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Abstract The ability to mathematically model the movement of a robot manipulator is a
prerequisite to the understanding of the key factors that influence a manipulators
performance. This paper presents a m;lipulator model which has been used to simulate
and control a real robot arm. A method of describing the arm by its rotational
characteristics, a set of equations called the Inverse Arm, and an algorithm called the
Forward Arm are presented. The Forward Arm simulates the movement of an arm and the
Inverse Arm provides a means of computing the correct voltages to apply to an arm to
achieve a desired movement.
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Notation:
-
e The vector sign ( ) indicates a three dimensional spatial vector.

¢ An underbar beneath a symbol indicates an "arm vector” which has one component for each joint

in the arm. For example, § is equal to ( 6,,0,....0 ) when there are N joints in the arm.

® Subscripts indicate one of two things:

1. The coordinate frame in which the symbol is referenced and the frame to which the symbol
refers.

2. The joint number that is referred to by the symbol.

The type of symbol will determine whether the subscript is a link coordinate frame or a joint
number. For example, Z?i is the angular velocity of link 7 in the link i coordinate system and Gi is
the position of joint i

» A hat on a symbol ( " ) indicates a constant.

® A star superscript ( ') indicates a value related to the center of mass. Other values are related to
the link coordinate frame.

o A dotand a double dot over a variable ( and ) ) indicate first and second time derivatives
respectively.

¢ An A with a superscript and a subscript represents a transformation matrix from the superscripted
coordinate system to the subscripted coordinate system; so A% w, is the angular velocity of the link
2 coordinate origin in link 1 coordinates. -

e Boldfaced letters represent matrices or tensors, so J is a moment of inertia tensor.

Note that a reference to the velocity or acceleration of a link actually refers to the velocity or acceleration of
the link’s coordinate system origin."
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Introduction

A mathematical model of a physical system, such as a robot manipulator(arm), is one of the most useful
tools available for studying the system’s behavior. The model, usually in the form of a computer program, can
be used to study the system in several ways. The dcvelopment of an accurate model leads to a full
understanding of all of the key elements of the system. The model provides a means of testing the system
under conditions that would be dangerous or impossible for the real system. Larger systems that contain the
modeled system can be tested with the model instead of the real system.

As part of the Carnegie-Mellon University Direct-Drive Manipulator Project (CMU DD Arm Project) we
have developed a mathematical model of the manipulator. The mathematical equations are based on a
Newton-Euler analysis of free-body dynamics developed for robotic manipulators. [8] [11]

This paper describes the structure of the model that simulates the dynamic motions of our mampulator
The model is divided into three parts.

o A detailed description of the structure of the arm. The description of the structure is contained in a
Manipulator Database which consists of two parts: the kinematic and the dynamic. The kinematic
description specifies the relative positions between the links of the arm and gives the axes of
rotation for each of the joints. This description is easily determined from the mechanical drawings
of the arm. The dynamic description contains the moment of inertia, the center of mass, and the
mass for each of the links. A computer program was written to calculate these values from a
database file(the Parts Database) that contains a description of every piece of the arm.

o The Inverse Arm. This is a set of equations which, when evaluated, yield the motor voltages
required to produce certain accelerations. This is the inverse of a real arm which produces
accelerations given the voltages. The Inverse Arm part of the model is needed for the third part
which is the Forward Arm.

o The Forward Arm. This part of the model contains an algorithm which can compute values for the
acceleration of the joints in the arm when the motor voltages are specified. When the
accelerations are integrated over a period of time, the new positions and velocities can be
determined.

Arm Description
The CMU DD Arm consists of seven links, numbered 0 to 6, going from the base (link 0) down to the hand
(link 6). There are six joints numbered 1 to 6. The odd numbered joints are rotational joints which rotate in
the same manner as the turning of a screw. The even numbered joints are pivotal joints, which move in a
- manner similar to that of a person’s elbow.

Each link has a coordinate frame associated with it. The Denavit-Hartenburg convention [5] for assigning
coordinate frames to manipulator links is used to specify the coordinate frames of the manipulator because it
simplifies the evaluation of the equations used in the /nverse Arm and Forward Arm parts of the model.
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Figure 1: bcnavit-Hancnburg coordinate assignments for the CMU DD Arm
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Inverse Arm

The Inverse Armmodel is an application of a Newton-Euler anaysis of free-body motion:. The purpose of.
this model is to adlow us to compute the motor voltages required to produce given accelerations when we
know the current state of the arm and dl of its parameters. The model has sx major steps.

1. Calculation of the velocities and accel erations of each of the links.

2. Finding the linear acceleration of each of the link's center of mass.

3. Computing the net force and moment exerted on each link.
4. Cdculation of the local forces and moments on each link.
5. Finding the torque réqui red for each motor.

6. Computing the motor voltage required to produce the computed torques.

The last step is done separately from the firg five so that the Forward Arm program can use the first five steps
of the Inverse Armto find torques. .

In this paper a reference to the velocity or acceleration of alink actudly refersto the velocity or acceleratl on.
of the coordinate system imbedded in the link.

Link Velocities and Accelerations

There arc two forms of link velocities and accelerations which are considered here, angular and linear. We
have four equations which can be solved iteratively from link 1 to link N to find the angular velocity, angular
acceleration, linear, velocity, and linear acceleration of each of the links in thearm. link Ois assumed to have
no angular or linear velocity and no angular acceleration(Le. Wy =~ = 55 == [0 0 0]"). It does, however,
have alinear acceleration equal to aZ directed gravitational acceleration (Le. A= = [0 0,9J", gj= + 9.80621
meters/second?, depending upon whether Z poi ntsup or down) Since we know Zlu w, Zn and'“ wecan use
the following four equations to solve for «; Vfiwl, andvj. We can then apply the equations repeatedly to
solve for the velocities and accelerations of links 2,3* etc. up through link N»

The angular velocity of link i-t /, vT/'|+1> isrelated to the angular velocity of link i; 57, and the rate at which
thejoint between them, #.19, turns by

B = Mg (8 +50,) | i=0L..N1 ®
where ZQ = fpQ 1]"and N=6in the CMU DD Ann. .The Etenavit-Hartenburg convention dictatesthat the
axis of rotation of joint i-f 1 is aong the Z axis of die link i coordinate frame, so the rate of turning of joint
i> 1 is multiplied by Z" and added to the angular velocity of link 1 to give the angular velocity of ink i+ L
TTicawdkmte frameis changed from Ink i to Ink i+1 by premultipling by AL_ r

The angular accelerafion of Ink i+ 1o, m is given by:

i+
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B, = AL (B + 28, + 3, x206,,) i=0L..N-L @
Since joint i+ I rotates around the Z axis of link i, the acceleration of joint i+ / is multiplied by 2 before

being changed to link i+ coordinates. The cross product term comes from the geometry of the
situation. [10]3 A coordinate transformation from link i to link i+ / coordinates is performed by a
premultiplication by Al 1
The linear velocity of link i+ /, V—: T is related to the linear velocity of link £, v': and the cross product of

w; , ; and the vector, P ;41> Which points from the link i to the link i+ / coordinate system.

Vg = @, X Dy + ALY i=01,..N1 3)
where p . iv] 8 given by [ a. . r,, isin(e; ;) I, cos(a; ) I' in the Denavit-Hartenburg
convention. The linear velocity of the link i coordinate system is transformed to the link i+ I/ coordinate
system by a premultiplication by A} +1- The cross product need not be transformed because it is already
expressed in link i+ / coordinates. Note that the linear velocity of each link is not used in later calculations.
This equation need not be evaluated, but is included for completeness.

The lincar aoceleraﬂon of hnkz+l v, i+ 1,1sgiveu by
Vel = O X Py F By X (B, X Byyy) + AL, T 1=0LLNL @

The first term is, again, due to the geometry of the situation and thg second is called the Centripetal
acceleration. This equation is a limited case of the Coriolis theorem. [10] Because there are no translational
joints in cur arm, the coriolis term of the Coriolis theorem is zero.

Linear Acceleration of the Centers of Mass

The calculation of the linear acceleration of the center of mass of each of the links is very similar to the
linear acceleration of the coordinate system calculation. The equation relating the linear acceleration of the
center of mass of a link to @, @, $,and ¥, is

Vo= o, X 8] + 5, x(8,x5)+ ¥ i=12..N ®)

where §: is a vector pointing to the center of mass of link i from its coordinate origin. Again, we see that
there are no coriolis accelerations in the arm. Note that these calculations can be performed in any order, but
must be performed after equations 1 through 4 have been evaluated for all of the links.

Net Forces and Moments

The net force is the sum of all of the forces acting on a link. Likewise, the net moment is the sum of all of
the moments. Since we know what the accelerations are we can calculate the net forces and net moments for
each link using Newton’s law and its analog in rotational dynamics. Newton’s law in this context is

wheremiismemassoftheﬁnk. N :

3 Chapter 7.2 Moving Origin of Coordinates
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Newton's lav can be derived from the fact that the net force is equa to the rate of change of the
momentum. In asimilar manner, we can derive the rotational analogy of Newton's law from the fact that the
net moment is equal to the rate of change of the rotational momentum or

:-5
dt
where

'Ifi is the rotational momentum and J isthe moment of inertia of link i around its center of mass. Sncewe
need to express the moment with respect to link coordinate origins we change the coordinates of the moment
The moment coordinate change formulais:

.-

N. = J « + B X (J < ) i=12..N. @)

i i - V'

Thisis aform of Euler sequation of motlon for arigid body. [10]*

Local Forces and Moments

Each link is connected to two other links (except the hand and the"base) which exert foroes on that I|nk
Thesum of these two forcesfe die net force. For any link i; the foreg™ £, that link i-1 exerts on it is cled the
local force. The net force, F onlink iisthe sum of dielocal force, {, and the negative of the locd force on
the mxi link, . . ,, ihatis :

s
Fs =2-%i"ti

or : i
C =4"1Cfl +% =Noat 8

Note that we must change the coordinate system ofrﬂ before adding it to F by premultiplying it by AI !
We can calculate the local forcesby solving this equation iteratively starting at the hand, wherefN +1 is. ‘the
externa force exerted on the hand* and working our way up the arm.

The net moment, 'Nz, of link, i has four components.

1. Thelocal moment of theink, T which is the moment exerted by link 11 onlink i

2. The negative of the loca moment of the next link transformed to the link i coordinate system, that
. is :

T s

3. The moment caused by the local forceacting on thei nk at adistance away from the the origin.

‘Qmpter 11,2 Bulcrt Bomttem of Motion for a Rfckl Body
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- p X Al+1 f
This is the negative of the cross product of the position vector which points from the z-I tothe i -
coordinate origin and the local force on the next link transformed to the link i coordinate system.
4. The moment caused by the net force acting on the center of mass of the link.
-(p;+8)xF,

This is the negative of the cross product of the vector pointing from the link i~/ coordinate system
origin to the center of mass of link i and the net force on link i.

By rearranging these components to solve for the local moment we get

B = A*la 1+p><(A’+1 L) + (P, + $))XE + N . o
i=N,..2L

‘where KN .1 Is the external moment exerted on the hand.

We can iteratively solve this equation from the hand back to the base to find the local moments on each
link. '

Joint To rques

The local moment of link i is the moment that the link exerts on joint i-/. The component of the local .

moment that is along the Zr1 axis is the torque exerted on joint 1. The torque required for a joint to
compensate for the local moment and friction is given by

= R-(A1Z) + b6, | i=NL..1 10)
where b, is the friction coefficient of joint i The friction, bi’ in each of the joints is related to the velocity of
the joint by some nonlinear function. Since the friction in the joints of the CMU DD arm is very small, we
neglect this term in the simulation. 2] [1}

Defining the InvArm Function
We can define the function which evaluates equations 1 through 10 as

= InvAml(s?_,_ﬁ, E)

where 1 = (1,7 yaty ) 8 = (0,,8,8,), 8 = (6,.0,,..0,),a0d 8 = (8,,6,,.0,). This function call is
an actual procedure in the software which unplemen:sthzalgomhmsdtswssedmthmpapet The InvArm
function will be used later in the Forward Arm.
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DAC Output L L e MUSt goduces we have to calculate what motor voltages we must

Once we know the torques, i, tnai w ~ computer program, the motor voltage caculation is
apply in order to generate these eforqe%s N ACAN N Eoward Am uses N 7nverse Arm Tl
nve :

perfonned separately from the AV * Tt voltages computed from the torques and velocities, can be used

-whniires the torques as output me raw
ral edtrwardcompensationcontrol system.12]

» * ductance of the motors is negligible so that the equation relati ng voltage to the
We assume that the inductance oj u

armature resistance andmotor speedis
V.. = Rjlj + Ky

where R. is the resistance of motor 1': Kti isa
The torqlue that the motor produces 18 related

L =Kk

We can rewrite these equations as

back EMF constant for motor i,_ anfi I is the current in motor i
to the current in the motor and is given by

an
v, =Rr/Xg+ Ky ¢

. - . ﬂn
Forward Arm - «<imulate the movement of a manipulator. We can specify
The purpose of this model is o allow S w0 culate the resulting movement of the arm. The Forward Am

: otors and cal e . : :
maqu;app}ﬁz e;:nog':: ;npaper on manipulator dynamic simulation written by Walker and <
mrulel atmor] -

We usethe third method given in the paper.

The Walker-Chin agorithm is a method for caculating $*e acceleration of each joint in amanlpiiata, H®

use aihird order Ruege-K utta integration algorithm to compute the velocitiesand positions of thejoins figp;

the accei@atioiis.. We have added amode of the motor dynamics so Ehgﬁ mowrnvggm%g&qﬁM- =
torcpes. The Formwd Arm model, which consists of these three pa™” o e :i;-_:

and motif #nasics),, takes as input a voltage schedule witMi is alist of input voltages to be appft

smmm of the mm over t period of time, The wtpet of the model is the positions, velocities, and 80DdferiM|\/:I.i!_. .
that thejoints of the arm undergo with the specified input i

Wewll fet describe the motor 'dynamics equations ani libm <i~»be the Walker-Orin algorism feM
TUs daa™tai wil be eampteted w& a description of tibe lunge-Kutta algorithm as it ap|ifefc.i

Motor OyIMMIGS ' ! . . ‘e :\*!””'j_ff_
Tiewxmmhwe ci*Kte”te, sadi as bat HvIF, wliiJi can be modeled as a control sysem. « w p_'_?

W AMCMii arsi model (see %ure 2) ' : ., e l%
Tl«wi~"s”5pfei to the terminal of the motors have the back EM Fs of the motors, given by KAf:':V;1]

'suteicK dfinomliwm. The result is multiplied by K{/R; to give the torque that is actualy g»eniBI.f||’
,Miirftothejoint of the arm. The inductance of the motor is negligible in most cases, so it is ixxiodtaMH”

e o an e i . v b Pk s et L A s 11 oY




Arm Dynamics Simulation 9 23 November 1982

this aﬁalysis. The torque, T in terms of the applied voltage, Vi, and the joint- velocity, 0 is given by

r. = K (V,-Kt6,)/R, ©i= 12N 2

Arm > 9

Model

<
:Cg
Y
P2
\ 4

>éi

Kt |

Figure 2: Control System Model of a Motor

The Walker-Orin Smulatmn Method
T}Jsedymmnfany manipulator can be summed up in one general second-order differential equamn.{6}

1 =H(8)8 + C(4.8)8 + G(8) + K(8)'E,_, + K (85, .(13)

whmH(ﬁ)maanNsyuuneﬁmmmmguhrmumenmfm»emammx C(§.8)is an N x N matrix
specifying the centrifugal and coriolis effects, G ( § ) is a vector of size N specifying the effects of gravity,
K (8)and K (g) are 3 x N Jacobian matrices specifying the torques created at each joint due to external
fomesandmonmtsaertedonmehand,f is a spatial vector specifying the external force exerted on the
hanimdnmmavecmrspwﬁnng&mummtsexﬂtedonrhehamiabommeX,Y and Z axes.

meumeﬁmFmdmmdﬁkmmmmmﬁmﬁmwfmofdleioims
given the torques applied to the joints and the current state (positions and velocities) of the arm. There are
thmemmﬂzzsmmymaﬂon,mpunngﬂmebmvwm finding the H matrix, and solving for the joint
erations. The Walker-Orin paper [11] gives four methods of finding the accelerations. The first and third
sm,ﬁmmcwﬁngﬂmhmvmrmdwhmgwmm accelerations, are common to the first three
methods presented in the Walker-Ori paper. The difference between the three methods is in m‘
algorithms for computing the H matrix. The third method given for computing the H matrix is used here for
speed. »
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Compuﬁng the Bias Vector

If we let )
B = ccg,8)8 + G + Kf(ﬂ)T'f;and + K, (8) B ' 14
then equation 13 becomes ‘ :
H(8)8 = (z - B) (15)

B is called a bias vector which corresponds t0 the torque required to maintain the current state without any -
acceleration. The bias vector can be computed with the InvArm function by setting@ = 0 and calling the
routine to calculate the torque. If we knew the H matrix then we could solve equation 15 as a set of N

simultaneous equations in N unknowns. The & would be the unknowns.

Calculating the H matrix
The H matrix represents an effective moment of inertia for the arm. It is a function entirely of the am

position since the velocity effects are accounted for in other terms. The simplest means of calculating the H
matrix is to set one element of 8 to 1 and all of the rest to 0. We can use the InvArm function with 8 = X =
G (4) = 0 to compute the torque vector’ for that acceleration. The computed torque vector is equal to the
column of the H matrix corresponding to the element of @ that was set10 2 isincer = H(4)@ whend =
G(4) = k = 0 from equation 15. This is Walker-Orin’s method 1 which is simple, but computationally
slow. ’

Ll

Method 3 uses a different approach. The same assumption about the acceleration is made, but the
calculation of torques proceeds differently. ‘The H matrix is symmetrical so only the diagonal and top half of >
the off diagonal elements are computed: If 8 is setup as before, with the fh element set to 1 and the rest 0, we
notice that the manipulator can be viewed as a singly jointed arm with a "hand" that is made up of links j
through N and the base made up of links 0 through j-1. The characteristics of the "hand,” its mass, center of
mass, and moment of inertia, can be calculated jteratively using

M= Mty | j=NL.2l 09

1

3T M

< j‘+1‘ * L oAt + D 22
E = & EaAa T M, LIy (G F PG I
=

[my §; + M}H,g;-l-l(f;l-? ﬁiﬁ )1 j=N-1L..21 {m ,

Hle=* LA V-2 (ATY -~ _ =T
(AP D) T (Gt ,)-§ )]

> ‘ ,.t_—\';l _“A‘__-} ‘ A‘-J‘T e : : ]
s 3 w1 8- P (- E -5 ) j=NL.21
vl mjisthcmassofj,MihmemOfthewhand«Misﬁnksjmugthdmwe,c_; . m

. mo{mufmm"%‘ismposiiemomemofinerﬁaofﬂ:e"hand,'@dik%g

identity matrix. Thebmmdawatlmeam
My = my

- aAS

o T SN
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The composite mass, M,, is the sum of the masses of links j through N. The composite center of mass, & is
computed relative to the origin of link j in link j coordmates c? “isa weighted sum of the center of mass of
link j, N , and the center of mass of composne link j+ I, cJ T divided by the total mass of the composne link
JA MJ.. s] is weighted by its mass, , m, and c 1s welghted by Mj . The sum of the position vector, p . +1
which points from the link j origin to the 1+ 1 origin and ¢; Cp1 8 transformed from j+1 coordmates to j

coordinates to give cJ relative to the j coordinate origin 1n Jj coordmates

The composite moment of inertia, E’ is the sum of the moment of inertia of link j, J’ and the composite
moment of inertia of links jthrough N, E] , both moved to the center of mass of composite link j. E 4pmust
undergo a coordinate transformation before itis added to J

To move a moment of inertia tensor we use a form of the parallel axis theorem which gives the moment of
inertia of an object around an arbitrary location when the moment of inertia around the center of mass is
known. [10]5 :

I

where I; is the moment of inertia tensor around the-center of mass, M is the mass of the object, R is the vector
pointing from an arbitrary-location to the center of mass, and 1 is the identity matrix.

=1;+M['R‘21-§§T]

E 118 ﬁrst transformed to j coordmates by pre- and post-multiplication by A“’1 and its inverse. Then itis
moved we R isAltl ( c at p. j+1 ) - c:J for thls move which points from the center of mass of composite
link j to the center o%mass of composue link j+1. J. is moved to the center of mass of composite link j by the
same means. Rxs s -rj in this case which is a vector from the center of mass of composite link j to the
center of mass of link j.

The net-force on the "hand” is the force acting on the center of mass which is the "hand’s” mass times its
linear acceleration. Since the angular acceleration about a joint axis is assumed to be 1, the linear acceleration
is the cross product of the angular acceleration vector (which is just the Z axis of link j/ expressed in j
coordinates) and the vector from the axis to the center of mass of the link. The net force is given by

- _ j_la . ~ .
B =M [A7Zy x (& + p))] i=N.21 19

The net moment of the "hand” is the moment around the "hand’s" center of mass which is the component of
the moment of inertia matrix, E; which is'in the direction of the joint axis, or

N, =E A%, | i=N.2L (20)
The fomemathnk;-l exerts on the hand, called the local force, is equal to the net force since the only force
exerted on the "hand” is the local force. The moment exerted on the "hand” by link f/, called the local
moment, is the net moment plus the moment produced by a force acting at a distance from the rotational axis.
The force is the net force and the distance is the sum of the center of mass vector of link j, c , and the position
vector, p ,which points from the link j -7 to the link jcoordinate axes.

SChapter 10.5
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f =F i=N.21 @
PN s ~ = .

The torque required in the joint is the (J, ] ) element of the H matrix which is equal to the component of the
local moment in the direction of the link j -1 Z axis, given by .
_ = . (AT .
Hii =1 ( Aj ZO ) j=N,.,L | @3)
This gives us the diagonal of the H matrix.

The off diagonal elements €an be computed by calculating the torques needed in joints / through j -1 to
maintain this static situation. The local forces on each link from / to j -1 are the same as the local force, E on

link j when transformed to the correct coordinate system. The local moment of link i is the sum of the local

moment of link i+ / transformed to i coordinates and the moment caused by the local force of link i+ I acting

ata distance D, ;-

- _ .+1-\ - 2 o .

F =AM - i= Ll 9
- H - A i 1_; ’ . .

n = A;"’lni+1 + p,; X (A}"' f,1) . i=jl..L 25)

The clements of the off diagonals of the H matrix are the components of the local moments which are in the
came direction as the Z axes of the previous links.

- _ =L (AFL7 PR . P — ,
Hi] = Hji— ni (A; ZD) 1 “'] 1»"92’1 J - N,...,Z,l. (26)

Once we have the H matrix we can calculate the acceleration vector for the given torque, ;_r_, and computed
bias vector. B using equation 15. Since the H matrix is symmetric an algorithm tailored to such matrices is

used to solve the simultaneous equations. [9]

Defining the ForArm Function

Like the InvArm function we can define a ForAmm function which returns the acceleration of the arm joints
given the positions, velocities, and joint torques. This function is useful in explaining the Runge-Kutta
integration and corresponds t0 a real function in the modeling software. We define ForArm as

§ = ForAm(4.87)
wl'meé,ﬂ,é.mdzaredcﬁnedinsecﬁon.

Runge-Kutta Integration : L
The ability to calculate the acceleration for a given set of conditions allows us to compute future positior
and velocities of the joints using a Runge-Kutta integration algorithm. A third order Runge-Kutta provides

Ifwelet
F(8.4.V) = ForAm(8 8 [ Ki(¥-Kt@/R])
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where V is the arm vector of applied motor voltages (see section ) then the first order dlfferentxal equations
that we are trying to solve are

@) .
— =F(4.4.Y)
dt

and

d(@
St
To use the third order Runge-Kutta method, we calculate two sets of three coefficients which represent the
current values and estimated future values of § and §. The new values computed for # and 8 are the old

values plus a time increment multiplied by a weighted sum of the current and estimated future values of 4
and §. [3] The coefficients to be calculated for each new set of values for § and g are

cl=ﬂ

K = F(4 4 Y)
. h
G =8+—k

Q;Fm+%%gy)
= g4 b
= F(8+ 26 hey 5 D)
whemhmaummd The determination of the correct size for the time step h is a difficult procedure. There
are algorithms for adjusting the stepsize according to the change in # and §, but these are not currently

implemented. A fixed stepsize of 1 millisecond which is approximately 1/15% of the smallest mechanical time
constant in the arm is currently being used.

Themﬁveequauomforcalculanngmewughwdsumandoanmgnewvalmforﬁandiare
&t =g + (gl+4gz+c3)

f“=e?+?g+4g+g)

Programs Available

We have implemented the model of arm dynamics which has been described. The software resides on the
CMU-750R VAX in the /usrrf0/nms/sim directory. Currently, the software is in the form of an executable
testbed called "sim.” The sim program is CI based with full help fiinctions. The sim program can do the
Inverse Arm on single or multiple sets of data. It can do the Forward Arm on single sets of data or do a




Arm Dynamics Simulation 14 : 23 November 1982

The sim system is run by typing /usr/nms/sim/sim. The user is then at the CI user interface level. There
are several variables which the user can set to different values. They are

gravity The value of the gravitational acceleration.
Defaults to -9.80621 meters/second? |

DACTimePeriod The time between changes in the reference input to the
control system of the arm

The following variables are vectors which have one component for each joint in the arm being modeled.

theta The joint angle of each joint in the arm
starting from the base.
omega The joint angle velocities. This is the ‘ ;
first time derivative of theta.
alpha - The joint accelerations. This is the output
of the Forward Arm model.
torque ' Tﬁe torque each motor is producing. This
is calculated from the voltage.
voltage The voltage applied or that should be applied to

each joint to satisfy the other conditions

DACOut ' The Digital to Analog Converter output voltage which is connected to
) " the reference input of the control system of the arm

Any of these variable can be set by saying: variable = valuel value2 ... valueN, where N is the number of
joints in the arm. The torque and voltage variables are tied together so that setting one recalculates the other.

The commands allow the user to apply the /nverse Arm or Forward Arm models to different sets of data.
Possible commands are

inverse arm- Runs the Inverse Arm model on the
theta, omega, and alpha variables. The result is
put in the torque and voltage variables.

forward arm Runs the Forward Arm model of the
theta, omega, and voltage variables. The result is put
in the alpha variable. This command does not perform
Runge-Kutta integration.
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simulate Simulates the motion of an arm. Promptsthe

user as to whether it should start a new simulation,
set the theta and omega variables to .
zero before doing asimulation, and whether avoltage
schedulefileis used. Ifavoltage schedulefileis
used the user is prompted for its name. Ifaschedule
file is not used the voltage is assumed tol>e held

" constant at the value given by the voltage variable
and the user is prompted for the number of timesteps
over which the simulation is to occur.

plot.si mulation . Plots the simulation on the dover.
Generates a poof file (see MAN POOF) called |
#doverplotpoof and a pressfile called #poof.press.

print,simulation Prints the simulation on die user's
screen if nofileis currently open. Prompts the user
for start, finish, and step values.

write.graphic.file . Writes afile of simulation results
which is suitable for input to the graphics
simulation display package on the PERQ.

openputputJUe Opens afile for writing with
print.simulation. Prompts user for filename.

close.output,file Closes the open file used for
simulation output Further output is sent to the
terminal after thefileisclosed

database/ead Reads a database file for an arm which contains
'mass, center of mass, moment of inertia,
Denavit-Hartenburg parameters, and other related factors
which characterize an arm. Thiscommand is doneimplicitly
for the CMU DD Arm when the sim program is started up.

Further information about die internal workings of the system is in the program ddatmentatioiL
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General Equation of Arm Dynamics

H(8)8 + C(8.8)8 + G(8) + K (&) hy + K (8)T &y (1)

3]
i

B = C(8.0)8 +G(8) + KD fipy + K (8)T By (14)
H(8)8 = (z - B) (15)
Where: ,
H(8) 2 An NXN symmetric nonsingular moment of inertia matrix.
C(4, Q) & An NXN matrix specifying the centrifugal and coriolis effects.
G(4) 2 An arm vector specifying the effects due to gravity.
Kf (8) 2 A 3xN Jacobian matrix specifying the torques created at each
joint due to an external force exerted on the hand. ’
K, (8) 2 A 3XN Jacobian matrix specifying the torques created at each
joint due to an external moment exerted on the hand.
F;an d & A spatial vector specifing the force exerted on the hand externally.
E‘m;l d a A vector specifying the external moments around the X, Y, and Z axes. .
B 2 A bias vector ‘which can be computed by équations 1 through 10 with §

set equal to 0.
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Equations for Evaluating the Dynamic Motion of a M anipulator

8, = Al (3 + Z6, ) i =au.N-i a)
By = AL, (B + 2t:»;j'uq + & X ioéi+1 ) i=0L..N10Q)
Vel = By X Py + AT | i=0L.N-1(3)
%';+1 = ‘-}i+1 X By + By x (8, % Byyy) + AL t': i=0L.N1 ()
W =S X8 + Ax (Bx 85) + V] izU..N (5
,‘:“I = mA* | i=U.,N (6
N, = QW+ WX (&), i = 12..N (7)
?; = A‘E.H ?i‘+1 + ?1 . i=N..21 {8
B =AE,+ ﬁix(Agugﬂ)'*'(f’i"'gi‘)XF‘i'*‘ﬁi

i =N,..21 (9
n o= R-CATZ) + b8, _i=N1AL (10)

Wherg.,

B Ai ft The angular velocity and acceleraﬁon of thelink | coordinate sysem.
\7 'ﬁ ft Thelinear velocity and acceleration of the link /coordinate system. .

ft Thelinear acceleration of the center of mass of link L

ft The net force and moment exerted onlink L

£ The force and moment exerted on link i by link i - /.

£ Theinput torque forjoint /.

ft A number representing viscousdamping or friction.

ft Theangle, andits derivatives, throng whichjoint /isturned

ft Valorfromlink /- / origin to Ink i coordinate system origin.

ft Vector from link / coordinate system origin to center of mass of link i

ft Moment of inetiamatrix of link L

A Massoflink!

[N
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‘Given:

1 cosﬂH_1 -cosaiHsm:H_l smc:zH_lsmﬂl_'_1

Ai = sm(z?l+1 co.saiﬂcos i+l sma' lc050
0 sin e, cos @, ;

AE i1 = I, The 1dent1ty matrix

The N+ 1% coordinate system is the hand coordinate system whxch is
identical to the link N coordinate. system. ;
. ¥

A§+1 = (A§+1)T = (A§+l).1 ' ) ’
3
p;= r, sin(a)
r, cos(a;)
ZO =[oo1T
= [00 giT
= 9.80621 meters/sec? if the Z-axis of the link 0 coordinate frame is
pointing vertically up.
g = -9.80621 meters/sec? if the Z-axis of the link 0 coordmate frame
is pointing vertically down.
t_';Hl 2 The gxternal force on the hand.

ﬁN+1 2 The external moment on the hand.
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Equations for Calculation of H Matrix in Forward Arm Problem

M= M, +m - j=NL1.21 (16)
; .

P g -~ .

g = ﬁtml s} + Mj-{-lAj (j+1+ Py )] i=N1.21(17

J
— Aj*l j j+ 2
E = A E3+1A1+1 + M, DA™ ( j+1+ Pjer)- G g P

- (NPNE B, )-8 ole Y (j+1+ Bi)-§ )1

+Jj'+mj[|§j‘-e;’{ - (3] - /-8 j=N1.21(18)

Fi =M [A'Z) x (5 + 5))] j=N.21 (9
N =EAlZ j=N.21 Q)
fj‘ =F, j=N1.21 Q1)
ﬁj‘=Nj+(Ej"+§j)xf"} i=N.L21 (2)
H Ag'lza) , i=NL.1 (3)
i - Ai”fm i=fl.l @)
B o= A, + B x (A fi1) ' =il @
= H; = & - (A'Z) i=fL.21 i=N.21 ()

wtm

Mj ammmumivemofxahjm:gthiﬂaMNsmw
=

g a The center of mass of composite link j with &, = 3§,

Ej a mmam«mﬁunmmmdmmi;z:;

H,, a The N X N matrix relating angular
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