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Abstract The ability to mathematically model the movement of a robot manipulator is a
prerequisite to the understanding of the key factors that influence a manipulator's
performance. This paper presents a manipulator model which has been used to simulate
and control a real robot arm. A method of describing the arm by its rotational
characteristics, a set of equations called the Inverse Arm, and an algorithm called the
Forward Arm are presented. The Forward Arm simulates the movement of an arm and the
Inverse Arm provides a means of computing the correct voltages to apply to an arm to
achieve a desired movement
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Notation:

• The vector sign ( ) indicates a three dimensional spatial vector.

• An underbar beneath a symbol indicates an "arm vector" which has one component for each joint

in the arm. For example, j£ is equal to ( #1V02>—*^N ) w ^ e n *here a r e N joints in the arm.

• Subscripts indicate one of two things:

1. The coordinate frame in which the symbol is referenced and the frame to which the symbol
refers.

2. The joint number that is referred to by the symbol.

The type of symbol will determine whether the subscript is a link coordinate frame or a joint
number. For example, £. is the angular velocity of link / in the link /coordinate system and 6^ is
the position of joint L

• A hat on a symbol ( ) indicates a constant

• A star superscript ( * ) indicates a value related to the center of mass. Other values are related to
the link coordinate frame.

• A dot and a double dot over a variable ( and ) indicate first and second time derivatives

respectively.

• An A with a superscript and a subscript represents a transformation matrix from the superscripted
coordinate system to the subscripted coordinate system; so A^ « 2 is the angular velocity of the link
2 coordinate origin in link 1 coordinates.

• Boldfaced letters represent matrices or tensors, so J is a moment of inertia tensor.

Note that a reference to the velocity or acceleration of a link actually refers to the velocity or acceleration of
the link's coordinate system origin. *
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Introduction
A mathematical model of a physical system, such as a robot manipulator(arm), is one of the most useful

tools available for studying the system's behavior. The model, usually in the form of a computer program, can
be used to study the system in several ways. The development of an accurate model leads to a full
understanding of all of the key elements of the system. The model provides a means of testing the system
under conditions that would be dangerous or impossible for the real system. Larger systems that contain the
modeled system can be tested with the model instead of the real system.

As part of the Carnegie-Mellon University Direct-Drive Manipulator Project (CMU DD Arm Project) we
have developed a mathematical model of the manipulator. The mathematical equations are based on a
Newton-Euler analysis of free-body dynamics developed for robotic manipulators. [8] [11]

This paper describes the structure of the model that simulates the dynamic motions of our manipulator.
The model is divided into three parts.

• A detailed description of the structure of the arm The description of the structure is contained in a
Manipulator Database which consists of two parts: the kinematic and the dynamic. The kinematic
description specifies the relative positions between the links of the arm and gives the axes of
rotation for each of the joints. This description is easily determined from the mechanical drawings
of the arm. The dynamic description contains the moment of inertia, the center of mass, and the
mass for each of the links. A computer program was written to calculate these values from a
database file(the Parts Database) that contains a description of every piece of the arm.

• The Inverse Arm. This is a set of equations which, when evaluated, yield the motor voltages
required to produce certain accelerations. This is the inverse of a real arm which produces
accelerations given the voltages. The Inverse Arm part of the model is needed for the third part
which is the Forward Arm,

• The Forward Arm. This part of the model contains an algorithm which can compute values for the
acceleration of the joints in the aim when the motor voltages are specified. When the
accelerations are integrated over a period of time, the new positions and velocities can be
determined

Arm Description
The CMU DD Arm consists of seven links, numbered 0 to 6, going from the base (link 0) down to the hand

(link 6). There are six joints numbered 1 to 6. The odd numbered joints are rotational joints which rotate in
the same manner as the turning of a screw. The even numbered joints are pivotal joints, which move in a
manner similar to that of a person's elbow.

Each link has a coordinate frame associated with it The Denavit-Hartenburg convention [5J for assigning
coordinate frames to manipulator Hnks is used to specify the coordinate frames of the manipulator because it
simplifies the evaluation of the equations used in the Inverse Arm and Forward Arm parts of the model
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*• cnprifies that link /-/-/rotates around the Z axis of link 4 denoted 7,,
The Denavit-Hartenburg convention specifies that tat ^ ^ ^

when j o i n t s turns. L i n k l , t h e r e f o r e ^ ^ l ^ ^ ^ ^ Z * * * * * * * * *
X axis of each link's coordinate system P ^ ^ T ^ & t w 0 Z axes intersect, the direction of the X
the previous link. Ifthere is no common norm*,such a^ ^ ^^ f e p e r p e n d i c u l a r t o b o t h ^ X and Z
axis is arbitrary, so long as it is perpendicular to m e ^ ^

axes and completes a * ^ ^ l ^ w n i n f i g u r e 1 . W
Hartenburg convention for the CMU uu Aim

Kinematic Description
The kinematic description

database which contains three pieces

mechanical drawings.

organization of a manipulator. The description is a
denoted a, r. and a, for each joint For any joints «

^ p a r a m e t e r r s p e c i f i e s

Dynamic Description
Obtaining a dynamic description of the

dynamic description consists of the moment
each link.- To determine this data w e ^
information on each of the six hnks.
numbered in the mechanical drawings.

described as acylinder, semi-cylinder ^
our manipulator can be anproxima^d *
densities and locations ? — ^
determine.themoment

expertaeatly
R, and a

ffort ^ ^ kinematic description. The

c e f l t e r o fmass .vector, and the mass scalar ofc^ ^ ^ ^ ^ ^ ^ ^

separated into several mrts which are
^ s e v e r a l section, ^ section is

characteristics of each of the parts in
^ ;h ^ database contains dimensions,
^ J o n g s to. With this infonnation we can
of each « e * » . Once the information is calculated

formulas for transforming moments of

Kt The resistance
t e current I. each motof s a m ^ » to

produced by the motot.

prainaQd*
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Figure 1: Dcnavit-Hartcnburg coordinate assignments for the CMU DD Arm
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Inverse Arm
The Inverse Arm model is an application of a Newton-Euler analysis of free-body motion. The purpose of.

this model is to allow us to compute the motor voltages required to produce given accelerations when we
know the current state of the arm and all of its parameters. The model has six major steps.

1. Calculation of the velocities and accelerations of each of the links.

2. Finding the linear acceleration of each of the link's center of mass.

3. Computing the net force and moment exerted on each link.

4. Calculation of the local forces and moments on each link.

5. Finding the torque required for each motor.

6. Computing the motor voltage required to produce the computed torques.

The last step is done separately from the first five so that the Forward Arm program can use the first five steps
of the Inverse Arm to find torques.

In this paper a reference to the velocity or acceleration of a link actually refers to the velocity or acceleration.
of the coordinate system imbedded in the link.

Link Velocities and Accelerations
There arc two forms of link velocities and accelerations which are considered here, angular and linear. We

have four equations which can be solved iteratively from link 1 to link N to find the angular velocity, angular
acceleration, linear, velocity, and linear acceleration of each of the links in the arm. link 0 is assumed to have
no angular or linear velocity and no angular acceleration(Le. w0 = ^ = 5Q == [0 0 0]T). It does, however,
have a linear acceleration equal to a Z directed gravitational acceleration (Le. ^ = [0 0# gJT, gj= ± 9.80621
meters/second2, depending upon whether Z points up or down). Since we know ZlL, v ,̂ ZJ^ and \i we can use
the following four equations to solve for «r Vp w1, and vj. We can then apply the equations repeatedly to
solve for the velocities and accelerations of links 2,3* etc. up through link N»

The angular velocity of link i-t /, w |+1> is related to the angular velocity of link i, 5"., and the rate at which
the joint between them, #i+1% turns by

where ZQ = fp Q 1]T and N=6 in the CMU DD Ann. .The Etenavit-Hartenburg convention dictates that the
axis of rotation of joint i-f 1 is along the Z axis of die link i coordinate frame, so the rate of turning of joint
i> I is multiplied by Z^ and added to the angular velocity of link i to give the angular velocity of ink i+ L
TTic awdkmte frame is changed from Ink i to Ink i+1 by premultipling by Aj r

The angular acceleration of Ink i+ !% m, „ is given by:
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Since joint i+1 rotates around the Z axis of link U the acceleration of joint i+1 is multiplied by ZQ before
being changed to link i+1 coordinates. The cross product term comes from the geometry of the
situation.[10]3 A coordinate transformation from link / to link i+l coordinates is performed by a
premultiplication by Aj+ r

The linear velocity of link i+ 7, v \ + r is related to the linear velocity of link U % and the cross product of
SJ.+ 1 and tlie vector, p i + 1 , which points from the link i to the link i+1 coordinate system.

%+1 = « 1 + 1 x p . + 1 + A | + 1 ^ i = 0,l,..,N-l (3)

where p i + 1 is given by [ a.+1 r+jSin(a i+1) ri+1cos(ai+1) ]T in the Denavit-Hartenburg
convention. The linear velocity of the link / coordinate system is transformed to the link i+1 coordinate
system by a premultiplication by A | + r The cross product need not be transformed because it is already
expressed in link i+1 coordinates. Note that the linear velocity of each link is not used in later calculations.
This equation need not be evaluated, but is included for completeness.

The linear acceleration of link i+ /, ^ + 1 , is given by

"i+l x Pi+i> + A l + l % i = O,1,.»,N-L (4)? i+l x

The first term is, again, due to the geometry of the situation and th£ second is called the Centripetal
acceleration. This equation is a limited case of the Coriolis theorem. [10] Because there are no translational
joints in cur arm, the coriolis term of the Coriolis theorem is zero.

Linear Acceleration of the Centers of Mass
The calculation of the linear acceleration of the center of mass of each of the links is very similar to the

linear acceleration of the coordinate system calculation. The equation relating the linear acceleration of the
center of mass of a link to w., w., s T, and ̂  is

I7

v. = «. x s. + o». x ( oi. x s. ) + v. i = 1,2,_N (5)

where s. is a vector pointing to the center of mass of link / from its coordinate origin. Again, we see that
there are no coriolis accelerations in the arm. Note that these calculations can be performed in any order, but
must be performed after equations 1 through 4 have been evaluated for all of the links-

Net Forces and Moments
The net force is the aim of all of tie forces acting on a lint likewise, the net moment is the sum of all of

the moments* Since we know what the accelerations are we can calculate the net forces and net moments for
each Mnk using Newton's law and its analog in rotational dynamics, Newton's law in this context is

where m. is the mas of the fink.

Chapter 12 Movin
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Newton's law can be derived from the fact that the net force is equal to the rate of change of the
momentum. In a similar manner, we can derive the rotational analogy of Newton's law from the fact that the
net moment is equal to the rate of change of the rotational momentum or

- - 5
dt

where

L. is the rotational momentum and J* is the moment of inertia of link i around its center of mass. Since we
need to express the moment with respect to link coordinate origins we change the coordinates of the moment
The moment coordinate change formula is:

N. = J. «. + 5. x ( J. «. ) i = 1,2,...,N. (7)
i i i i v i i 7 v';

This is a form of Euler's equation of motion for a rigid body. [10]4

Local Forces and Moments
Each link is connected to two other links (except the hand and the^base) which exert forces on that link.

The sum of these two forcesfe die net force. For any link i7 the forcê  £, that link i-l exerts on it is called the
local force. The net force, F., on link i is the sum of die local force, f, and the negative of the local force on
the mxi link, f. ,, ihat is

F5 =?-Ai+1ii
or /

C = 4 + 1 Cf I + % i = N - A L (8)
Note that we must change the coordinate system of f.+1 before adding it to F. by premultiplying it by AJ+1

We can calculate the local forces by solving this equation iteratively starting at the hand, where fN is the
external force exerted on the hand* and working our way up the arm.

The net moment, N., of link, i has four components.

1. The local moment of the ink, nf which is the moment exerted by link 11 on link i

2. The negative of the local moment of the next link transformed to the link i coordinate system, that
. is

3. The moment caused by the local force acting on the ink at a distance away from the the origin.

Qmpter 11,2 Bulcrt Bomttcm of Motion for a Rfckl Body
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- n X A i + 1 T
p i x Ai W

This is the negative of the cross product of the position vector which points from the ir 1 to the i
coordinate origin and the local force on the next link transformed to the link /coordinate system.

4. The moment caused by the net force acting on the center of mass of the link-

This is the negative of the cross product of the vector pointing from the link H coordinate system
origin to the center of mass of link i and the net force on link /.

By rearranging these components to solve for the local moment we get

£ = A|+1 m + 1 + p t x ( A j + 1 £ + 1 ) + < p. + s*) X F. + N. (9)

i = N,...,2,L

where n ^ + 1 is the external moment exerted on the hand.

We can iteratively solve this equation from the hand back to the base to find the local moments on each
link.

Joint Torques
The local moment of link / is the moment that the link exerts on joint H . The component of the local

moment that is along the Z ^ axis is the torque exerted on joint irL The torque required for a joint to
compensate for the local moment and friction is given by

where b. is the friction coefficient of joint L The friction, bf, in each of the joints is related to the velocity of
the joint by some nonlinear function. Since the friction in the joints of the CMU DD arm is very small, we
neglect this term in the simulation. [2] [1]

Defining the InvA rm Function
We can define the function which evaluate equations 1 through 10 as

X = InvAnn ( & $ , £ )

where r = (T19T2,...,TNX I = ( 0 r # r w 0 N ) , I = ( i ^ ^ ^ l and£ = (01$$2f..J^l This function call is
an actual procedure in the software which tapiemeECs the algorithms discussed m this paper. The InvAnn
function will be usedlater in the Forward Arm. r . .. ; ! :,.
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DAC Output . m u s t r o d u c e , we have to calculate what motor voltages we must
Once we know the torques, i, tnai ^ ^ computer program, the motor voltage calculation is

apply in order to generate these: torqu . ^ ^^ ^^ ^ Forward Arm u s e s ^ 7 n v e r s e Arm f t

perfonned separately from the ^ v * n computed from the torques and velocities, can be used
-wniires the torques as output me raw
raTedtrwardcompensationcontrolsystem.12]

„ • ductance of the motors is negligible so that the equation relating voltage to the
We assume that the inductance oi u

armature resistance andmotor speed is

V. = Rjlj +

T.
We can rewrite these equations as

V. =

<-«

We use the third method given in the paper.

The Walker-Chin algorithm is a method for calculating $*e acceleration of each joint in a manlpiiata, H^

use a ihird order Ruege-Kutta integration algorithm to compute the velocities and positions of the joins figp;

the acceieiatioiis.. We have added a model of the motor dynamics so that motor voltages can be oomMii^-

torcpes. The Formwd Arm model, which consists of these three pa^^ -

and motif #nasics),, takes as input a voltage schedule wttMi is a list of input voltages to be appft

•mmm of the mm over t period of time, 'The wtpet of the model is the positions, velocities, and aoDdferiMMi!

that the joints of the arm undergo with the specified input . , | | |

We wll fet describe the motor 'dynamics equations a n i libm < i ^ » b e the Walker-Orin algorism fe^^j
TUs d a a ^ t a i wil be •ampteted w& a description of tibe lunge-Kutta algorithm as it a p | i f e : f c : i ^

M o t o r O y I M M I G S • ' • • .'•• : \ * ! l | | |

Tie wxmm hwe c i ^ K t e ^ t e , sadi as ba± HvIF, wliiJi can be modeled as a control system. « w ^ p

W A^^CMii arsi model (see %ure 2) ., • ;1§SS

Tl« w i ^ ^ s ^5pfei to the terminal of the motors have the back EMFs of the motors, given by K^ff' :V;1|
fsuteicKd finom liwm. The result is multiplied by Kt /R. to give the torque that is actually g»eniBl.f|| ;

, ^ i i r f to the joint of the arm. The inductance of the motor is negligible in most cases, so it is ixxiodtaMH^



Arm Dynamics Simulation 23 November 1982

this analysis. The torque, r., in terms of the applied voltage, V., and the joint velocity, 0, is given by

Ti = K t i ( V i - K t / i ) / R i i = 1,2,..,N. (12)

) *

Kt,

R,

Arm
Model

Figure 2: Control System Model of a Motor

The Waiker-Orin Simulation Method
The dynamics of any manipulator can be summed up in one general second-order differential equation. [6]

X = hand (13)

where H( j£) isanNxN symmetric nonsingular moment of Inertia matrix, C ( £ , £ ) i s a n N x N matrix
specifying the centrifugal and coriolis effects, G ( 0 ) is a vector of size N specifying the effects of gravity,
Kf (j£) and Kn (ft) are 3 x N Jacobian matrices specifying the torques created at each joint due to external
forces and moments exerted on the hand, fhand is a spatial vector specifying the external force exerted on the
hand, and 5 ^ ^ is a vector specifying the moments exerted on the hand about the X, Y, and Z axes.

The purpose of this part of die Forward Arm model is to compute die accelerations of each of the joints
given the torques applied to the joints and the currcnt state (positions and velocities) of the arm. There are
three parts to this computation; computing the bias vector, finding the H matrix, and solving for the joint
accelerations. The Walker-Grin paper [II] j^ves four methods of finding the accelerations. The first and third
steps, that is computing the bias vector and .solving for tie joint accelerations, are common to the first three
methods presented in the Walker-Qrin paper. The difference between the three methods is in their
algorithms for computing the H matrix. The third method given for computing the H matrix is used here for
speed.
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Computing the Bias Vector

" T = c(£.i)i + °<*> + K'u)TLd + "•(*)T^- . 04)

then equation 13 becomes

H ( £ ) £ = ( £ ' B). to^ue r e q u . r e d to m a . n t a . n & e c u r r e n t s t a t e w i t h o u t ^

B is called a bias vector whiA c o r o n a ^ ^ i n v A m ^ n c t i o n b y s c t t i n g i = Q ^ ^ ^ ^

acceleration. The bias vector can be compu ^ ^ ^ ^ ^ ^ ^ e q u a t i o n 15 ^ a ^ rf N

routine to calculate the torque-Jf*e k^w «h ^ ^ ^
simultaneous equations in N unknowns. ine £

Calculating the H matrix f ^ a m _ I t fe a faction entirely of the arm
The H matrix represents an effects ^ d

n t
f o ° r ^ o t h e r t e r m s . ^ simplest means of calculating the H

position since the velocity e f f e c t s a r e a c c o u ^ ^ o W e can use the InvArm function with £ = I =
matrix is to set one element of £ to 1 ana au_ _ ^ e ^ o n . The computed torque vector .is equal.to uw

column of the H matrix correspond^ to to* ̂ ^ ^ m e t h o d L w h i c h * simple, but computauonally

G ( £ ) = k = ° from e^11^011 " •
slow. ^

• u ThP «me assumption about the acceleration is made, but ihe ^
Method 3 uses a different approach The, « * ^ ^ ^ c a i s o only the diagonal and top half of

calculation of torques proceeds ^ ^ ^ ^ y ^ ^ ^ ^ ^ a ^ ^ t o l ^ ^ ^
theoffdiasoi^aldementsarecomputed.^seu.p ^ ^ & . . ^ ^ ^ fa m a d e u p rf^

c^becalcula.di using

(U)

identity matrix. The boundary conditions at link N are

S N
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. E N = JN

The composite mass, M, is the sum of the masses of links j through N. The composite center of mass, a , is
computed relative to the origin of link j in link j coordinates, a* is a weighted sum of the center of mass of
link y, s., and the center of mass of composite link j+ /, a* v divided by the total mass of the composite link
jy M.. s. is weighted by its mass, m. and c ^ x is weighted by M . + r The sum of the position vector, p . + r

which points from the link j origin to the j-hi origin and cx
+1 is transformed from j+l coordinates to j

coordinates to give cf x relative to they coordinate origin iny coordinates.

The composite moment of inertia, E., is the sum of the moment of inertia of link y, J., and the composite
moment of inertia of links j through N, E* , both moved to the center of mass of composite link/ E* ^ u s t
undergo a coordinate transformation before it is added to J..

To move a moment of inertia tensor we use a form of the parallel axis theorem which gives the moment of
inertia of an object around an arbitrary location when the moment of inertia around the center of mass is
known. [10J5

Io = r + M [ R 2 l - R R r ]

where I is the moment of inertia tensor around thecenter of mass, M is the mass of the object, R is the vector
pointing from an arbitrary location to the center of mass, and 1 is the identity matrix.

E*+1is first transformed toy coordinates by pre- and post-multiplication by AJ+1 and its inverse. Then it is
moved to cf. R is A-!!+1 ( c? 1 + p . l) - c*" for this move which points from the center of mass of composite
link/ to the center of mass of composite linky> /. J* is moved to the center of mass of composite link j by the
same means. R is s. - c* in this case which is a vector from the center of mass of composite link j to the
center of mass of linky.

The net-force on the "hand" is the force acting on the center of mass which is the "hand's" mass times its
linear acceleration. Since the angular acceleration about a joint axis is assumed to be 1, the linear acceleration
is the cross product of the angular acceleration vector (which is just the Z axis of link j-1 expressed in j
coordinates) and the vector from the axis to the center of mass of the link. The net force is given by

Fj = Mj [ A f 1 ^ x ( c* + p j ) ] j = N _ A 1 (19)

The net moment of the "hand" is the moment around the "hand's" center of mass which is the component of
the moment of inertia matrix, E. • which is in the direction of the joint axis, or

N. = ^ A [ 1 Z 0 • j = N _ 2 , L (20)

The force that link j -1 exerts on the hand* called the local force, is equal to the net force since the only force
exerted on the "hand" is the local force. The moment exerted on the "hand" by link / / , called the local
moment; is the net moment plus the moment produced by a force acting a£ a distance from the rotational axis.
The force is the net force and die distance is the sum of die center of ma® vector of link j , cf, and the position
vector, p .,which points from the link/ -/ to the Ink/coordinate axes.
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_
Fi

(21)

j r - N + c i r + ^ x F , (22)

The torquerequiredmmejomt^
^almomentmthedirectionofthelinkr/Zaxis.givcnby

MS x j = N,...,l. (23)

H j j = ^ - ( A f Z , )
This gives us the diagonal of the H matrix.

u ^mnnted bv calculating the torques needed in joints 1 through j j / to
The off diagonal elements £ % £ £ % £ * J m / .0,-7 are the same as ft. local force. ff -

maintain dus stauc a m ^ f ^ ^ r d t o a t e syaem. The local moment of link / is me sum of the local

atadtocep .

« . elelen, of t h e U
same direction as the Z axes of the previous links.

j (25)

a« mponent of me tocal _ which are i
= A i + 1 n + P ( ! i+l

l 'U ^ me component of me tocal _ which are in

uiate the acceleratio vector for the given torque, L and computed

used to solve the simultaneous equations, p]

I = ForAnn(I»|/£)

fiio^C^Eiiidx-Mcdefii^^in^ticii. : /d§

Riiitgp-tCwtta Intesration • ,^lll I
lie. abHtf to catabie 'iie ̂ ^teMion iar a given set of a>n<fiti(»s .allows us to compute future: p ^ | ^ | : ' I

a^vcfadlksioflliej^^ A third order Runge-Kutta pm0^'[ |
maaffa xmm^ without perilling too mxh ^te&d. , • ;. §B
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where V is the arm vector of applied motor voltages (see section ) then the first order differential equations
that we are trying to solve are

dt
and

dt

To use the third order Runge-Kutta method, we calculate two sets of three coefficients which represent the
current values and estimated future values of £ and £. The new values computed for 0_ and £ are the m old
values plus a time increment multiplied by a weighted sum of the current and estimated future values of £
and £. [3] The coefficients to be calculated for each new set of values for S. and # are

j. = F(£il)
. h

£3 = i

he rs3, V)

where h is a time step. The determination of the correct size for the time step h is a difficult procedure. There
are algorithms for adjusting the stepsize according to die change in £ and £, but these are not currendy
implemented. A fixed stepsize of 1 millisecond which is approximately 1/15* of the smallest mechanical time
constant in die arm is currently being used.

The iterative equations for calculating die weighted sum and obtaining new values for Q_ and £ are:

t+1 = t +
6

t+1 = t + -
6

Programs Available
We have implemented the model of arm dynamks which has been described. The software resides on the

CMU-750R VAX in the /usnfl/mns/sim directory. Currently, the software is in the form of an executable
testbed called M m M /Hie rim program is CI based with foil help functions. The sim program can do the
Inverse Arm on single or multiple sets of data. It am do the Forward Arm on single sets of data or do a
simulation sequence.
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The sim system is run by typing /usr/nms/sim/sim. The user is then at the CI user interface level There
are several variables which the user can set to different values. They are

gravity The value of the gravitational acceleration.
Defaults to -9.80621 meters/second2

DACTimePeriod The time between changes in the reference input to the

control system of the arm

The following variables are vectors which have one component for each joint in the arm being modeled.

theta The joint angle of each joint in the arm
starting from the base.

omega The joint angle velocities. This is the
first time derivative of theta.

alpha * The joint accelerations. This is the output
of the Forward Arm model.

torque ' The torque each motor is producing. This

is calculated from the voltage.

voltage The voltage applied or that should be applied to

each joint to satisfy the other conditions

DACOut The Digital to Analog Converter output voltage which is connected to
the reference input of the control system of the arm

Any of these variable can be set by saying: variable = valuel value2 ... valueN, where N is the number of
joints in the arm. The torque and voltage variables are tied together so that setting one recalculates the other.

The commands allow the user to apply the Inverse Arm or Forward Arm models to different sets of data.
Possible commands are

inverse.arm Runs the Inverse Arm model on the

theta, omega, and alpha variables. The result is

put in the torque and voltage variables.

forwMd.aon Runs the Forvmrd Arm model of the

theta, omega, and voltage variables. The result is put

in the alpha variable. This command does not perform

Runge-Kutta integration.
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simulate

plot.simulation

print.simulation

write.graphic.file

openputputJUe

close.output.file

database/ead

Simulates the motion of an arm. Prompts the
user as to whether it should start a new simulation,
set the theta and omega variables to
zero before doing a simulation, and whether a voltage
schedule file is used. If a voltage schedule file is
used the user is prompted for its name. If a schedule
file is not used the voltage is assumed to1>e held
constant at the value given by the voltage variable
and the user is prompted for the number of timesteps
over which the simulation is to occur.

Plots the simulation on the dover.

Generates a poof file (see MAN POOF) called
#doverplotpoof and a press file called #poof.press.

Prints the simulation on die user's
screen if no file is currently open. Prompts the user
for start, finish, and step values.

Writes a file of simulation results
which is suitable for input to the graphics
simulation display package on the PERQ.

Opens a file for writing with
print.simulation. Prompts user for filename.

Closes the open file used for

simulation output Further output is sent to the
terminal after the file is closed

Reads a database file for an arm which contains
'mass, center of mass, moment of inertia,
Denavit-Hartenburg parameters, and other related factors
which characterize an arm. This command is done implicitly
for the CMU DD Arm when the sim program is started up.

Further information about die internal workings of the system is in the program ddatmentatioiL



Arm Dynamics Simulation 16 23 November 1982

General Equation of Arm Dynamics \

T —- H ( 0 ) 0 " H C / ( w , w ) v 4 " C J ( v ) -\" K * (-Of f* , - f" K . f ^ i n f 1 3 ^— —.^— x —. • | \ — . / nand n ^ •*• ̂  hand **

B = C ( £ , i ) £ + G(£) + Kf(£)Tfhand + Kn(£)TnL,.d (14)

" = ( T - B ) (15)

Where:

H ( £ ) = An NxN symmetric nonsingular moment of inertia matrix.

C (&, £ ) = An NxN matrix specifying the centrifugal and coriolis effects.

G (j£) £ An arm vector specifying the effects due to gravity.

Kf (&) = A 3xN Jacobian matrix specifying the torques created at each
joint due to an external force exerted on the hand.

K (i,) £ A 3xN Jacobian matrix specifying the torques created at each

joint due to an external moment exerted on the hand.

f . £ A spatial vector specifing the force exerted on the hand externally.

i£ ^ A vector specifying the external moments around the X, Y, and Z axes. -

B £ A bias vector which can be computed by equations 1 through 10 with £
set equal to 0.
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Equations for Evaluating the Dynamic Motion of a Manipulator

l i = au.N-i a)

= O,1,...,N~1 (3)

£ x s*vT = «> x SJ + ^ x ( «j x s>) + Vj i = U....N (5)

F. = m ^ * i = U...,N (6)

N = Jw + w x ( J « ) i = 12 N (7)

i = N,...,2,l (9)

i = N-1,^,1 (10)

Where:

ft The angular velocity and acceleration of the link i coordinate system.

ft The linear velocity and acceleration of the link /coordinate system.

ft The linear acceleration of the center of mass of link L

ft The net force and moment exerted on link L

£ The force and moment exerted on link i by link i - /.

£ The input torque for joint /.

ft A number representing viscous damping or friction.

ft The angle, and its derivatives, throng which joint /is turned

ft Valor from link /- / origin to Ink i coordinate system origin.

ft Vector from link / coordinate system origin to center of mass of link i

ft Moment of inertia matrix of link L

A Mass of link!

»;

V

vi

3.

£ *

Pi

1.
1
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Given:
cos 0.
sin0 :

0

i+l sina i + 1sintf i + 1

- s i n a i + 1 c o s 0 i + 1

s m a i + 1 cos a.i+l

= I, The identity matrix
The N 4- 1th coordinate system is the hand coordinate system which is
identical to the link N coordinate system.

Pi = r.sinta.)

ZQ = [OOlf

ô = [oosIT

g = 9.80621 meters/sec2 if the Z-axis of the link 0 coordinate frame is
pointing vertically up.

g = - 9.80621 mei&rs/sec2 if the Z-axis of the link 0 coordinate frame
is pointing vertically down*

fN+1 & The external force on the hand.

The external moment on the hand.



Ann Dynamics Simulation 19 23 November 1982

Equations for Calculation of H Matrix in Forward Arm Problem
M j = m j

M j

= N j

where

c.

E,

A The cumuktive mass of Inks j through N with MN =

& The center of mass of composite link j with c^,*= s ^

£ The moment of inertia of composite link j around tt& ecnier sf snsss with

(16)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

& The N X Nmatrix ::.'.:,::.
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