an additional
sample is drawn away to a viscosimeter. The remainder is passed through a mesh filter and flows to a

rescrvoir directly above the paint turret.

The paint turret consists of a number of nozzles, cach fitted with a cam actuated valve. As the
turret rotates, a tube, still.in vertical position, is transferred from the conveyor to the turret. The
valve actuator senses that a tube is in place, and the valve is opened for a fixed period of time. Paint
flows from the valve into the top of the tube, and then flows by gravity, coating the cntire interior
surface of the tube. The valve is closed again, and the turret rotates back to the conveyor. The tube is
transferred back to the conveyor and passes to the drying hood.

Beneath the turret and drying hood lies the drip basin. Excess paint drips from the tube and is
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strikes the tube. This is done by varying the slot width and placing wirc mesh in the slot and results
in air velocitics which vary over a range of a few hundred feet per minutc. The purpose of varying
the velocity is to achieve uniform end-to-end thickness of the paint, which tends to creep down the

walls of the wbe. The drying process is depicted in Figure 1-4.

YSTEAM HEATING COILS

OVERHEAD DUCT

BLOWER

FLCOR LEVEL
AIR RETURN

et — )N [F

Figure 1-4: The Drying Process

The drying hood is partally enclosed. A return duct gathers the air from the floor of the hood
arca. The air is then propelled by a large blower through a duct where it is heated. It then passes
overhead to a set of manifolds and ultimately back to the slots. The duct work is fairly air tight, but
there are openings under the hood where the tubces pass in and out and these openings allow some .
outsidc air 1o enter.

1.3.4. Lehring Process

The Lehring Process is depicted in Figure 1-5. When the tube exits the drying hood, the paint is
solidificd. The tubes are released from the chain, and fall onto a ramp. From the ramp, they roll
onto a conveyor which carries them past the ciching station where one end of the tube is marked with
a rademark and rade-name.
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“The tubes then enter the Lehr oven. In the oven they are subjected to temperatures of over
1000 °F. Air is blown into the ends of the tubes to create an oxidizing atmosphere. Binders in the
paint are burncd away, lcaving only the fluorescent material. (This oxidation is scparate from that of
the combustible gas fuel, which is carburcted before entering the oven.) Near the end of the Lehr,
sulfur dioxide gas is introduced. The gas reacts with the glass on the surface of the tube, imparting a

quality of slipperincss called "lubricity” to it.

Upon lcaving the Lehr, the tubes are cooled. They then pass by a scries of brushes. The brushes
contact the ends of the tubes and remove the paint from the inner surface around the edge, or

"collar”, to present a clean surface to be fused to the filament mount.

SULFUR .
DIOXIDE GAS

TEMPERATURE
CONTROLLER/INDICATOR

FLOW ow
METER METER
HERMOCOUPLE
END OF END :
COATING LINE CLEANING
FROM
‘ | DRY
4 |44 < € o —
INSPECTION COOLING ‘ :

OXYDIZING AIR

Figure 1-5: The Lchring Process

1.3.5. Il{ﬁpection

At the cnd of the conveyor, the tubes roll over a lighted table. An inspector checks the tbes for
defects and removes those tubes in which defects are visible. The tubes then pass onto another
conveyor where they are transferred to another line for further processing.
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Chapter 2
Statistical Study of the Process

2.1. Introduction

The study of the coating process is designed to answer the following questions:

1. What is the range and variability of the input and output variables?
2. What precision is necessary to measure significant changes in the variables?

3. Which of the input variables are significant in determining the output variables, and
therefore merit further study?

A study differs from a controlled experiment in that no attempt is made to control the input
variables and operating conditions. Instead, the input and output variables arc observed and their

numerical values are recorded. The data are then statistically analyzed to seek out relationships
between the input and output variables.

A study is less powerful than acontrolled experiment because:

1. A study cannot guarantee that all possible values of the variables are encountered, and
therefore the resulting model may be restricted in its range of validity.

2. A study cannot guarantee that the independent variables are uncorrelated and is therefore
subject to the problems associated with multicollinearity.

A study of the process is useful as an initial effort because it is much easier to carry out The study
can then serve as the basis for choosing the variables and treatment levels for a controlled
experiment In this chapter the study design, including the identification of the variables to be

measured* the method of measurement, and special considerations for time delays in the process are
considered. The study data are analyzed in Chapter 3.
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2.2. Study Design

Design of the study includes identification of the process variables to be measured and formulag

of the plan for carrying out thosc measurements.

2.2.1. Process Variables

2.2.1.1. The Output Variables

There are two output variables of interest: optical density and visual defects. Optical density s
measure of the thickncess of the coating of fluorescent paint on the inside of the tube. It is of inter
because it affects both the luminosity and the lifetime of the fluorescent lamp. The cffect of optic

density on initial luminosity is shown in Figure 2-1.

ZERO HOUR
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SOURCE: C.E. MOORE [MOORE 80]
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Figure 2-1: Luminosity vs. Optical Density
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mecasured by a milliammeter. ‘The higher the recading, the thinner the coating; the instrument
actually measures the transmittance of the tube. The scale is arbitrary and although the rcading is in
milliampercs, optical density is a dimensionless number.  The corrclation between the weight
(amount) of fluorescent powder in the wbe and its optical density as measured on the .Wcstinghousc

instrument is known. (Analysis of data for a typical sct of tubes produced the relation

powder weight = —0.25646 optical density + 13.05165

where powder weight is in grams and optical density is in optical density units. The data were
supplicd by C.E. Moore [Moore 80].) The correlation varies among paint lots. A correction factor,
known as the mill factor, can be applied to the correlation to compensate for the variation'. The

nominal value of optical density is 29 £ 1 optical density units.

"Visual defects” is a term used to describe a number of problems which make the tube
unacceptable for use. They arc detected visually by a human inspector at the ¢nd of the coating line.

The various types of visual defects are enumerated in Table 2-1, along with their suspected causes.

2.2.1.2. Input Variables

The input variables are the process variables which are thought to affect the outcome (optical
density and visual defects). Some are measured and controlled during normal opcration; others are
not. The list of input variables in Table 2-2 was chosen in consultation with Westinghouse personnel.

Table 2-2 lists all of the variables which are belicved to affect the outcome.

2.2.2. Study Plan

The study was carried out by a group of CMU students and rescarchers, and Westinghouse
engineers. The study is of the sample survey type [Neeter 78]. With the coating line in normal
operation, tubes are chosen randomly at a rate of about one per minute from the end of the coating
line. The optical density of the tube at onc point near its center is rcad and recorded, along with the
time of the observation. Concurrently, measurcments of the input variables arc made and the
measured values recorded. A data table of the optical density rcading and corresponding input

variable values is then built up.

Visual defects are studied concurrently with optical density. Each tube rejected by the inspector at

Llhecxim:nceoﬁhcmillfmmpdnmdmnbyWaﬁngbmseEngmeerGmer&onmanweﬁnngMUonJml
1982.
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Table 2-1: 'T'ypes of Visual Coating Defects

CODE VISUAL DEFECT SUSPECTED CAQSE
NUMBER
1 Bubbles ! Obstruction in paint pump vanes

Agitator on in Mill Room

Low volume in Mil11l Room

Improper head closing on turret

Too much surfactant (small bubbles)
Too little surfactant (large bubbles)
Insufficient bubble breaking air
Insufficient bubble breaker

2 Streaks Wash water dirty
Too much surfactant
Drying conditions not proper
Tubes not hanging straight

3 Short Coat (top) Insufficient paint in system
Dirty filters
4 Texture
Improper milling
Not enough surfactant or defoaming agent
Too much surfactant or defoaming agent
] Hanger Marks Too much heat
Air blast too weak to blow wash
water off hanger (water marks)
] Partial Coat Improper head adjustment
Paint too heavy
Paint too thin
Dirty wire mesh filter
7 Density Line stops
Paint too thin
Paint too heavy
Drying pattern
8 Thin End (top) Bubble breaking air

Drying pattern

MMMW@M&M line is noted along with the reason for and time of the rejection. The defec
rresponding input variable values are added to the data table. This process continued fo
several hours on each of two days, until the data table contained several hundred observations.

At the end of the study, the data are analyzed statistically. What is sought are relationship
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Table 2-2: Variables Thought o Determine Coating Propertics

VARIABLE MEASUREMENT CONTROL
(During Normal Production)
1. Wash Water Temperature Continuously Automatic
2. Wash Water Conductivity Continuously Manual
(Corrected Daily)
3. Paint Viscosity Continuously Semi-Automatic
4. Paint Specific Gravity Periodically Manual
5. Paint pH Not Measured None
6. Drying Air Temperature Continuously Automatic
7. Drying Air Velocity Not Measured None
8. Drying Air Humidity Not Measured None
9. Percent Excess Oxygen
in Lehr Gas-Air Mixture Not Measured None
10. Natural Gas Flow Rate Continuously None
11. Lehr Oven Temperature Continuously Automatic
12. Sulfur Dioxide Flow Rate Continuously None

between the input and output variables. The range and mean value of the variables in the survey,

useful for specifying measuring instruments and judging the physical, as opposed to statistical,

significance of observed variation, are also computed.

2.3. Data Collection

2.3.1. Output Variable Meésu rement

The methods used to measure cach of the output variables in the study were as follows:

1. Optical Density: Tubes were sclected randomly at the end of the coating linc at one
minute intervals. Optical density was measured with the Westinghouse instrument and
recorded with a precision of 0.1 optical density units.

2. Visual Defects: All visual defects noted by the inspector were recorded.

2.3.2. Input Variable Measurement

The methods used to measure each of the input variables in the study werc as follows:

1. Wash Water Temperature: An existing thermocouple in the wash water tank was used.
Readings were taken at the rate of one every two minutes on the first day and one every
five minutes on the second day with a precision of 0.5 °F.
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2. Wash Water Conductivity: The existing conductivity meter was used. The probe wes
mounted in the return pipe from the pump. Readings were taken every two minutes on
the first day and every five minutes on the second day. A precision of 05 /xS/cm was
used. ’

3. Paint Viscodty: The on-line viscosmcter was used. The probe was mounted in a
chamber filled in pardld to the paint turret. Readings were taken about every nine
minutes the first day, and every three and one-half minutes the second with a precision of
0.1cP.

4. Paint Specific Gravity: A hydrometer with a precision of 0.005 sgu. (gm/cm®) was
used. The sample was taken from the drip basin oscillator once every nine minutes the
first day and once every six minutes the second day.

5. Paint pH: A Fisher Accumet Modd 525 Digitd pH Meter, with a precision of 0.001 pH,
was used. Readings were recorded to 0.01 pH. The sample drawn for the specific gravity
measurement was used. Readings were taken once every nine minutes the first day and
once every 9x minutes the second day.

6. Drying Air Vdocity: The instrument was an Anemotherm model 60 hot tip anemometer.
Equipped with a hand-held probe, it is precise to 25 ft/min. The sample was taken at the

" first vent of the drying hood. Readings were taken once every two and one-half minutes
the first day and once every five and one-half minutes the second.

7. Drying Air Temperature: A mercury-filled glass thermometer was read to a precison of
05 °C Air temperature was sampled at the same spot as air velocity ever)' two and
one-half minutes the first day and once every five and one-half minutes the second day.

8. Drying Air Humidity: The wet-bulb dry-bulb method was used. Wet-bulb temperature
was measured with a mercury-filled glass thermometer with its bulb covered with a
dampened cloth. Readings were recorded with a precison of 0.1 °C. Wet bulb
temperature was sampled at the same place and rate as drying air temperature.

9. Percent Excess Oxygen in Lehr Air-Gas Mixture: A Thermox was temporarily Ingaled
in the fud line to the Lehr oven. It was read every 2 minutes the first day and every one
and three-quarter minutes the second day to a precision of 0.01% excess O,-

10. Combustible Fuel Gas How Rate: A ball and tube type gage permanently instaled o&
the Lehr gas line was used. Readings precise to 25 ftVhr were recorded every two

minutes the first day and every one and three-quarter minutes the second day.

11. Lehr Temperature: A thermocouple located inside the Lehr oven provides atemperature
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signal for the oven temperature controller. The controller provides a pancl meter read-
out of temperature which can be read to 1.0 °C. Recadings were recorded cvery two
minutes the first day and every onc and three-quarter minutes the second day.

12. Sulfur Dioxide Flow Rate: A ball and tube type gage which can be read to 0.005 fi/hr is
permancntly installed in the supply line to Lehr. Readings were recorded cvery two
minutes the first day and every onc and three-quarter minutes the second day.

Mecasurcments were made and recorded with pencil and paper by the observers. One person was
assigned to record optical density and visual defects; one to L.ehr temperature, gas flow, SO2 flow,
and % cxcess 0O,; onc to humidity, air temperaturce and air velocity (and specific gravity on the second
day); one to paint pH, viscosity, and spccific gravity ( and wash water temperature and conductivity
the seccond day); and onc to wash water conductivity and tcmpcramrc. Each observer also recorded
the time of cach measurement to the nearest seccond. Time measurcment was by wristwatches

synchronized at the beginning of cach day.

2.4, Interpolation

Because the process of coating a tube takes place over a 21 minute time period, the inherent
process time delays must be taken into account. For example, the optical density of a tube is
measured when it reaches the end of the line, 21 minutes after it is subjected to the wash process.
Thus the current optical density reading must be paired with the wash water temperature and

conductivity measurcments made 21 minutes earlier.

To determine these time delays, measurements of the time interval from the point where the
various input variables impinge on the tubce to the end of the process were made. The average of two

sets of measurements are listed in Table 2-3.

A second delay is introduced by the time required for the material (paint, wash water and drying
air) whose qualities are measured to travel from the point of mecasurement to the point of
impingement on the tube. These time delays range from a fraction of a second to scveral seconds.
The effect of these delays on the study was judged to be negligible because the measurement times
are likely to have errors of the same order of magnitude as these delays. Therefore, they are ignored
in this study.

The data table described in Section 2.2.2 consists of a series of 457 cases. Each case consists of a
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Table 2-3: Time Delays for Input Variables

PROCESS VARIABLES TIME TO END OF PROCESS

STEP SECONDS MINUTES
Enter Wash Conductivity, Tcmpcratu.re 1213 20.2
Enter Painting Viscosity, pH, Specific Gravity 1047 17.5
Enter Drying Air temp., Humidity, Velocity 1006 16.8
Mid-Lehr Gas, O,, Tempcrature | 141 24
End Lehr S0, ﬂéw | | 96 1.6

dependent (output) variable and its associated independent (input) variables. The value of the
independent variable is the value that existed when that variable impinged on the tube. The time of
impingement is found by subtracting the delay time for that variable from the time of measurement

of the output variable.

The value that existed when the input variable impinged on the tube is not necessarily recorded,
since the period of each measurement was not controlled. More likely, the input variable impinged
on the tube at a time which falls between the times of two recorded values. The input variable value
for the data table is determined by a lincar interpolation between the two recorded values whose
measurcment times bracket the time of impingement. The independent (input) variable values used

in the analysis are therefore interpolated values.

2.5. Summary

A sample survey study of the coating process on Coating Line 1 at the Westinghouse Lamp Works
at Fairmont, West Virginia was made on November 4%and 6%of 1981. Two output variables and
twelve input variables were measured. The recorded values were used to calculate, by time shifting
and interpolation, the values of the input variables at the time of impingement on a tube for which
the output variables were measured. The study data are analyzed in Chapter 3.
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Chapter 3
Data Analysis

3.1. Introduction

The objectives of this chapter arc to review and apply statistical methods to analyze the study data.
Separate treatment of optical density and visua defects is necessary because the former is a
continuous, ratio-level variable, arid the latter is a discrete, nominal-level variable. A standard
statistical package, Statistical iDackagefor the Social Sciences (SPSS) [Nie 75] is used for the analysis.

3.2. Descriptive Statistics

Because the variables were not controlled in the study, it |s of interest to sec how much variation
occurred. The percentage of variation is given by %V = oVJxIOO% where X is diemean and a is
the variance of the variable. The percentage of variation for each variable is shown in Table 3-1.

Table 3-1: Percentage of Variation for each Study Variable

VARI ABLE %/, NOV. 4 %V, NOV. 6
ptical Density 2.77 3.08
Wash  Tenper at ure 0. 09 0.32
Wash Conductivity 3, 96 8.49
Paint Specific Gavity 0.29 0.15
Pai nt Viscosity 2.62 1.29
Pai nt pH 0.18 0.56
Drying Air Velocity 4,32 1.32
Drying Air Tenperature 1.25 1.30

Tenperature Difference

(Hum di ty) 4.62 1.79
% Excess xygen 2.49 2.09
Lehr Tenperature 0.31 0.44
Lehr Gas Flow Rate 2.14 2.31
Sul fur Dioxide Flow 0.11 0.73
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3.3. Optical Density as a Function of the Process Inputs

3.3.1. Bivariate Correlation

Investigation of the relationship between optical density and the independent variables begins with
computing the simple correlation for cach. The linear rclation of a single independent variable X to a

single dependent variable Y is often measured by Pearson’s correlation cocfficient

S

Vi

where
2.
Sey= 2 (Xi=XX¥=Y)
l=-"' 1 _
Sex= _ (X= XY
1:1 _
Syy= I}__’; (Y= Y)
and

A:’: meanof X =437, Xj,

Y= meanofY,

X;= i®observation of X,

Y;= iBobservation of ¥,

n= number of cbservations of X and Y. [Nie 75]
The correlation coefficient r takes on values from +1 to —1. The magnitude of r indigafes the
strength of the relation and the sign its sense.

The probability that the sample for which the correlation is computed is drawn from a n latio;
in which the true correlation is zero is called the significance of 7, and is found by computing the ¢
statistic [Nie 75}

{= "V fl"_;fr |

The ¢ statistic is distributed as the Student’s 1, f{t»), where » is the number of degrees of freedom
(n—2 in this case). The ¢ distribution is similar to the normal distribution in shape, being slightly
flatter and broader. As » increases, the ¢ distribution becomes indistinguishable from the normal
distribution. The significance of ris
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which is called the two tailed test of significance; it docs not assume that ¢ is positive or negative. The
significance is the probability that the population corrclation p=0 cven though the sample’
corrclation r=£0; i.c., that there is no systematic relation between the dependent and independent

variable in the population at large even though such a relation was found in the sample.

Table 3-2 shows the bivariate correlation between optical density and cach of the input variables,
for cach of the two days. The correlations were obtained by an SPSS SCATTERGRAM analysis.
The correlations range from 0 (completely uncorrclated) to 0.6785 (modecrately correlated). The
results are nearly all significant to the 0.001 level; i.c., therc is less than 1 chance in 1000 that the true

correlation is 0. The high degree of significance is due to the large number of cases cxamined.

There is considerable disag.rccment in the results of the two days, both in magnitude and sign of
the correlation coefficient. It is doubtful that the relationships actually changed so much over the
space of two days. More likely, the data have sericus systematic crror. This error is most likely to
have occurred on the first day, when the data takers were learning their jobs. The first day’s data are
therefore dropped in the subsequent discussion, and henccforth only the sccond day’s data are

considered.

3.3.2. Linear Regression Analysis

The next step in thc analysis of the study data is a regression analysis. The analysis allows the
independent variables to be ranked according to their marginal value in predicting optical density.
That is, we can find the contribution of a variable to explaining variation in optical density over and
above the variation already cxplained by other variables. This allows us to concentrate future ciforts
on those variables which appear to be most useful as predictors. Ultimately, the development of a
regression model also allows us to predict the optical density which will result from a sct of input

variable values.
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Table 2-2:  Correlation of Input Variables with Optical Density

Independent Variable Correlation Coefficient / (Significance)

Nov. 4 Nov. 6 Both

(53 Cases) (213 Cases) (266 Cases)
Water Temp. Insufficient 0.0241 0.0800
Variation (0.726) (0.193)
Conductivity -0.3978 0.4911 0.3630
(0.003) (0.000) (0.000)
Specific Gravity -0.4001 -0.3219 -0.0962
(0.003) (0.000) (0.118)
Viscosity -0.5158 -0.4102 -0.4023
(0.000) (0.000) (0.000)
pH 0.3715 -0.5109 ~-0.4283
' (0.006) (0.000) (0.000)
Air Velocity 0.2422 0.0947 0.0970
(0.081) (0.168) (0.115)
Dry Bulb Temp. 0.0087 -0.6785 -0.1792
(0.951) (0.000) (0.003)
% Excess 0, -0.5352 0.3251 0.1352
(0.000) (0.000) (0.027)
Lehr Temp. 0.2779 -0.1158 -0.0249
(0.044) (0.092) (0.686)
Gas Flow 0.5813 -0.2745 -0.0766
(0.000) (0.000) (0.213)
SO, Flow 0.0000 . 0.1517 0.0920
(1.000) (0.027) (0.134)
Temp . Difference 0.4882 -0.3144 -0.0118
(Humidity) (0.000) (0.000) (0.849)

3.3.2.1. Finding the Model from Experimental Data

In multiple linear regression [Neeter 74}, the dependent variable Y is assumed to be linearly related
to the independent variables X3.X,, . . . ,.X,, according to the regression model

Yi=Bo+ B\ Xy + B Xin+ - - +Bp—1Xip—1+31
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where Y; is the response to the iMobservation, BoBi. - .- Bp-y arc parameters (the regression
cocfficients), X1, X}, .. . . Xjp—, arc the known valucs of the i%observation, and g; arc independent

N(0,6%) random crrors.

The regression function is
E[Y]':Bo'*'ﬁle +.32X2+ T +Bp-1Xp—1
and cstimated regression function is

Yi/=b0+b1Xl+bzX2+ re +b

p=1 X

p=1

where Y7 is the value of the estimated regression function at the values of X,,X;, ... . X,—; and byb,,

.+ .,bp— arc the sample cstimates of the parameters.

The sample estimates, or regression coefficients, are chosen by the method of least squares. Let
n
0= (Y= Y{)
i=1

be the sum of n squared deviations. The least squares estimators arc chosen to minimize Q by setting
the partial derivative of Q with respect to the p least squares estimators cqual to zero. The result is a

set of p simultancous cquations, called the normal equations.

The normal equations for a multivariate linear regression model can be expressed concisely in
vector notation.  Let b=[bo.bl,...,bp_1]7' be the vector of least squares estimator regression
coefficients, and Y=[Y,,Y;,...,Y,]7 be the vector of n observed responses. Let X be the [nxp]

matrix of known independent variable values, and define X;,=1, so that the / Brow of X is
[L Xy, Xige oo Xipmy ]

The normal equations are then
XTxXH=XTY

and the vector of regression cocfficients is
b=(XTX)"1XTY

Once b is computed, the estimated regression function can be written as

Y=Xb

where Y/ =[Y,.Y/,...,Y,/1T is the vector of fitted values. The equation for Y’ in terms of X and b is
a linear model obtained from the experimental data.
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3.3.2.2. Testing the Sighiﬁcuncc of the Regression Coefficients

The test of the significance of the simple correlation cocfficient 7 is made using the t statistic. A
similar test of the regression cocfficients by is made using the /* statistic. The /™* statistic is
distributed as the /- ratio, a tabulated probability function with parameters »,, the numerator degrees
of frcedom, »,, the denominator degrees of freedom, and a, the level of significance. The F

distribution f{F) is asymmetric and of domain 0 < F< oo.

The level of significance a is the probability that the population regression cocefficient 8 is cqual

to zcro given the samplc*cstimatc regression coefficient by, The significance is given by
F
1- / AF)dF
0

The tables of F distributions list values of H»,,»,) for common levels of significance « such as 0.05,
0.01 and 0.001.

To test the regression cocfficients, the level of significance a is chosen. The statistic

j* = SSE%)~SSEF) , SSEF)
- A (R)-dF) 4(F)

is calculated as follows:

SSE=37_,(Y/~=Y;)?is the error sum of squares. A scparate error sum of squares is
calculated for both the full and reduced model.

The parameter % denotes the reduced model; i.e., the model excluding those variables
whose regression coefficients are to be tested.

The parameter F denotes the full model; i.e., the model with all variables included.

dfi%)=n—p+ gis the number of degrees of freedom of the reduced model error sum
of squares, where # is the number of observations, p is the number of parameters in the
full model and g is the number of variables removed from the reduced model.

df(¥ )=n—p is the number of degrees of frecdom of the full model error sum of
squares.

The critical value of F, F(a,»,), is found from the table of F distributions given the significance
level a, numerator degrees of freedom »,=df(R)—df(F), and denominator degrees of freedom
»,=df(F). If F*> Fa,»,»,), then it is more than (1 —a)x100% sure that 8540, and the sample
estimate by is said to be significant at the a level.
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When the test is applied to only one regression cocfficient 84 at a time, g=1 and the test is of the
marginal contribution of the variable X given that the remaining p—2 variables arc in the model.
The test can also be applicd to all of the cocfficients at once. In this case, the hypothesis under test is
that 8,=0 and B,=0 and ... and Bp-1=0. Thus, g=p—L If F* > Fa,v,»,) the conclusion is
that there is a regression relation between the variables X),X;, ..., X, taken together and the
dependent variable Y. Both types of test are necessary when there is intercorrelation in the variables,
since the marginal contribution of cach variable may not be significant. but the contribution of some

or all of the variables taken at once (and hence their regression cocefficients 8 ) may be significant.

3.3.2.3. Forward Entry Regression Procedure

The forward entry regression procedure used by SPSS operates in the following manner [Nie 75].
The user sclects three parameters used to control the program. They are n, I, and T where

n is the maximum number of independent variables to be entered into the cquation.
The default value is 80.

[’ is the F-to-Enter valuc. It is compared to the £ ratio computed for a regression
cocefficient for a variable not yet in the cquation. The value computed is the F ratio for
that variable if it were brought into the cquation on the next step. The Fratio is used in a
test of significance for the estimated regression coefficient. The default value is 0.01.

T(0<T<1)is the T-to-Enter value. [t is compared to the tolerance of the independent
variable being considered for inclusion in the model. The tolerance is the proportion of
the variance of that variable that is not explained by the independent variables alrcady in
the regression cquation. The default value is 0.01.

The procedure also uses the cocfficient of multiple determination R? as a measure of the amount of
variance in the dependent variable explained when there are p parameters in the regression equation.

The cocfficient of multiple determination is defined as

Ri_ SSR__,  SSE
P=JSTO ~— " 35TO

where SSR=2(Y/—- }—’)2 is the regression sum of squares, SSE=Z2(Y/—Y,), is the error sum of
squares, and SSTO=Z(Y;— ]—")z is the total sum of squarcs. As p increases, SSE remains the same or
decreases. Thus R7, increases as p increases. The larger the increase, the greater the contribution of
the last variable added to the explanatory power of the regression equation. [Neeter 74]

The forward entry procedure computes the tolerance T for each variable. The tolerance is
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SSE/SSTO for a regression of the k—1 independent variables in the cquation against the K
independent variable about to be added. The purpose is to check for variables highly corrclated with
variables already in the cquation. If the corrclated variables were included, the XTX matrix would

become ill-conditioned [Nie 75].

The forward entry procedure begins by computing a simple (one independent variable) regression
for cach of the p independent variables. The independent variable with the largest R? is chosen to be

in the model. The F* statistic

« _ MSR(X,) _ SSTO—SSE(Xy) . SSE(Xy)

Fe =15z = i=D=(n=2) (=2
in which A/SR= ;fli is the mean regression sum of squarcs2 ,and MSE= :fi is the mean

error sum of squares, is then calculated for the K independent variable. If the F* statistic is greater
than the specified F-to-enter, calculation continucs. Otherwisc the process stops. Next, the tolerance
is computed and compared to the T-to-enter value. If the 7 statistic is greater than the T-to-enter

value, the variable is allowed to enter the model. If not, the process stops.

Each possible two-variable regression equation is then found. The F* statistic

F* o MSRUGIX,)  _ SSE(X)= SSE(X:Xp . SSE(XX)
I EMSEQGRX) T (n=2)=(=3)  (n=3)

is calculated , asis 7. If F}' and T excced F-to-enter and T-to-enter, the variable with the largest

increment in R? is allowed to enter the equation.
The process continues until either
(1) nis exceeded, or
(2) F* < F-to-enter, or
(3) T< T-to-enter, or

(4) all of the independent variables arc in the equation. [Necter 74], [Nie 75]

zlnzhemsewhutumredmdmdelhasnovaﬁablcs.mereisomymepammeter,Lheconstantﬁo Then Y,-‘:).’andSSE
=S5T0. ’
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3.3.2.4. Results of Linecar Regression Analysis for November Data

The data from November 6 were submitted to analysis by the SPSS forward entry regression

procedure. The results are summarized in Table 3-3.

Table 3-3: Forward Entry Results

INPUT VARIABLE R} CHANGE BETA MARGINAL F
1. Drying Air Temperature 0.46035 -0.38651 12.129
2. Paint pH 0.04858 -0.11303 1.229
3. % Excess Oxygen 0.02230 . 0.06319 0.658
4. Paint Specific Gravity 0.01337 -0.33275 21.795
5. Wash Water Conductivity 0.02274 0.29077 9.587
6. Drying Air Velocity 0.01431 -0.13811 6.649
7. Lehr Oven Gas Flow 0.00479 -0.11486 2.264
8. Dry-Wet Bulb Difference 0.00407 0.12172 3.401
9. Sulfur Dioxide Flow 0.00338 -0.06794 0.911

10. Paint Viscosity 0.00160 -0.05714 0.542

11. Lehr Temperature - 0.00118 -0.03782 0.560

12. Water Temperature 0.00009 -0.01243 0.046

Unexplained Variance 0.40324

OVERALL F: 24.665 SIGNIFICANCE: 0.000

In the table, the column labeled Rf, Change represents the marginal decrease in residual variance in
optical density. This statistic may be interpreted as the fraction of the variance explained in optical
density by each independent variable as it is added to the regression model. Thus, drying air
temperaturc accounts for about 46% of the variance in optical density when it is added to the
equation first. Paint pH accounts for an additional 4.9% when it is added to the model and drying air

temperature is already in the model, and so on.

The F* statistic shown is also marginal in the sense that it is a measure of the significance of an
individual regression cocfficient 8 given that all of the other independent variables arc already in
the cquation. The significance of B is tested thus: If F* > F(0.01,12,200)=2.18 then 8;540. Thus,
if F* >2.18, we are 99% sure that 8 is not zero, given that all of the other variables are in the model.
This test only tells us about the significance of 8} in the particular model for which the F* statistic
was computed. Therefore, we cannot use the marginal F* statistic to reject more than onc variable in
Table 3-3. Rather, we would reject one variable, recompute the F* statistics for the resulting eleven
variable model and use them to reject the next variable, until all of the remaining variables in the
model are significant. This method of eliminating variables from the model because their regression
coefficients are not statistically significant is called backward elimination. A backward elimination
was carried out in the same SPSS run as the forward entry procedure, and the reduced model shown
in Table 3-4 was obtained. |
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Table 3-4: Reduced Modcl for Optical Density

VARIABLE R; CHANGE BETA MARGINAL F
Drying Air Temperature 0.10135 -0.36677 36.071
Paint Specific Gravity 0.18024 -0.33168 39.138
Wash Water Conductivity 0.24120 0.39465 38.435
Drying Air Velocity 0.03337 -0.14096 7.807
Lehr Oven Gas Flow 0.02605 -0.16805 12.909
Unexplained variance 0.41779

OVERALL F: 57.693 SIGNIFICANCE: 0.000

Tables 3-3 and‘3-4 also show the standardized regression coefficicnts, Beta. These coefficients are
the regression cocfficients found when the variables have been transformed so as to have a mean of
zero and a variance of one. The resulting cocfficients are all to the same scale, and so can be
comparcd to assess their relative importance, under the assumption that the corresponding input

variables are uncorrelated. The transformation is given by
B =B
where
Sk is the standard deviation of variable X
sy is the standard deviation of dependent variable ¥

B/ is the standardized regression coefficient for variable X}.

With standardized coefficients, the intercept of the regression model is atways zero; ie., B,/ =0.

The overall F and associatcd level of significance in Tables 3-3 and 3-4 is for the regression

equation as a whole.

The reduced model may be written with unstandardized cocfficients as

Y =205.958-0.392X; - 102.949.X; + 0.067 X, — 0.014.X,, — 0.002.X

where Y is optical density, X, is drying air temperature ( © C), X, is specific gravity (s.g.u.), X; is wash
conductivity (#S/cm), X, is air velocity (ft/min), and X is lehr oven gas flow (ft*/hr). This equation
can be used to predict optical density from the five input variable values. If this were done, the
observed value of optical density might deviate considerably from the predicted value, for reasons
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discussed in the next section. The principal value of the analysis of the data taken in November isin
suggesting which variables should be studied further to try to produce a reliable model.

33.2.5. Interpretation of the SPSS Results

Table 34 ligs the variables found to be significant in the present study. It is far to ask whether
they can be ranked by the methods discussed in Section 3.3.2.4, and whether it is certain that the
other variables arc not significant. The answer to both questions is no. This is because of
intcrcorrclations and limited range in the data collected for the study.

Variables may be ranked by the percentage of variance explained, or by the size of their regression
coefficients only if the data are free from moderate to strong intcrcorrclations between the
independent variables. When the independent variables are correlated, the regression coefficients are
influenced by the correlated variables. When the independent variables are uncorrclatcd, each of the
regression coefficients is independent of the others. A single multivariatc regression or a series of
bivariate regressions would yield identical coefficients. [Y ounger 79]

The problem of generalizing the regression coefficients to the population also comes up when the
independent variables are correlated. According to Cooley and Lohncs[Cooley 71], the regression
coefficients found may fluctuate wildly from one sample to the next When we calculate

B=XTX)xXTy,

correlated variables make the X™X matrix ill-conditioned, and the regression coefficients become
numerically unstable [Neeter 74].

The ranking of importance of the variables by changes in R}\ that is, the percentage of variance
explained as the variable is added to the regression equation is also affected by multicollincarity. In
Figure 3-1 the case of two independent variables is illustrated Even though X, and X; both explain a
large portion of the variance in F, the increase in explained variance when X; is added is small
because the two variables arc correlated. If X, and X, are uncorrclatcd, their regions on the diagram
would be digjoint, and the incremental increase in R* would be the same as the total variance
explained by each. ‘

In the correlated case, a term that is added to the equation first gets all the credit, and any
subsequent tenm get no credit for variance already explained by preceding terms. Thus we can make
Xi important and X, unimportant by the R? change criterion, or vice-versa, just by changing the order




32

TOTAL VARIATION IN'Y

\/ \

AFTER YOUNGER, PAGE 332. [YOUNGER 79]

Figure3-1:
Percentage of variation in Y
explained by X, and X,
_where X, and X, are correlated.

in which they arc added to the regression equation. Tables 3-3 and 34 illustrate this phenomenon. -

The variable drying air temperature accounted for 46% of the variance in optica density in the
forward entry results, but only 10% of the variance in the reduced model The difference is Smply
the order in which the variables were added to the model.

There is dgnificant iniercorrelaion in the study data. A smplified correlation matrix, showing
only those entries with moderate to strong (r= 0.5) correlations, isdisplayed in Table 3-5.

The second problem with the data is the small range of values taken on by some of the varigbles.
Theinput variables found ingignificant in the study may <till have a significant effect The problemis
that the range of values observed for some variables is so small that the effect might be masked by

measurement error.

TTie study results for optical density therefore are not conclusive, but rather are suggestive. A

controied experiment is needed to produce conclusive results. A design for such an experiment k

presented in Chapter 4.

-
|
VARIATION IN'Y VARIATION IN Y EXPLAINED
‘EXPLAINED BY X1 ALONE BY X1 AND X2 REDUNDANTLY
VARIATION IN'Y VARIATION IN'Y
EXPLAINED BY X2 ALONE UNEXPLAINED BY X1 OR X2
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Table 3-5:  Corrclation Matrix For Nuvember 6 1ata

VA‘RIABLES

1 2 3 4 5 6 7 8 9 10 11 12
1 1
2 1 0.6 -0.7 -0.5
3 1 0.5
4 0.6 1 0.6
5 0.7 1 0.6 0.5
6 1
7 -0.5 0.6 0.6 1 0.5
8 1 0.8
9 1
10 0.8 1
11 -0.5 1
12 . 0.5 0.5 ) 1
KEY:
1 Wash Water Temperature 5 Paint pH g Percent Excess Oxygen
2 Wash Water Conductivity 6 Drying Air Velocity 10 Lehr Temperature
3 Paint Specific Gravity 7 Drying Air Temperature 11 Lehr Gas Flow Rate

4 Paint Viscosity 8 Suifur Dioxide Flow Rate 12 Drying Air Humidity
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3.4. Visual Defects as a Function of the Process Inputs

In analyzing the effect of the process input variables on the occurrence of visual defects, we would
like to identify the variables that are good predictors of visual defects, and to be able to predict the
occurrence of visual defects from the input variable values. The SPSS discriminant analysis
procedure is suitable for analysis of data where the independent variables are continuous variables

and the dependent variable is a discrete, nominal level variable.

3.4.1. Discriminant Analysis

In discriminant analysis [Tatsuoka 71], we undertake to write a linear combination of independent
variables that shows large differences in the means of obscrvations associated with the dependent

variable categorics. The lincar combination is called a discriminant function.

3.4.1.1. Obtaining the Discriminant Function
A discriminant function is of the form

Y=vTX

where Y is the discriminant score, v=[v,», ... ,vp]T is the vector of weighting coefficients, and

X=[X,.X,,....X )7 is the vector of p independent variables.

The object is to find the weighting coefficients v such that the category, or group, means are
separated as far as possible on the dimension Y. The criterion for measuring the difference among

scveral group means against Y is

_ SSBAK-1)

F*=—22222"2)
SSWI(N—K)

where
K is the qumbcr of groups,
N is the number of observations,
SSBisthe bctwcen;the-groups sum of squares, and

SSW is the within-the-groups sum of squares.
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The expression for the criterion is rewritten in terms of v as follows. We drop, for convenience, the
constant (V— A") and {K— 1) factors. The bctween-the-groups sum of squares SSB( K) =v/Bv where
B is the bctween-the-groups sum of sguares and cross products (SSCP) matrix. The elements by of

B aregiven by
K o :
bii= Z nlXie— X P for/=/
k=1
and by :
X - -
bu Z ”k(X:k }(Xjk_x}) ' for l-‘;éj-
=t .
where

Xik is the mean value of the /M independent variable in the K2 group,
); i is the mean value of the 1™ variable over dl the groups,

ny is the number of observations in the K@ group, and

A'is the number of groups.

' Similarly, the within-the-groups sum of squares SSW( Y)=vTWv, where

K
W= ; Si
=1

is the within-the-groups SSCP matrix. The eIementS Sap of S* are given by

1
Ska,&"l i XoriXgki I-——I i akf “ Xﬁkf |
SN L S R

The discriminant criterion is then written as

SB(Y) _ vIBy

SN~ VW =

Maximizing the discriminant criterion X with respect to v yields the eigenvector-eigenvalue
problem

(W-1B—Aly=0

in which B is of rank r, where r=min(K—Lp). (W"* aways can be found if no variable is perfectly
correlated with the others [Tatsuoka 71], and no variable has zero variance within the groups,) The
solution of the maximization problem yields r non-zero eigenvalues X* The corresponding
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cigenvectors, normalized to modulus one, arc the weighting cocfficients vectors v.  Thus by
maximizing the discriminant criterion A, a sct of rdiscriminant functions, Y,,=v ,T, Xform=12,....r

is obtained.

3.4.1.2. Ranking and Testing the Discriminant Functions

The discriminant criterion A is proportional to the distance between group means on the associated
discriminant dimension. The m™ discriminant function can therefore be ranked in discriminating

power according to the magnitude of the corresponding A ;.

The significance of the discriminant functions can be tested using Wilks® A. We compute the test

statistic
A * - lwl
[T]
where T is the total SSCP matrix.} Since —1-*— =(1+A)1+A)...(1+A), A* can be

A
computed from the cigenvalues of W™!B.

Tables of A distributions are not used o test the significance of the discriminating functions;

rather, we use A ¥ to compute Bartletts’ V according to

[ 1

==|N-1-2FB |aas.

| ]

Bartletts’ V' is approximately x? distributed with p(K— 1) degrees of freedom. Thus, we can test the
significance of all the discriminatix_lg functions taken togcther by using tables of x?
distributions. [Tatsuoka 71} .

Each individual discriminant function can be tested by computing

[ ]

Vo | N-1-LE8 | na+a,)
l ]

which is distributed with degrees of freedom (p+ K—2m).

3’meden:mems'Jl"(,lpm’thc’I‘mmixaegivenby
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The residual discrimination after the first discriminant function is accepted is V=V, with
(p—=IY(K—=2) dcgrees of freedom. If this statistic meets the confidence level, we accept the second
discriminant function and compute the residual discrimination V- ¥, — V, with (p—2)(K = 3) degrees
of freedom, then V—V,—V,—V; with (p—3)(K—4) degrees of freedom, etc., until the residual is

smaller than the confidence limit percentile point desired.

3.4.1.3. Ranking the Independent Variables in the Discriminant Function

The relative contribution of the i™ indcpendent variable to the m™ discriminant function can be
judged by comparing the magnitude of its standardized weighting coefficient v,,; to those of the
other variables in the function. The weighting cocfficients v,,;are standardized by multiplying them
by the square root of the corresponding diagonal element of the within-the-groups sum of squares

and cross products matrix W:
/ —_
Vimi=V Wi Vi

The larger cocfficients indicate the more important variables. This provides a basis for deciding

which variables merit further study.

3.4.2. The SPSS DISCRIMINANT Subprogram

SPSS calculates the discriminant functions by a stepwise procedure. As in linear regression, we can
find the marginal contribution to the model as each variable is entered. The stepwise procedure
begins by computing the partial multivariate F ratio for each variable. This F* statistic is used to test
the significance of the amount of separation of the group centroids added by the variable being
considered. The F* statistic is compared to the parameter FIN, which has a default value of one. If
F* > FIN, and the tolerance computed excceds the minimum,the variable is eligible for entry into
the model. Next, each cligible variable is added to the model, and the entry criterion computed. The
variable with the best entry criterion score is retained in the model. Finally, each of the variables in
the model is tested with the partial multivariate F again. If F* < FOUT, that variable is removed. It
i may reenter on a succeeding step if F* > FIN. The procedure repeats until no more variables are

eligible or the entry criterion scorcs are below some minimum.

Several entry criterion are available. This analysis uses the criterion which minimizes the residual
variation in a set of dummy variables representing group pairs. This is a way of choosing the next

variable so as to maximize the distance between groups. The residual variation is estimated by

[Nie 75]
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K

1
R= S S—
; Flz_‘:#i T+ (D, 7%)

where
D=~ p) T2~ .)]lz
if Bl Wi [

is the Mahalanobis distance between groups /and j, u; and p; are the centroids of groups 7/ andj, and
T-1is the inverse of the covariance matrix [Duda 73]. (SPSS computes the Mahalanobis distance

using sample, rather than population parameters. [Norusis 79])

By observing the change in the residual variation R as the stepwise procedure adds new variables
to the model, we can scc the marginal contribution of the most recently added variable to the

discriminating power of the modcl, given the other variables that arc already in the model.

3.4.3. Discriminant Analysis of the Data

There are cight categories of visual defects, plus the category of good tubes. The frequency of
occurrence of observations in cach of the nine groups for the data taken on November 6%, 1981 is
shown in Table 3-6.

' Table 3-6: Frequency of Occurrence of Visual Defects
CATEGORY : " NUMBER OF CASES

1. Bubbles 6
2. Streaks 7
3. Short Coat 0
4. Texture 8
5. Hanger Marks 3
6. Partial Coat 54
7. Density 17
8. Thin End 0
9. Good Tubes 225

Total 320

Because optical density is analyzed separately, the density category is dropped.
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3.4.3.1. Dichotomized Visual Defects

The results of an SPSS discriminant analysis with the visual defects lumped into two groups,
"good" and "bad", is shown in Table 3-7. For this analysis, the stepwise procedure was followed with
FIN and FFOUT sct cqual to one, and the residual variation minimizing criterion was used. Table
3-7 shows the variables listed in order of their discriminating power as measured by % R Change.
The standardized cocfficients show a similar ranking, with the exception that Lehr gas flow should be

first.

The model derived is an cight variable model. The standardized cocfficients form the weighting
vector v/ and the variables form the vector X in the model Y=v/7X. The model is statistically
significant to the 0.0001 level. The model is not as small as possible since the tolerance, FIN and
FOUT were all set to let almost any variable enter the model. The physical significance of the model
is open to question since, of the twelve variables considered for inclusion, only four (wash water
conductivity, Lehr oven gas flow, paint viscosity, and drying air velocity) have differences in group

means of more than one percent.

Table 3-7: Dichotomized Visual Defects

VARIABLE % R CHANGE  STANDARD COEFFICIENTS
1. Sulfur Dioxide Flow 37.631 —0.64460
2. Drying Air Velocity 16.192 —0.64716
3. Wash Water Conductivity 6.178 +0.58135
4. Lehr Gas Flow 4.427 +0.72526
5. % Excess Oxygen 2.573 +0.44860
6. Paint Specific Gravity 0.235 —0.27027
7. Paint pH 0.515 +0.25234
8. Paint Viscosity . 0.147 —-0.11126
9. Unexplained Variance 32.101

Wash water temperature, Lehr oven temperature, drying air temperature, and dry-bulb wet-bulb
temperature difference (humidity) could not mect the FIN criterion, and were not entered into the
model.

3.4.3.2. Visual Defects by Groups

The results of a SPSS discriminant analysis with all six non-void categories of visual defects is
shown in Table 3-8.

In this case there are six groups, so R is () or 15, if all of the variance is unexplained. The
percentage change in R is then [(R;— R;,.;)/ 15] X 100%.
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Table 3-8:  Analysis Results With Six Groups

VARIABLE % R CHANGE FIRST FUNCTION

STANDARD COEFFICIENTS
1. Sulfur Dioxide Flow 27.56 —-0.73989
2. Paint Viscosity 14.02 —-0.16071
3. Lehr Gas Flow 8.05 +0.92121
4. % Excess Oxygen 7.16 +0.60744
5. Wash Water Conductivity 4.85 +0.50859
6. Drying Air Velocity 3.91 —-0.54192
7. Paint Specific Gravity 3.36 -0.25577
8. Lehr Temperature 1.69 +0.00549
9. Drying Air Temperature 1.37 —0.14453
10. Dry-Wet Temp. Difference 1.75 +0.03468
11. Wash Water Temperature 2.12 —-0.03884
12. Paint pH 0.59 +0.44010
13. Unexplained Variance 27.57

The first discriminant function accounts for 80% of the between-groups variance because the
cigenvalue associated with the first function is considerably larger than the others.* Ranking by the
size of the standardized cocfficients is roughly the same as by %R change. Viscosity is an exception,
but it makes up for lost ground on the remaining four functions. Of the five discriminant functions

derived, four arc significant to the 0.01 level and are acccpied.

3.4.3.3. Interpretation of Discriminant Analysis Results

The ranking of the variables is nearly the same if the visual defects are all lumped into one
category or considered separately. Paint viscosity emerges as an important variable in the latter case,
Regardless of whether the cases are distributed along a single dimension or the four dimensions
found significant in the second analysis, the ultimate goal is to distinguish the operating conditions
which result in good bulbs. The choice of functions to do this should be based on a test of their
predictive validity. To test the validity of the discriminant functions derived, more data are required.
The test consists of using classification functions to classify new data with known group membership.

The percentage of correct classifications is a measure of the validity of the classification functions.

r
Wmmo{mwmmpsvmsmm&by(mk)/ A i [Norusis 79}

=1
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3.5. Summary

A linear regression model for the effect of the input variables on optical density has been found to
contain five variables: drying air temperature, paint specific gravity, wash water conductivity, drying
air velocity, and Lehr oven gas flow. The model accounts for 58% of the variation in optical density.
Because of intercorrelations and limited range in the data, the model derived is preliminary and
serves as a basis for the design of a controlled experiment

Discriminant analysis of the effect of the input variables on .the occurrence of visud defects yields
a model consisting of four discriminant functions, each containing al twelve input variables. The
relative importance of input variables, as determined by the percentage of betwecn-groups variance
explained, isused in Chapter 4 to choose the variables in a controlled experiment.




42




Chapter 4
Design of a Controlled Experiment

4.1. Hypothetical Model of the Coating Process

The results of the study are used to propose a hypothetical model for the coating line. The model
is used in this chapter to design the controlled experiments. The study involves 12 independent
(input) variables. The complexity of an ekperiment increases at least linearly with the number of
variables; for some designs it -increases exponentialy. From the practical point of view, it is desirable
to design the experiment with as few independent variables as possible.

4.1.1. Optical D‘ensity

Selecting variables for a reduced optical density model must involve some judgment. The high
intercorrclation and limited range of the variables in die study means there is no clear-cut criterion
for accepting or rgecting a variable. Of the five variables in the model displayed in Table 3-4, one is
ameasure of the paint, and two more are measures of the drying process. This finding supports the
view that the variables which characterize the paint and drying conditions determine optical density.

The remaining two variables are conductivity and Lehr oven gas flow. Lehr gas flow is related to
the effect of the oven on optical density. In fact, gas flow depends upon oven dynamics. When the
line coating stops, the oven empties out and the cooling effect of the flow of tubes into the oven is
lost The oven temperature controller reduces the gas flow rate, affecting the percentage of excess
oxygen. When the line starts again, the oven fills with cool tubes. The gas flow increases and
percentage of excess oxygen is changed Thus, changes in gas flow and percentage of excess oxygen
are correlated with line stops. When the line stops, the coating thickness is affected because the air
velocity profile under the drying hood is altered. Thus there is a correlation between percentage of
excess oxygen, gas flow and optical density. By controlling for the line stops, the correlation can be
eliminated, Control could be obtained by excluding from the analys's any data taken for 21 minutes

(the time it takes one tube to traverse the line) after aline stop.
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The optical density experimental hypothesis is then:

Optical Density is determined by the paint variables (pH, viscosity, specific gravity), the
drying hood variables (velocity, temperature and humidity). and wash water conductivity.

4.1.2. Visual Defects

From Table 3-8, Lchr gas flow and percent cxcess oxygen are among the first six variables ranked
in terms of the percentage of variance for visual defects explained by cach of the independent
variables. If these can be removed by controlling for the line stops, the only remaining variable not
taken as an independent variable in the optical density experiment is sulfur dioxide flow rate. By
adding this variable, and removing onc of the other variables used in the optical density experiment,
a visual defects experiment can be run concurrently with the optical density experiment with no
increase in experimental complexity. As a practical matter, all six of the optical density experimental
variables may as well be left in the visual defects experiment, since sulfur dioxide flow is very easily
controlled, and the savings in cffort obtained by confounding it with onc of the other variables is

small.

‘The visual defects experimental hypothcsis is:

The occurrence of visual defects is a function of sulfur dioxide flow rate, paint viscosity,
wash walter conduclivity, drying air velocity, and paint specific gravity.

4.2. Design of the Experiment

In Section 4.1 the experimental hypothesis and the independent variables for the experiment are
stated. In this section we will decide which variables are to be controlled, the number and values of
the treatment levels, and the number of observations which are required.

4.2.1. Classifying the Independent Variables

The independent (input) variables are assigned to the following categories:

1. Constants: These variables are maintained at a fixed value during the experiment. Any
effect they may have on the dependent variable is excluded from the experiment.

2. Unmeasurcd Variables: These variables are not measured or controlled during the course
of the expcriment. Their effects, if any, on the dependent variable are lumped into the
error of the experiment.
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3. Mcasured Variables: These variables are measured and may or may not be controlled
during the experiment.  We scek to determine the cffect of these variables on the
dependent variable.

Becauso experimental complexity is related to the number of controlled variables, it is desirable to
reduce the number of such variables. Thercfore, as many variables as possible should be assigned to
categories 1 and 2. In Section 4.1.1 it was suggested that percent excess oxygen and Lehr oven gas
flow could be held constant by controlling for the line stops. Thus, these two variables are placed in
category 1. Charles Trushell, a Westinghouse engincer, has suggested a means of holding wash water
conductivity constant as well. Dec-ionized make-up water would be added to the wash tank
continuously by means of a sct of nozzles at the end of the wash. The tubes would then be subjected
to a rinse of purc de-ionized water as they left the wash, thus fixing wash water conductivity at zero.

On this basis the variablcs are classified as shown in Table

Table 4-1: Classes of Independent Variables

FIXED UNMEASURED MEASURED

Line Stops (Percent Excess Wash Water Temperature Paint pH

Oxygen, Lehr Gas Flow Rate)  Lchr Temperature , Paint Specific Gravity

Wash Water Conductivity Paint Viscosity

Mill Factor Drying Air Tcmperature
Drying Air Velocity
Drying Air Humidity
Sulfur Dioxide Flow Rate

4.2.2. Measured Variables

In a controlled experiment, the mcasured variables must be hcld at certain values (called
"treatment levels™). The minimum number of levels is two, which yields a first, but not higher, order
relation. [Bartce 68] (A first order model is one which contains no powers of the variables.) The
values of the treatment levels are set at the limits of normal operation so that the results will apply
over that range of values. C. Moore of Westinghouse supplied the limits of normal operation for
Cool-White paint on Line 1 at Fairmont which were used to set the levels tabulated in Table 4-2.
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Table 4-2: Treatment Levels

VARIABLE % CHANGE FROM LOW UNITS
TO HIGH LEVELS
1. Paint Specific Gravity 3.0 sgu(gm/ cm3)
2. Paint Viscosity 60 . cP
3. Paint pH 71 pH
4. Drying Air Temperature 6.3 °F
5. Drying Air Velocity 20.0 % of nominal
6. Drying Air Humidity 107.7 R.H.
7. Sulfur Dioxide Flow Rate 182 ' 3 /hr

4.2.3. Experiment Design

Each of the seven variables is to be set at two treatment levels. The next choice is whether to
implement a full factorial experiment or an incomplete design. The merits of cach are discused in

this section.
4.2.3.1. Full Factorial Design

The full factorial design requires measurement of all combinations of high and low values for all of
the variables. To run two concurrent experiments with seven variables in each would require 27=128
observations. When the full factorial design is used, multicollincarity is climinated. It is guaranteed
that no pair of the independent variables is correlated. With linear regression analysis, this yields
three advantages:

1. The regression coefficients are meaningful indicators of the degree of influence of their
associated variables on the dependent variable.

2. The regression equation may be reliably generalized to the population.
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3. The data have come from the full range of all possible opcerating conditions. and we can
thus be confident of the resulting regression cquation's predictive validity under all
normal conditions.

The main disadvantage of the full factorial design is that the required number of observations
increases exponentially with the number of independent variables. To model the coating process, 128
obscrvations would be required. An experiment of this magnitude would be quite costly and time-

consuming.
4.2.3.2. Minimal Incomplete Design

A design in which the number of observations is less than kP~!, where & is the number of levels
and p—1 is the number of independent variables, is called incomplete [Bartee 68]. For a regression
analysis, the minimum number of observations is equal to p. This is becausc the observation matrix
X (defined in Section 3.3.2.1) must have as many obscrvations as parameters or XX is singular and
we cannot solve for the regression coefficient vector 8. We need p=8 observations, since p points
define a hyperplanc in (p— 1 )-space. This minimal incomplete design has the great advantage that it
is much simpler to run than the full design. The design is illustrated in Table 4-3. It can be seen that

there is a slight tendency of dnc variable to be negatively corrclated with the others.’
Table 4-3: Eight Observation Experimental Design

VARIABLE 1 = HIGH 0 = LOW

OBSERVATION X,

Ko
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Smewrmhﬁnaofommbbkmmhcrmy be tested by Pearson’s r, as given in Section 3.3.1.
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As dated in Section 4.2.2, the experiment will consist of observations taken at two levels chosen to
cover the entire range of normal operation. A two level experiment yields only a first order model
(i.,e. a model without power terms). A two level experiment with two independent variables is
illustrated in Figure4-1.

Y
A

Plane of model

X1 xX2Y
R Y = bO + bl X1 + b2X2
00 :
y00 y01
01 y1
10 y10
11 ¥y X2
Sample Plane
C Region of sample space
X1 encompassed by three observation model.

Additional sample space encompassed

by adding the fourth observation.

Figure4-1: A Two Level Experiment

In a full factorid design, the two variable, two level experiment requires four observations. These
observations are marked in Figure 4-1. A minimal observation design only requires three
observations, but the area of the "sample plane" enclosed is greatly decreased. The resulting model
can only be used to predict responses within this smaller range of variable value combinations. The
mode |Is planar; the power or interaction terms of the process are averaged over the range of
observationsmade. Thereis the danger that the model will be in error in regions of the sample space
not investigated.

" The "sample plane" In the two variable, two level experiment consists of an area enclosed by four
points, the four observations of the ftill factoria experiment The fourth point greatly increases the
areaenclosed. Thispoint is the observation of the "Interaction effect”, and the area enclosed contains
information about what happens when both ?ariablc$ simultaneously move through their range The

number of interaction effects increases as the number of independent variables is increased. A two
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variable system has one two-variable interaction effect, a three variable systemn has three two-variable
cffects and one three-variable effect, and in general, a 71 variable system has (7) i-variable effects. A
seven independent variable experiment has 21 two-variable terms, 35 three-variable terms, 35 four-
variable terms, 21 five-variable terms, seven six-variable terms, and onc scven-variable term. As the

order of the interaction effect is increased, it usually diminishes in significance.

The more interaction terms that are to be investigated, the more observations that must be made
up to the kP~! obscrvations of the full factorial design, whichAallows all interactions to be investigated.
The need for more obscrvations arises because without them, the interaction terms are intercorrelated
and cannot be distinguished from onc-another. In lincar regression analysis these terms are added to

the regression cquation. The regression equation for a two variable system becomes

Y'=by+ b X, + by + b, X, X, -

Interaction terms arc always correlated with the other variables used to construct them. This fact

should be kept in mind when interpreting models which contain interaction terms.

Investigation of power terms requires more than an increased number of observations. The
number of levels must be increased to at least three if these non-linear terms are to contribute to the
model. The fact is that two data points cannot define a curvilinear line! With only two levels, power
terms contribute to the model if we make the necessary observations (remember that the number of
observations must be at least’ as great as the number of parameters in the model), but this

contribution cannot be resolved into scparate terms.

Throughout the discussion it has been implied that only one observation is made for cach variable
at each combination of levels. In practice we make several such observations of both dependent and
independent variables during the time the particular combination of levels is in ceffect. We may
expect to sec some variation in the response recorded due to measurement errors and poor control of
the level. The resulting cloud of data points around each level is illustrated in Figure 4-2. As the
cloud spreads out, it becomes possible to detect power terms in the regression analysis. In fact, the
data arc more likely distributed over the range of the variables, since the data are recorded as the
variable is moved from one level to the other in the course of the experiment. Use of such cases
might allow investigation of power terms. At least, the obscrvations which fall near the treatment
levels could be used to construct a first-order model and then intermediate observations used to test
its predictive validity.5

s’mewthorisindebtedlol’ro{ Luc Tierney of the Carnegie-Mellon Statistics Department for suggesting this method.
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Figure 4-2: Responses in a Two Level Experiment
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4.2.3.3. Fractional Factorial Design

A fractional factorial design is a reduced-order design which allows for investigation of some, but
not all, of the interaction cffects. It also assures that all single-term variables arc uncorrelated. A

fractional design using 32 observations is shown in Table 4-4. [Cochran 57]

Table 4-4: 32 Observation Design

OBSERVATION VARIABLE OBSERVATION VARIABLE
X, XXX, XXX, XX, X,X, XXX,
1. 1111 001 17. 0011 001
2. 1111 010 18. 0011 010
3. 1110 110 19. 0010 110
4. 1110 101 20. 0010 101
5. 1100 000 21, 0110 000
6. 1100 011 22. 0110 011
7. 1101 111 23. 0111 111
8. 1101 100 24, 0111 100
9. 1001 001 25. 0101 001
10. 1001 010 26. 0101 010
11. 1000 110 27. 0100 110
12, 1000 101 28, 0100 101
13. 1010 000 29. 0000 000
14, 1010 011 30. 0000 011
16. 1011 111 31, 0001 111
16. 1011 100 32. 0001 100
NUMBER OF CHANGES 1 2 4 8 15 16 23

In this design all of the two variable interactions can be distinguished, with the following exceptions:



S1
1. The interaction .Y, X is indistinguishable from the interaction X .X;.
2. The interaction X, X; is indistinguishable from the interaction X; X.

3. The interaction X, X; is indistinguishable from the interaction X X;.

These pairs of interaction terms are called alias pairs. They are indistinguishable because the
obscrvations required to distinguish them have been ommitted from the fractional design and they
arc thercfore intercorrclated. To minimize the possibility that an important cffect might be
confounded with its alias, a variable, e.g., X;, is chosen to be that variable which is expected to have
the least effect on the experiment. If an alias pair is important in the analysis, it is assumed that the
interaction term causing the cffect is the one that does not include X;. Higher order interactions are
confounded with the crror in this design. Since the analysis of interaction terms is intended for the
optical density experiment, it is suggested that the sulfur dioxide flow rate be chosen as.k;, since it is
expected that sulfur dioxide flow rate will not affect optical density. The remaining six variables can

be assigned according to the cffort required to control them, as discussed in Section 4.3.2.
4.3. Carrying out the Experiment

4.3.1. Hardware

To carry out the cxperiment, an automatic data acquisition system is cssential. This is because the
data must be gathered on the production line during normal operation. Data gathered manually are
expensive, subject to error, and may be recorded too slowly to observe significant changes in the
variables. Since the sampling rate cannot be adequately controlled with manual data collection, it
becomes necessary to use values interpolated over time. The statistical analysis is then based on

calculated, rather than measured data, which is less desirable.

Automatic data acquisition is fast and precise. It allows experiments to be carried out rapidly and
unobtrusively with minimal manpower. Sampling times are casily controlled. Once installed, such a
system wouid facilitate both the present and future studies and could serve in a future control and
information managcment system. To design the automaﬁltic data acquisition system, the range and
precision of cach .mcasurcment, and the sampling time required must be specified. Once this is done,

the means of transmitting and recording the data can be considered.

o



4.11.1. Sensors

The range of each sensor mug be large enough to accommodate the maximum range of vaues
expected In some cases the range of an indrument affects its precision; in those cases the range is
made as narrow as passible consgtent with the expected range. The required ranges for the measured
varidbles (Which were supplied by C Moore of the Westinghousc Fairmont Works) are given in
Table4-1 Theserangesarc for normd operation with cool-white paint on Line 1 at Fairmont.

The desired reponse time of the sensor is on the order of one second. The instrument should thus
regider to within 95% of the new vdue Wifhin one second after a change in the variable value. The
figure of one second is chosen because the process proceeds with a period of less than one second per
robe, and it is unnecessary toresolvechanges thet happen in less time than it takesto fill atube.

While, for datidtica andyds, absolute accuracy is not as important as precision the instruments
should be as accurate aspracticable.

Suggested sensors arc shown in Table 4-5. In some cases more than one sdggesti onismade. The
table shows the model manufacturer, and cogt of the instrument, along with die range, accuracy, and
precison. The dewed precision is based on the results of the study described in Chapter 3; in cases
*Jcre this is not practica the precison pecified is that commonly obtained with available
indruiRents.  The measuring instrument must be precise enough to resolve variation within the

expected range*

In addinm to the seten input Yarkble sensors shown in Table 4-5, sensors for the two output
variables, optica dendty and viaud defects, will be required. A sensor utilizing a linear Charge-
Coupled Device (CCD) anay has been the subjext of ressarch done by Mark Handclsman a CMU
[Handel«ran 82), The sensor is sdid 10 be capable of detecting coating thickness and visua delects
*ilh athroughput -of 600G cubes per htur* The cost of a practicd instrument is estimated to be about
$0000* John Murr*y has denwasraiud a smple codling thickness sensor using a phototransistor
*hkh caifii befeyilf chegply [Murray 12J. The experiment could be run without output sensors by
sampling We aibc* as 'he> emerge dim the coating line and storing them for later evaluation, This
'would be a ttdous ptmm however* and would require temporary storage of several hundred tubes.
Theusetff ityStittaiic $r&>15'3 tc be preferred*
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Table 4-5: Suggested Scensors for Automatic Data Acquisition

Variable Instrument  Desired Precision Accuracy Response Cost Maker
Range :

Dry Temp.  Thermo- 130-150 °F  About0.2 °F About2°F  0.12Second $41 Omega

couple .
- . o o 0 o

Humidity Chilled- t0 0.0 ;C 0.1°C 10 C 2.0 Cper About General
Mirror @60 "C Second $3000 Eastern
Hygrometer ambient

Paint Vibration 13t0 1.4 0.001 Not Not About Yokogawa

Density type s.g.u. s.g.u. Specified Specified $3500
Vibration same 0.0001 0.0005 Milli- $8690 Redland
type s.g.u. s.g.u. seconds
Gamma same 0.0005 Not Not About Texas
Radiation ) s.g.u. Specified Specified $3500 Nuclear
type

Paint Model 7.5t09.0 0.01 pH 1% Full 1 Second Not Leeds &

pH 7076-3 pH Scale Applicable Northrup
pH Meter

Paint Model 60 to 95 Not 3% 10 $450 Brookfield

Viscosity VTA-100 cP Available Seconds
Viscometer

Air Model IM-4 600 to Not plus or 1 Second $2800 Anemostat

Velocity Hot Tip 1100 fpm Specified minus 2%
type

Sulfur Dioxide Flow Rate: Use of existing ball and tube type instrument recommended.

4.3.1.2. Data Logging

Because the process is to be sampled at a rate of about one observation per second, and there are
seven independent variables and two dependent variables to be measured automatically, the data
logger must be capable of making nine readings per second. This requircment is well within the

capabilities of most data loggers.

With the exception of the thermocouple and the pH meter, the output of the sensors is a 4 to 20 ma
current source. A current source permits the use of shielded, twisted-pair cable for the connection
between the instrument and the data logger. Such cable is superior in an electrically noisy
environment. The current source covers the range of the instument. The data logger must be
equipped with preamplifiers compatible with the sensor output. The preamplifier should have

adjustable gain and zero settings to allow maximum resolution.

Table 4-5 indicates that no instrument has a precision which is greater than one onc-thousandth of

N

§
i
§
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its range. ‘Thus, a 10 bit ID/A converter should be capable of resolving any measurcment to its

specified precision.

The data logger should also have a clock to keep track of the time cach recading was made, to the
nearcst sccond. It also should be capablc of recording the readings pecrmancntly on a medium such as
a floppy disk. Because there can be an independent variable reading for every dependent variable

reading, there is no need for any interpolation.

4.3.2. Scheduling the Experiment

The goal in formulating a schedule is to reduce the cffort required to carry out the experiment.
The variables should be ranked in order from the most difficult to the least difficult to change from
the high to the low level. The most difficult variable is assigned to be the onc changed the fewest
number of times and so on. In doing this, the opportunity to minimize bias crror by random
sclection of the order of obscrvation is lost. In this casc the difficulty of controlling the independent

variables justifies this choice.

The ranking is perhaps best left to those who will carry out the experiment. A tentative ranking

follows:

1. Paint pH

2. Paint specific gravity

3. Paint viscosity

4. Drying air humidity

5. Drying air velocity

6. Drying air temperature

7. Sulfur dioxide flow rate
The first three variables are the paint variables. Changing them may require the line to be stopped
while new paint is added to the system. The next four probably can be changed "on the fly”.
Control of drying air humidity might be accomplished by spraying atomized water into the drying air
duct.” Air velocity could be controlled by venting the duct, reducing the pressure difference and thus
the velocity of discharge from the duct. Air temperature is casily controlled by a thermostat; sulfur
dioxide flow rate is set by a valve.

7The measurement of humidity for the study was made using the wet-bulb dry-bulb method which gives poor results in hot,

dry conditions. It is not clear why the air does not become saturated, since it is continuously recirculated. Further study of
humidity under the drying hood with more precise instruments should be made to delermine its variability. Insight gained
from this study might suggest a means of controlling humidity.
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The 32 observation experiment of Table 4-4 is arranged to show its hierarchica structure. Note

that the first variable only changes once in the course of the experiment, the second changes three

times, etc. The variables should be assigned in order of decreasing difficulty of control.

4.4. Analysis of the Results of the Controlled Experiment

4.4.1. The Optical Density Experiment

Linear regresson models arc built through an iterative process. An excellent discussion of model
building is given in Chapter 11 of Necter and Wasscrman [Nccter 74]. The anayst first would try to
isolate a reduced set of variables through a stepwisc procedure. Tests for lack of fit (the F ratio tests
of Chapter 3) can be made, and residuals examined for lack of fit, outliers, and time dependence in
the data. Then the process may be repeated using interaction and power terms. The analyst may try
a number of combinations of Variables before the best model for the data is found. The model must
also be tested for predictive validity. Datataken during the course of the experiment and set aside for
that purposecan be used. New data should be obtained at some other time to investigate whether the
model remains valid over time. The percentage of variance_ explained by the model can be used to
judge whether there arc other important factors not included in the experiment.

Once the modd is constructed, tested, and validated, it may be put to use. The uses include:

1. Choice of optimal set points for coating line operation.

2, Suggestion of compensating changes when the line drifts from those set points. Since
-.o; ~tome -variables can 'be made to change quickly and easily compared to others,
. .GOfttpaiig'tifig changes, invoked by a control system should enhance the operation and

prduct|V| ty:of the process*

EACI

4.#,2>Thi# Visual Offfcis Experiment

Likethe model for dbtical density, the mixid for visud defects is built by searching for the best set
of discrimiiuuiiig variables. The test for predictive validity is made using classification functions

derived during the discriminant analysis.

The most general dassification functions are Fishers Linear Discriminant Functions

Ci=CXtF eyt - pXpt oy
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in which the C; is the classification score for group i, and the ¢;; are classification cocfficients. [Nic 75]
There is a function for cach group; a casc is classified into the group on which it has the largest score.

Calculation of the coefficients ¢;; is described in Norusis. [Norusis 79]

This type of classificr is called a linear machine. Duda and Hart discuss how such a classifier can
be used to divide the independent variable space into regions in which the case is classified into a
given group. [Duda 73] Such a division could be used to provide additional constraints on the range

of permissible values for the input variables.

The lincar functions arc derived under the assumption that the groups arc all of multivariate
normal distribution, and that the covariance matrices for cach group are cqual. In the case where the
covariance matrices are not cqual, the discriminant functions are quadratics. Duda and Hart also
discuss the use of quadratic discriminant functions to partition the fcst spacc; again, such a
partitioning could be used to constrain the process operating limits. Both Tatsuoka [Tatsuoka 71] and
Cooley and Lohnes [Cooley 71] discuss how classification can be made by evaluating the probability
of group membership. This method is used by SPSS [Norusis 79]. Classification can take into
account the a priori probability of group membership. In the study data this probability was assumed
to be proportional to group size. Better than 90% of the study data were correctly classificd. The true
test of a classification function requircs the correct classification of data other than that from which

the function was derived. For such a test, new data arc required.

4.5. Summary

On the basis of the study results, the.hypothesis is made that optical density is a function of the
paint and drying air variables. Visual defects are hypothesized to depend on these and sulfur dioxide
flow. The effects of multicollincarity provide the incentive to use an expcrimental design in which
the independent variables are uncorrelated. Inclusion of more observations allows power and
interaction cffects to affect the model, but more levels are required to model power terms explicitly. -
To test the hypotheses, it is recommended that a two level, seven variable experiment be run. A
fractional factorial, 32 obsecrvation design represents a good compromise between experimental
complexity and thorough investigation of the test space. It should result in data free from
intercorrelation, and sufficient to investigate most two-variable interactions, as well as the main
effects.

Automatic measuring instruments should be used to allow the model to be based on measured,
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rather than calculated values. A response time on the order of one second is suggested; range and
precision sufficient to resolve the range of normal operation arc necessary. The requirements for the
data logger are mass storage capability, speed sufficient to process about nine readings per second,
ten bit D/A resolution, adjustable prcamps for seven input variable instrument signals, and

compatible input(s) for the output variable sensor(s).

The experiment may be most easily carried out by scheduling the observations to require the
fewest adjustments for those variables most difficult to change. Anaysis of the data generated by the
controlled experiment can be done using the methods of Chapter 3. Both models should then be
tested against new data to check their predictive validity. The resulting models can then be used to
congtrain the range of set points for coating line operation.
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Chapter 5
Summary

5.1. Objectives of the Project

The objective of this project is to develop two models of the coating process on Line 1 at the
Westinghouse Fairmont Works in Fairmont, West Virginia. The first model is a lincar regression
input-output model of the coating process relating optical density (the output) to the process inputs.
The modc] consists of a lincar equation with constant coefficients which allows calculation of the
optical density of a tube from the valucs of the process inputs extant when the tube was made. The
sccond model is a discriminant analysis input-output model of the coating process rclating coating
defects (the output) to input variable values. The discriminant analysis model consists of a set of
classification functions which allow prediction of the presence or absence of a visual defect from the

process input variable values.

5.2. The Study of the Coating Process

A preliminary, sample survey type study of the coating process was made on November 4™and 6“‘,
1981. Twelve input and twoe output variables were periodically sampled by a group of four to six
experimenters using hand instruments. Sampling rates were slow, ranging from one measurement
per minute to six measurements per hour. The study data were prepared for analysis by using the

input variables to calculate interpolated input variable values for each output sample.
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5.3. Analysis of the Study Data

5.3.1. Variance in the Data

The study data were analyzed first to sce what variation of values occurred under normal

operation. Five of the input variables were found to have a percentage of variation of less than one
percent. The remaining seven input variables and the output variable, optical density, cxceeded one
percent variability. Variability ranged from 8.5 % for wash water conductivity to 0.15 % for paint
specific gravity on November 6. Variability of less than one percent scems too small to show up any

cffect. Obtaining a large range of values will require deliberate changes in variable values.

5.3.2. Optical Density

Simple correlations between the input variables and optical density were found to fluctuate wildly

from one days’ data to the next. The data from the first day were judged to be faulty and discarded.

A lincar regression model was then found relating optical density to five input variables: drying air
temperature, paint specific gravity, wash water conductivity, drying air velocity, and Lehr oven gas

flow. The remaining seven input variables were found to be insignificant. There was modcrate to

strong intercorrelation in the data, making it impossible to find the sensitivity of optical density to
changes in any one input variable. Intercorrelation, limited range of some variables, possible
correlations 1o events on the line not measured (such as line stops), and possibly poor quality of data
mean that this model should be considered to be preliminary.

The study was of value in that some insight into the process was gained, and one variable, wash
water temperature, was found to be insignificant and to merit no further investigation. On the basis
of this knowledge, a relation between optical density and some input variablcs was hypothesized. A
controlled experiment to test the hypothesis was designed which will eliminate intercorrelation and
limited range. The experimental data would be collected with automatic instruments, assuring good
data and climinating the nced to use interpolated values. The hypothesis, experiment, and
instruments are described in Scction 5.4.
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5.3.3. Visual Defects

A sct of discriminant functions was derived relating visual defects to the process input variables.
The input variables were then ranked according to their discriminating power. Bascd on this ranking
it was hypothesized that the occurrence of a visual defect is a function of certain of the input
variables. The hypothesis can be tested by a controlled experiment run concurrently with the optical

density cxperiment.

A sct of classification functions were derived which correctly classify 92% of the study data from
which they were derived; new data would be needed to test their predictive validity. Because of
limited range and possible inaccuracy in the data, the discriminant and classification functions must

be regarded as preliminary.

5.4. The Controlled Experiment

The study was useful because it afforded an opportunity to become familiar with the coating
process and the computational tools used to build the statistical modcls. It also showed up the
shortcomings of a study in rclation to a controlled experiment: limited range of variation and
intercorrelated data. The shortcomings of hand-gathered data were also made obvious: the need for
interpolated (and perhaps ﬁctit.ious) values and the possibility of errors made by people doing a

tedious job in uncomfortable circumstances.

To overcome these problems a controlled experiment is proposed. The experiment would test the
following hypotheses:

1. Optical density is a function of the paint variables (specific gravity, pH, viscosity) and the
drying variables (air vclocity, humidity, air temperaturc).

2. The occurrence of a visual defect is predicted by sulfur dioxide flow rate, paint viscosity,
drying air velocity, and paint specific gravity.

The experiment would use seven independent and two dependent variables. Three additional
variables would be fixed. A two treatment level, 32 observation fractional factorial design is
recommended. The experiment would be run without block randomization to reduce the effort
needed to control ihe variable values. For optical density, this design allows investigation of all
single-variable and most two-variable effects. Power terms may also be investigated if observations
are made at intermediate levels.

i
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An automatic data acquisi.tion sysem should be used to perform the controlled experiment. Five
new input sensors, and two new output sensors would be required. The sensors must be precise
enough to resolve changes within the range of expected variable values and fast enough to record
changes that occur in the time required to make one tube, whenever possible.

5.5. Interpretation of the Results of the Controlled Experiment

Data gathered from the controlled experiment may be andyzed using the same methods used to
analyze the dudy data. A linear regresson modd can be built relating optical density to the input
variables. The discriminant andyss mode would condgst of a set of classfication functions. Both
models should be tested againgt new data (from data set aside and not used to produce the models, or
from new observations) to test their predictive ability.

The results of the andlysis will dlow prediction of the vaue of optical density and the presence of
visud defects from input variable values. The relative contribution of each variable to the outcome
can be found. The models can be used to condrain the set-points for the input variables, reducing
the number of defective tubes produced.
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