
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Numberless, Tensed Language
for

Action Oriented Tasks

David Alan Bourne
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

13 October 1982

Abstract

Action oriented languages are number intensive. Graphic's languages are centered around where to draw
something rather than what to draw. The "where" involves a tedious numeric description of vertices.
Robotic's languages are also dominated by a "where" description, but now the "where'* specifies a robot
motion. The result is an array of numbers that obscures the meaning of the program to its reader.

Tills paper shows how a number of linguistic devices can be used to eradicate the plethora of numbers from
action orienccd descriptions. Functions or verbs can be tensed (e.g., past tense) to modify their meaning
without duplicating the root ftinction. The result is an English-like description of a control structure.
Arguments or nouns can be modified in name, like the use of a GENSYM ftinction in Lisp which generates a
unique variable name from a character string, and in number (e.g, singular vs. plural). The result is an
Fnglish-likc description of bound and quantified variables. The remaining quantitative description of action
asks can be relegated to a database whose management system is specialized for number management.

The resulting language is a formal variant of a natural language with a Lisp-like syntax (i.e., lists with
functions in the first position). The programs approach the readability of a natural language without the cost
of ambiguity that is inherent in natural descriptions. Finally, the programs can be easily pretty printed in
English so that they can be read by non-programmers.

Copyright @ 1982 David Alan Boeroc

This research was sponsored by the Robotics Institute, Carncgic-Mellon University, and, in part, by the
Wcstinghousc Corporation.

2 ?

? ' I o?

Table of Contents
1. Introduction 1

1.1. New Applications Breed New Languages • 2
1.2. Language Review 2

2. Syntax: Combining Atomic Terms3

3. Words: The Atomic Terms 6
3.1. Functions/Verbs 7
3.2. Connectives and Logical Completeness 8
3.3. Arguments/Nouns 8
3.4. Adjectives and Adverbs 10
3.5. Rounding Out The Language with An Adverb 11
3.6. The Language Tightrope 11

4. Where the Numbers Belong 11
5. The Runtime System and The Separation of Power 13
6. Pretty Printing 15
7. Some Notes On Implementation * 16
8. Summary . 16
9. Future Interests 17
10. Acknowledgment 17

ihe Sanguage description is informal here, however, the formal details arc available ctewhcrc [Bourne S2bJ.

List of Figures
Figure 1-1: ML Joint Level Control [Ardayfio 82, page 62]
Figure 1-2: RAIL program for cleaning torch [Franklin 82, page 404]
Figure 1-3: AUTOPASS program for support bracket assembly [Lieberman 77, page 329]
Figure 1-4: Initial Assembly Description [Lozano-Percz 79, page 255]
Figure 1-5: .A partial rule set to reach high objects [Forgy 79, pp. 11-12]
Figure 4-1: Two relational tables that describe details of the furnace.
Figure 4-2: The resulting table after database operations.
Figure 5-1: Three layers of control internal to the supervisor: top to bottom

2
3
4
5
5

12
12
13'

1. Introduction
Educated people and computing machinery both communicate with languages and yet there remains a gap

between people and machines. The natural languages used by people seem not to be suited for
communicating with machines and the existing computer languages seem not to be suited for communicating
with people. The verbosity and ambiguity in English sentences can obscure the simple and yet precise ideas
that are required for man machine communication. On the other hand, computer languages tend toward
obscurity. Each language comes with a set of programming tricks that are foreign to a non-programmer. This
project is an attempt to formalize a set of language tricks that are familiar to any English speaker while
avoiding die weaknesses inherent to natural language. A byproduct of choosing English tricks is the ability to
easily paraphrase programs into English text.

Programming is inherently difficult for many reasons. People arc not used to specifying a solution in every
detail In personal communication this is usually not necessary since the listener often has the information to
fill in the gaps. If he is missing information, it can be systematically obtained from a sequence questions and
answers. Similarly, programming would be greatly simplified if the machine was already an expert in the area
of discourse. That is, die system would already have all of the details of how to execute its basic functions.
The remaining task left to the programmer is to describe what operations need to be performed to accomplish
his goals.

Most present day computer languages are designed for sequential data manipulations and are not amenable
to coordinating simultaneous operations. Action tasks can involve manipulating several objects
simultaneously to the satisfaction of a programmers goal; these tasks are characteristic in manufacturing.
Raw parts are formed and assembled into final products by machine manipulations that proceed in parallel.
For example, one application is the conrrol and coordination of nine machine tools, two of which are
industrial robots. Each of these machine tools is operated by its own controller and they are linked together
Into a star configuration with a supervisor at the center. A program implicitly describes what machine
functions can be performed and when they can be applied.

Control functions must be decoupled to such a degree that they can be scheduled for execution in parallel
iviih other operations. Unfortunately, the machine tools cannot be relied upon to operate in harmony, so
asynchronous activities have to be accepted as the standard mode of operation. The description of these tasks
:ould easily become mired in details, specifying such things as communication line numbers, line speeds,
)rotoco! types, hexadecimal addresses and every other imaginable and obscure computerism.

Numbers are abundant in most programs and yet they have little or no meaning when they are taken out of
context In fact, programs would be much easier to understand if there were no explicit numbers present in
he text Unfortunately, they are a necessary evil. Numbers describe exactly where something is or exactly
IOW much something should be done; these details must be present at some level. Therefore, for the sake of
he programmer and the completeness of the task description, the numbers remain, but they are condemned
3 a separate system which knows how to manage this database of godless creatures. The numbers are boxed
sp into relational cables and can be indirectly referenced from within a program.

To satisfy these constraints, the resulting language and operating system isolate the description of the task
mm the description of the equipment The task description is numberless and uses word constructions which
re already familiar to non-programmers. ITic statements in a program arc decoupled into independent rules
lat can be scheduled for execution over a distributed architecture.

1.1. New Applications Breed New Languages
Each new area of computation brings with it a wave of new programming languages and robotics is no

different. AL [Mujtaba 79,82], VAL [Unimatc 80], RAFF [Popplestone 78], AML [Grossman 82a,82b] and
RAIL [Automatix 81] are but a few. For the most part, each language is a spin-off of another well known
computer language: ALGOL, BASIC, APT, PL/1 and PASCAL respectively. The robotic's languages are
new by virtue of including special task oriented features. These features facilitate solutions to robotic
problems and remain couched in a stylistic framework that is already familiar to an experienced programmer.
Some features include built-in subroutines (e.g., homogeneous transformations, 'Draw,' and 'Grasp') that are
specialized for a particular problem area (see Paul's work in robotics [Paul 77,81] and die proposal for a
graphic's standard [SIGGRAPH79]). Other features include new data structures for organizing information
like the aggregates (i.e. nested sets of arbitrary types) found in AML. These languages are designed for an
already expert programmer to quickly assimilate.

The effect a new language provides is an organizational view that simplifies a class of task descriptions. Of
course, this class of descriptions determines how interesting any particular language is to a consumer. Like
other products, the language designer often wants to generalize his system of notation until it can be sold to a
large market. This amounts to extending the language's applicability to many different kinds of
computational problems; thus there are often premature claims to universality. As long as there are new
kinds of problems, there will be new ways to express their solutions.

* 1.2. Language Review
Every good language reflects a familiar structure. Low-level languages .reflect low-level structure. For

example, assembly language is a representation of hardware that performs computational instructions.
Similarly, low-level robot programs represent the functions that the machine can perform at its lowest level
such as joint movements. The ML program segment in Figure 1-1 is an example of a typical operator,
operand program. In this case, an operator is the name for a device function and the operands are used as its
input

100 Sensor 7100 500
110 Sensor 14-200300
120Mo?e 0200000-4000650
130 Motor 34000
140Dmotor 2-100

Figure 1-1: ML Joint Level Control [Ardayfio 82, page 62}

A programmer who is familiar with a robot and its devices can precisely control them with t language like
ML Another example of a low-level language is APT which is also an operator operand language for
controlliig machine tools, It has become deeply entrenched in industry partly became it allows for the direct
control of Hie tow-level machinery. Apparently, this control is emotionally difficult to, relinquish in the fee
of a computer program* With the advent of new technologies in Robotics* new opportunities are becoming
available for younger generations. They are not yet committed to antiquated systems because they have not
yet committed their egos to their machines. This is the time to introduce high-level languages into

A high-level language directly represents the algorithm at its level. Therefore, programs that manipulate
algebraic expressions have, statements which perform algebraic operations. A robot's work is done with its
end effector and so sensibly a high-level language allows a programmer to direct its control. The RAIL
program in Figure 1-2 is an example of how a PASCAL-like programming language can describe the cleaning
of a welding torch. By embedding the robot primitives in a familiar computer language, programmers will
find it comfortable to program these new machines.

Programming robots in a high-level language is essentially programming by side effect For example, the
statement 'Brush = On1 in Figure 1-2 is a variable assignment that also turns on a brush as its side effect

Function Gean—Torch
Begin

; Brush out the torch nozzle, then spray it*

Approach ZO From Cleaner— Brush
Brush=On
Move Gcaner—Brush
Depart 2.0
Brush=Off

•

Move Cleaner—Spray
Spray=Ou
Wait 2 Sec
Spray=Off
Depart 2.0

End

Figure 1-2: RAIL program for cleaning torch [Franklin 82, page 404]

Tnis language and others like it (e.g., VAL, AML, AL) are very effective if the people using them are
familiar with the language in which they are embedded and want to control the process at this operational
leveL

AUTOPASS is a very high-level language for describing assembly operations [Liebcrman 77], The English*
ike description in Figure 1-3 is an AUTOPASS program that describes the assembly of a support bracket
From a distance this project looks like it addresses many of the questions involved in this paper. However on
closer inspection the AUTOPASS system offers many features not discussed in this paper (e,g«, geometrical
modeling, grasp calculations and path planning) and fke wncu This paper addresses the following issues
which are restrictions in AUTOPASS,

1. The English-like sentences in AUTOPASS are made up of a fixed set of verbs and qualifiers (in
bold) which operate on their subjects (in italics). Unfortunately, different applications require
different action words to effectively describe a task.

ZThe AUTOPASS statements are translated into motion commands one at a time. As the

statements arc being compiled, they arc used to update the state of a geometrical database which
rlluminatcs sonic semantic errors. Unfortunately, variations in the environment are not detected
and used to update ihe sute of the database.

3. Parallel computations ^hich are prevalent in action oriented tasks with multiple machines are
difficult to describe. This problem is enhanced by the way the statements are compiled one at a
time.

4. Ijse level of English-like description is still very tow. The descriptions degrade into quantitative
measurements and die structure of the statements is limited to declarations.

5. ALTOPASS programs are embedded in a pseudo PL/1 language so that the PL/1 control
structures can be fully utilized The same philosophy of English-like description is not employed
for befit control and statement definition.

L Operate nuifeeder With car*wttab-ma SX.fixture.nest
1 Place bracket In fixture Such That brackeLbottom

Contacts carrei* tolrnuUop
XB4 brackeiholels Aligned With fixiure^nest

1 Place inierkxk On bracket Such That
MerlocLhofe Is Mi&ncd Will hrackeihole
SxA mteriockhnle Contacts brockeliop

4 Drift l i carretmiibsiud Into carretiob-mi
At murimkhole
Sack That Toiqite Is tq L20 Iii-Lte Using air-dritar
Attaching bmcka Sni interlock

5. Hime Imcket mnr!m k cat-reiOwtihstudcar-ret-teitnui

LTOPA5S program for support bracket assembly [Licbennan 77W page 329]

SS 'I a ptohMj stili *Jsc most impressive system for

MMBAkfrriiUVtaaiMii

4 «Hi fee « ^ ^ ^ I9 ̂ ^ »

hizh d^ Z*T>$1S% Td^h of the system !o plan actions L
>?'thc !ca!u^ f^nd :n MTOPASS, In partscnlaj, nur^p

stis Htoi i^£PMton -AhiCh assembles J
:*n rwarscs, Flic Hiifui assembly plan T*

, - _ , , ,Xi if ±c r^pie form, \ \t.rat^g;- s then

(Insert Objl: [Piston-Pin]
Obj2: [Piston Pin-Hole]

Such-That: (Partly (Fits-In Objl Obj2))
(Insert Objl: [Piston-Pin]

Obj2: [RodSinall-End-Hole])
(Push-Into Objl: [Piston-Pin]

Obj2: (And [Piston Pin-Hole]
[Piston-Rod Small-End]))

Figure 1-4: Initial Assembly Description [Lozano-Percz 79, page 255]

[Forgy 79]. A production system is an interpreter and a set of ailes each with left and right hand sides. The
left side of every rule is evaluated as TRUE or FALSE and every rule that is satisfied is gathered together into
a conflict seL One rule is finally chosen for execution by heuristically resolving the conflict

A few explanations are required before these rules can be understood. The left hand sides are essentially
patterns which are being matched to a database. The symbol * = * marks a variable which becomes bound to
an object during the matching process. If '=Objcct* is bound to 'Banana' when the first rule is-satisfied then
the ' = Object' in '(High = Object)* is also bound to 'Banana.' Finally, the ' = ' that stands alone in the last rule
can be bound to anything,

((Want (Monkey Holds = Object)) - • (Want (Ladder Near = Place)))
(High =Object)(=ObjcctNear =Place)

((Want (Monkey Holds =Object)) -* (Want (Monkey Qn Ladder)))
(High =Object) (=Object Near = Place)
(Ladder Near =Place)

((Want (Monkey Holds =Object)) -* (Want (EmptyHanded Monkey)))
(High =Objcct)(=ObjcctNear =Place)
(Ladder Near = Place) (Monkey On Ladder)

((Want (Monkey Holds =Objcct)) — (<Write> 'The Monkey Grabs The M =Object)
(High =ObJect) (=Object Near = Place) (Monkey Holds = Object) (<Delete>
(Ladder Near = Place) (Monkey On Ladder) (Want (Monkey Holds = Object))))
(Not (Holds Monkey =)>

Figure 1-5: A partial rule set to reach high objects [Forgy 79, pp. 11-12]

A production system can be used to schedule computations on a star network simply by passing along the
satisfied rales to the correct processors. Unfortunately, there are few dangerous pitfalls. For example, if two
rules are executed which move two robots then the robots may collide. This problem results from a hidden
dependence in the rales which must be either eliminated or one of the rules must be discarded during conflict
resolution [Bourne 82],

One of the main reasons for-developing a very high-level language is to make the system accessible to those
who have never programmed. On appearance alone, both OPS and LAMA would scare off the uninitiated.

The language in this paper is a very high-level language that is specialized for action oriented tasks. These
tasks are executed on a star computer network with machine tools (e.g., robot arms, vision systems, machining
centers...) at the points of the star. The people programming are familiar with their equipment but not with
any particular programming methodology. Therefore, this language uses many features of English rather than
features which are typical to computer programming languages.

2. Syntax: Combining Atomic Terms1

The syntax is very similar to LISP and several production systems [Waterman 78]. Complex terms are
composed of functions followed by their arguments where each of the arguments in turn can be another
complex term.

(Function Arguments) (1)

Rules are constructed from these terms by pairing boolean functions with command functions,

(Boolean Arguments) -• (Command Arguments) , • (2)

The resulting rule's right hand side is executed whenever the left hand side is TRUE. A program is a set of
rales which can be executed asynchronous^. However, to limit the size of the rule set, the right hand side can
also be another set of rules (Le», predicate - action pairs),

(Boolean Arguments) -* {Rule-Set}- " * (3)

Nested rules reduce the amount of computation required to find the set of satisfied ones, since the embedded
rules are essentially invisible. Once an outer rule is satisfied, the inner rules become accessible and their left
hand sides must then and only then be continually checked. In addition, rule nesting is a programming
device which can be used to logically structure the rule set, thus making the program easier to understand

{Name Rule-Set} (4)

Finally, a program is any named rale set This resolves many problems in formatting large programs that are
deeply nested because any Earned rule set can be invoked on the right hand side of any rule, thus making the
program easier to read.

3. Words: The Atomic Terms
The readability of a program is directly related to the atomic terms or words in a language and die order in

which they occur. The more closely aliped these words are with already familiar words the less there is to
learn, thus making it easier to assimilate. The more concise the notation the less that has to be read*

Hie fangmgc dc$cnption a mfenaai hem, k m e w , Hie formal details are available elsewhere [Bourne 82b}.

making it easier to absorb in a glance, l l ic fewer ambiguities in expression the less context has to be analyzed,
thus making it easier to understand These arc the design goals and the reasons for choosing English words.

3.1. Functions/Verbs
English has a very rich underlying structure. For example, functions are deeply embedded in sentences

and usually manifest themselves as cither modifiers (e.g., adjectives and adverbs) or verbs. A unary function
is hidden in a simple sentence usually in the form of an adjective.

The first robot on the assembly line is broken. (5)

(Broken First-Robot) (6)

Whereas, there are many occurrences of more complicated functions with many arguments-

The red-robot presented to the blue-robot a turbine-blade. (7)

(Presented Red-robot Blue-robot Turbine-blade) (8)

Functional representations of English have been studied extensively by logicians [Quine59] and linguists
[Montague74]. However, the structure of English is not the point of this paper other than to appreciate what
would be commonly familiar to non-programmers. Rather, words and a few linguistic devices are borrowed
from English and are used unambiguously to describe the action oriented tasks.

Typical tasks have at least three components. For example, suppose you are hungry and undertake the
process of satisfying your hunger. You must first of all purchase the ingredients that are needed to prepare
the meal and locate yourself in an appropriate place, such as a kitchen. These arc at least some of the task's
pre-conditions, because the conditions must be TRUE before the process can begin. In addition, you must
have cooked and eaten the meal in order to have resolved the hunger. The meal having been cooked and
eaten are some of the task's post-conditions* because those conditions are TRUE after the task is complete.
And finally, the whole process should be enjoyable. This is one of the task's while-conditions, because you
continue to eat only as long as you are enjoying the meal. Restated, there is a test to see whether the meal is
possible and if it is possible, the meal is consumed as long as it remains enjoyable. These condition classes are
pervasive throughout task oriented computations and therefore need to be represented in a concise and
elegant way. * &

The conditions are paramount to functions and the condition class can be conveniently indicated by special
function markers. Again, English-like devices can be easily employed as function markers.

The past tense of a verb indicates that some action has already taken place and is used to mark the function
as a boolean (i.e., it returns TRUE or FALSE). In other words,a function in the past tense is a natural way to
express a pre-condition.

(Grasped Turbine-blade) (9)

The present tense of a verb naturally reads as an imperative and is used to command the system to make the
verb's past tense TRUE. The result is a convenient way of representing commands which double as post-
conditions.

(Grasp Turbine-blade) (10)

The active tense of a verb describes an action which is in process and is also used to mark a boolean function.
Active tense descriptions accurately describe the while-conditions of a task.

(Grasping Turbine-blade) (11)

The active tense is distinguished from the past tense by the duration of its truth value. Once something has
been "grasped" it continues to have been "grasped" within the context that is defined by the nesting of-mles.
On the other hand, a robot is only "grasping1* something during the actual operation. This distinction is
valuable for describing a program's control structure and can be used much as the IF and WHILE statements
are used in a typical structured programming language.

Regular verbs are decomposed into their appropriate parts, root and ending, by a very simple procedure
[Winograd 71] which is augmented with a dictionary to manage the common irregular verbs. In 1971 this was
considered an application of Artificial Intelligence because Winograd was developing these routines within
the context of natural language understanding. However, here the routines are just ui>ed to provide
supplemental information to the lexical analysis phase of compiling within the scope of a formal
programming language.

3.2. Connectives and Logical Completeness
A programming language should encompass more than simple concatenations of function calk. Boolean

connectives (Le., 'And*, 'Of and 'Not') are essential for representing complex conditions, such as: 'A robot
should move to the furnace, only if it is ready and there are no! any obstructions.* Furthermore, notions of
variables and quantifiers are necessary to provide the complete mechanism of reference. As an example, there
must be a mechanism for referencing the subject in a previous clause. This logical completeness is available in
the first order predicate calculus though many lay-people find it overly technocratic. In addition, there is no
widely accepted means of representing anything other than declarative-sentences in die first order predicate
calculus which dismisses imperative and interrogative sentences.

3*3. Arguments /Nouns
A previous section discussed linguistic devices for modifying ftinctions, so that the resulting clauses are easy

to read- This section shows how a ftinction*s arguments can be modified in number, so chat the expvessbe
power of quantification is captured without the loss of readability. The examples illustrate how an Englii
sentence is translated to the predicate calculus and then how that sentence Is translated to our new language*
The purpose of these translations is to unambiguously relate the meanings of these sentences to an already
familiar language.

The first example shows an English sentence (12) with a hidden universal quantifier (13). 'Hie intended
meaning of this sentence is that 'all of die billets have been moved to die furnace,' and this interpretation is
triggered by the use of the plural noun 'billets.' The first order predicate calculus expresses a plural noun
somewhat differently. Rather, than modifying the arguments themselves the predicate calculus represents a
plural noun (e.g., 'billets' in (12)) as a quantifier, variable and predicate (13). This clarifies many issues
including the scope of the quantifier, which in turn simplifies problems concerning reference (e.g., "What
objcct(s) are referred to by the word 'if in (13)?")- The conditional in (13) is used in place of a conjunction so
that the resulting sentence is true even if there were no billets to be moved. The sentence undergoes its final
translation to 14 and uses the plural noun form to explicitly signal the quantifier's presence. (14).

The billets have been moved to the furnace. (12)

Vx (Billet (x) -* Moved (x,Fumaee)) (13)

(Moved Billets Furnace) * ' (14)

The second example shows an English sentence (15) with a hidden existential quantifier (16). The singular
form of 'billet' is a general term that in this sentence indicates that at least one billet has been moved to the
furnace. It doesn't matter which billet has been moved or if many of them have been moved. Again in (17)
the quantifier has been redisguised as a singular noun. So far, the notation in (14) and (17) is relatively simple
compared to rjie predicate calculus without any apparent loss of representational power.

4

A billet has been moved to the furnace. (15)

3x (Billet (x) A Moved (x,Fumace)) (16)

(Moved Billet Furnace) (17)

The beauty of the predicate calculus is only apparent in the third example (18) where the reference of a
pronoun must be resolved to understand the sentence. This example is easily understood by a person because
only the billets are likely to moved in the context of this sentence. Unfortunately, knowledge of this sort is
not always so useful.2 The predicate calculus cleanly resolves this problem with the quantifier since it binds
the variable Y and the scope of the quantifier is unambiguously determined by the parentheses (19). That is,
there is an Y that is referred to by It," and that same Y is a billet, has been found and has been moved to the
furnace. It is tempting at this point to throw up your hands and say that the predicate calculus solves all of the
problems and that no improvements can be made. However, the fact remains that sentences in the predicate
calculus are difficult for the layman to understand for the very reasons that make it unambiguous: the
additional unfamiliar symbols and their structure are confounding to the uninitiated. Again we can use a
familiar linguistic trick and provide names for the subjects. What was a general term 'billet1 in (17) now
becomes a singular term 'BillctF (20) which denote a specific objccL 'BillctT refers to the same billet within .
the same, or lower levels of parenthetical structure; this is the scope of its binding. Numbers are used as
suffixes because they are easy to generate and easy to compare. The hope1 is that this naming convention

HThc sentence The businessman bought a company with his friend because he was rich/ is quite ambiguous. Who was rich?

-JttL u

10

doesn't lake u» a technical appearance subjecting it to ihc same disapproval encountered by the predicate
calculus. Ho*c\er, there are uihcr alternated For example, unique descriptions can replace the names (21)
vi inch males the functional analysis more complicated and increases the level of parenthesis. Both of these
device* are included for the sake of completeness.

A billet las Keen found in the rack and It has been motcd to the furnace (18)

3 \ (Billet f\) A Found (\.Rack) A Mo\cd (x,Fiftnace)) (19)

I Vnd (Found Billed Hack) (Motcd Billet! Funuice)) (20)

i \ui (Fouod (Closest Billet) Rack) (Moted (Closest Billet) Furaacc)) (21)

Rural nouns are filling in for universal quantifiers and their linguistic machinery* And now, numerals have
been id&d to singular terms to mark that variables with the same numeral refer to the same object
Lntortunatefy * the ihcughi of using these un> ide^ together is somewhat repugnant There is nothing natural
abcut savtrg cither *B;1!ctsV or lltlktls/ In fact this leads us to realize that the plurals do not Indicate a
gatwa! return vi unsung ^iruiiutli'iiwn beuitiic Acre is no notion of a variable, The analysis in < 12-14) Is
•>t:11 Ci»rr«i byi it fa& Alien it a e\t£ft!cd to a compound clause* because ihc variables are not really
represent:*! at i l The sentence C2) is fM represented equivalent!*' by 03) and 04). Equation (23) conwtly
mmm thai Hie wne billet has been turned to the fornacc mi has been heated While equation (24) asserts
thai all of the Mien have been moved mi kzmi without reprd to their individual identity. Hie named
nouns operate as m existential qwmnfm mi m variables, Steps must be a lcn to assure that these

can tie used to fill ai for the yrherwl fomt

Tfee iilltfi kaie ken moved to the furnace ani the} *ere beatdL ' (22)

V\ Ili'Skii IAI -• Me*i0i f vl^rsicti A Heated fill ' (23)

sd i%U%ii BlBcts Furnace)ill^lrl Bulets)) _ <24)

3,4, Ad}tetivts and Adt t rbs
^ujc^tucs 4r:̂ ^H,^ - Q S i l ^ be u\Cu 4S fynu^^s, htme%et m prxt^e tHey a^ used spanngly. 4 B

ic^cti<c : J I ^ is ^ ir|>^;nt i w%g ii^n .,nd i r ^ m - ^ a resuh s ̂ ngk noun, San;lars> an ^d«crb takes
^ .:i. 3iTguT?cr:T. i '̂ ng.'c ^r^ and 1 ^L**nr; ^ -iny*c ^cr̂ H;: ??7cc; uf cxcci:t:ng c:lhcr in i^ective er an
.^^:ft ,s £.• ̂ '̂ :x:.f- ^e ^2?t rurct:^n -̂ a?f'*s? :^ n ^ ^ iu«t̂ Ŝv* !-;*» fuTsciivin̂ rr,i>ci:nc*:t:cn is ;:nly active

i5kt|S*2fe| (25)

(26)

11

3.5. Rounding Out The Language with An Adverb
One last problem remains: completing the power of the language with respect to the first order predicate

calculus. It is well known that universal and existential quantifiers can be freely inter-translated. For cxample-
(27) and (28) are equivalent sentences. It has already been determined that the universal quantifier is only
partially represented and so it becomes necessary to fully utilize the power of the existential mechanisms. The
'Not/ introduced earlier, only operates outside of the quantifier's scope. Therefore, another form of 'Not'
must be introduced to modify a function's meaning within the quantifier's scope. A 'Not' used as an adverb
fills this obligation and completes die translation between (29) and (30), and completes the language with
respect to the first order predicate calculus.

Vx (Billet(x) -* Moved(x,Furnace)) (27)

-i 3x (Billct(x) A ^Moved(x,Furnace)) (28)

(Moved Billets Furnace) (29)

(Not ((Not Moved) Billetl Furnace)) ' (30)

3.6. The Language Tightrope
The appeal for using linguistic tricks in a formal language is very seductive and even begins to take on airs

of being trivial and obvious. It is neither. The problem of completing the language illustrates how the
objective is a tightrope of peril. One slip to the .left and the language slips into mountains of ambiguity that is
inherent to natural language, and one slip to the right and the language loses its expressive power. However,
the advantages of crossing the tightrope seem to outweigh the perils.

4. Where the Numbers Belong
Numbers have names just like people have names. These names are called numerals when they look like

3/ But there is nothing special about these particular names other than their conventional use and their one
to one correspondence with their distant cousins, the numbers. Other names for the numbers might be
Furnace-temperature, Age and Four-bytes. These names don't have to be used in context but it would be
confusing if Four-bytes referred to the number 3/ In addition to referring to numbers, these names can refer
to arbitrary sets of values, numeric or otherwise. For example, a set of values to represent the furnace
temperature is shown in Figure 4-1. Fortunately, we can talk about 'Furnace Temperature' without speaking
directly ofX2200a300,2258,3J77506V

The values that are needed to describe the low level details of action oriented tasks are stored in relational
tables. These tables arc accessed and manipulated with a relational algebra and the result of these
manipulations is always another cable. The rows and columns of the tables all have symbolic names that
correspond with the words in a rule set When a rule is executed it triggers a set of relational operations that
make the appropriate changes in die database. The relational operators make up a majority of the database
management system. Suppose the following clause was executed.

(Adjust Furnace Temperature Idle)

12

Furnace

Temperature

Min

2200

Max

2300

Current

2258

Line#

3

Address

177506

Temperature

Steel
Titanium
Idle

Min

2200
2350
1000

Max

2300
2400
1100

Figure 4-1: Two relational tables that describe details of the furnace.

This clause would update the minimum and maximum furnace temperature by selecting the 'Idle1 row in
the table Temperature" and overwriting the appropriate slots in the table 'Furnace*; they arc determined by
the row (Temperature') and column ('Min' and 'Max') names. The result of these operations is shown in
Figure 4-2.

Furnace

Temperature

Min

1000

Max

1100

Current

2258

Line?

3

Address

177506

Figure 4-2: The resulting table after database operations.

Database updates trigger consistency checks that verify the correctness of related information. Simply, the
minimum and maximum furnace temperatures are directly related with the current temperature by a
procedure's definition. If the current temperature remains within the bounds then nothing happens, but if it
Mes outside of the bounds a message is constructed which is sent to the furnace driver. The furnace driver in
turn packages the message in the appropriate protocol and sends it off to the furnace controller. The furnace
controller receives the request and adjusts the level of clectiiic current to the heating elements which directly
changes the fiirnacc temperature. Currently, the data relations are built into the system but research is
actively underway to generate them automatically [Bourne 80}.

Names appear in the text ofa program; they talk about numbers and other objects held in a database. This
separaoon of descriptive machinery is a powerful linguistic device which is used both by people in natnrri
contexts (Lc "Do what 1 mean and not what I say*") and logicians in formal contexts (i.e., logic vi model
theory). Traditionally computer languages mix syntactic and semantic mechanisms and this lack of separation
fosters confusion <e.g*» error detection in compiling theory).

13

5. The Runtime System and The Separation of Power
The runtime system is stratified into three layers and is shown in Figure 5-1. The top layer interprets the

rules and is responsible for planning what actions should be undertaken to accomplish the system's goals. The
core of the system is a dynamic database that reflects the state of the task and its constituent machinery. The
integrity of the database is maintained by its management system. In effect, the database management system
is directly responsible for maintaining a consistent and up to date model of the task. Often, the state of the
task degrades independently from any actions within the scope of control. For example, consider the task of
taking a shower and maintaining the'temperature of the water. Without touching the hot and cold water
knobs, the temperature can change drastically due to the thoughtless behavior of an occupant in the adjacent
bathroom. The maintenance of the water temperature is the direct responsibility of the database management
system which prepares a request to turn down the hot water." Finally, the bottom layer is responsible for
communicating with the external task functions. That is, it sends the commands to the water valve controller
in the appropriate format

Language
interpreter

Database
Management

Device
Driver

Device
Driver

internal Functions

External Functions

Device
Controller m m »

Device.
Controller

Figure 5-1: Three layers of control internal to the supervisor: top to bottom

The following two rules show how this could be accomplished, Rulc-1 can be executed repeatedly after the

14

shower paraphernalia is in place. If the water is not the right temperature then the database management
system builds a request that is passed along to the hot water valve driver. The driver packages the message
into the appropriate protocol and sends it out to the controller with direct access to the valve actuator. Once
die water is warm. Rule-2 can be executed. Again, the advantage of a non-procedural language is illustrated
by the fact that Rule-1 may be executed whenever the temperature of the water is unsatisfactory.

(And (Moved Soap ToShower) -» {(Adjust Water Warm)} Rule-1
(Moved Shampod ToShower))

(Adjusted Water Warm) -» {(Get InShowcr)} Rule-2

A simple graphic's example shows how a model of an airplane can be animated under the control of a
joystick. Of course, the datapoints that define the airplane are kept in the database. This example also shows
how an adverb can be used to define the new plane position 'Relatively* to its current position.

(Moved Joystick) -* {(Erase Plane) Rule-3
((Relatively Movc)-Plane Joystick)
(Draw Plane)}

Rule-4 and Rule-5 demonstrates how a clamp can be loaded when its precise position is not known in
advance. The move to ToClamp" is initiated in Rule-4. Now the active tense of'Move' is true in Rule-5 and
so the rules internal to it are accessible. When a strain gauge mounted on the robot wrist has encountered a
significant load, the internal rule becomes true and its consequent stops the robot from moving farther. At
this point the entire context of Rule-5 is left and Rule-6 is ripe for execution.

(Gripped Billetl) -» (Move Robot Todamp) Rule-4

(Moving Robot Todamp) -* {(Strained Gauge) -* (Stop Robot)} Rule-5

(Moved Robot ToQamp) " -• (Release Billet) Rule-6

Rule sets can be invoked by using one of the few built-in keywords. 'Perform' is a function which activates
a rule set such as 'Preventive Maintenance' in Rule-7. Other forms of the verb are also legal. 'Performed* and
'Performing' and are useful for controlling recursive rule sets and for testing whether a rule set is active. *

(Not (Performing Manufacturing)) -* (Perform Preventive Maintenance) Rule-7

{Preventive Maintenance

(Fouled Robot Filter) -* (Schedule Maintenance Robot Filter) Rule-8

(Drifted Robot Positions) -* (Calibrate Robot Senos)} Rule-9

15

6. Pretty Printing
After a set of rules has been written, it is straightforward to pretty print the programs as English text. By

removing the parentheses and adding the appropriate syntactic, sugar to the clauses, very readable text can be
generated. It can then be further improved by applying a few simple syntactic transformations which
compress redundant text into single compound clauses. For example the two shower rules (Rule-1 and
Rulc-2) can be pretty printed as the following pair of sentences. 'When' is used to flag die consequent part of
the rules. Helper verbs have been added to the verbs and prepositions and articles have been added to the
nouns. Programs are not written in this form because it would illusively appear as if any English sentence
could be interpreted correctly; they are not natural sentences but rather sentences in a very simple formal
grammar.

When the soap and the shampoo have been moved to the shower

adjust the water to be warm.

When the water has been adjusted to be warm

get in the shower.

Pretty printing simple rules is a matter of printing isolated sentences. This becomes much more difficult
when there are active terms, nested rules and named objects. All of these constructions require intersentential
relationships. For example, a nested rule like Rule-5 could easily become prohibitively complex. Therefore,
the phrase 'consider the following case(s)* stands for the right hand side of the rule and the nested rules can be
translated in the standard way.

While the robot is moving to the clamp

consider the following case.

When the gauge has been strained

stop the robot

Named rule sets are convenient logical segments that can be used to break up text into sections. For
example, the rules Rule-8 and Rule-9 make up a program that can be paraphrased as a text segment with its
own title.

16

When the cell is not performing manufacturing tasks

it is time to perform preventive maintenance checks.

PREVENTIVE MAINTENANCE -

Preventive maintenance checks are defined as the following conditional operations.

When the robot's filter has fouled

schedule maintenance for changing it.

When the robot positions have drifted

calibrate the robot servos*

Natural language understanding (e.g., English understanding) may not progress to the point where it is
practical to communicate with machines for many years. However, there is no reason why our programs can't
be read in English today. The whole programming industry has developed into a write only society. When
was the last time you took home a program just to read? it may turn out that a new generation of
programmers that read may be more thoughtful about what programs they write.

7. Some Notes On Implementation
There are two pressing goals in this implementation: readability- and execution speed. Task oriented

descriptions are specialized for human consumption and are translated into a form that is appropriate for fast
execution speeds.

Task descriptions are developed on a VAX 11/780 and compiled into machine readable symbolic
expressions which are then downloaded to a DEC PDP 11/23. The compiler and runtime system are written
in OMSI PASCAL and many low level Lisp-like primitives make up their basic programming tools. The
result are PASCAL programs that read more like LISP than PASCAL.

The Database is also developed on a VAX and it is also compiled into a machine readable memory
structure. The English words which are defined by the database are input to the rule's compiler so that they
can be replaced by machine pointers before they arc passed along to the 11/23.

Finally, the task descriptions are being used to control a complex manufacturing cell in a Westinghouse
factory [Wright 82}. The cell manufactures turbine blade pre-fonns from cylindrical bar stock using nine
machine tools; a supervisory computer and ten machine controllers.

8. Summary
Ac application program has two basic parts. A set of relational tables that describe the physical system aad

a set of rales that update its state. This separation of power simplifies both the management of information
that is needed to node! a physical system and the description of its task. The numbers and other details ttat
can male a program so difficult to read arc not present in the final-task description. This simplifcattai

17

together with a language that utilizes familiar linguistic devices results in a program which is readable to the
uninitiated.

It is usually time consuming to gather together this database of facts but its structure is very simple and
automated tools have been built to further aid in the database's construction. Once the database has been
built, writing the necessary rules is fairly easy. Many of the details can be left out of the description and the
description that is necessary parallels the information that would have to be given to an human apprentice.
'Under these conditions, perform those actions/ Finally, a novice programmer can look at an existing set of
rules and understand the primitive words since they are based on English. He can then mimic the syntactic
forms and write new rules to extend the functionality of his application program. Not only can a novice
programmer update the rule set, but now his boss can read his pretty printed work without having to learn
any tiling about programming. This unlocks the door to the intelligence of a whole group of bright people
who have never been trained as programmers and yet can make valuable contributions to the logic of
programs. For the first time programs are readable.

9. Future Interests
This project has a wealth of future paths which are being actively pursued. The programs in this language

are extremely easy to construct because of its simple syntax. However, a valid criticism is that the available
functions and arguments most be known to the programmer at the time of writing. Therefore, this burden
should be removed from die programmer by giving him access to the database while his program is being
written. For example* the programmer should be able to make the following request during a session with the
editor.

Shcm me all of the functions and arguments related to robots*

This request would result in a 1st of robot functions (eg., Move, Grip and Emergency Stop) and their
parameters.

The day to day operation of a manu&ctaring cell is a problem not usually considered as part of
CAD/CAM. However, many of the techniques employed in production should be found useful in product
'iewtopncntlCADI and process development (CAM)* An expert system should be able to generate a family
of designs dut saisftr a set of user design constraints. The resulting shapes and knowledge of machining
ittbaclogiis gboukt produce a -series of part programs capable of producing the final product This process
caa be viewed M a serin of language translations: product constraints to part geometries to machine tool

to' Ac leal production of pans. Concise languages that help describe each phase of development
make the final trustation from design constraints to production a tractable problem. This research and

others ike It are just the beginning.

10. Acknowledgment
I would like to ihaek my student Paul Fusscll for helping me sound out many of these ideas and Peter

Angcline for programming support. In addition, I would like to thank Paul Wright and the members of
Wcstinghousc Turbine Components Plant for providing the moral and monetary support needed to complete
a project of this magnitude.

18

References

[Ardayfio 82] Ardayfio, D. D. and Pottinger, H. J.
On The Computer Control of Robotic Manipulators.
In G. D. Gupta (editor), Computer In Engineering 1982, pages 59-64. ASME, August, 1982.

[Automatix 81] Automatix.
R AIL Reference Manual
Automatix Inc., Burlington MA 01803, (617)-273-4340,198L

[Bourne 80] Bourne, DA.
On Automatically Generating Programs for Real Time Computer Vision.
Proceedings of the 5th International Conference on Pat tern Recognition 1:759-764,

December, 1980.

[Bourne 82a] Bourne, .DA. and Fussell, RS.
Designing Languages for Programming Manufacturing Cells.
In Proceedings of Electro/82. IEEE, Boston, MA, May, 1982.

[Bourne 82b] Bourne, D. A. and Mashburn, H.
Cell Programming: A User's Guide.
Technical Report, Robotic's Institute, Carnegie Mellon University, 1982.

[Forgy79] Forgy,CL.
On The Efficient Implementation of Production Systems.
PhD thesis, Carnegie-Mellon University, February, 1979.

[Franklin 82] Franklin, J. W. and Vanderbrug, G. J.
Programming Vision and Robotics Systems with RAIL,
In Robots VI pages 392-406. Robotics International of SME, March, 1982.

[Grossman 82a] Grossman, D. D.
Robotics Software At IBM.
In G. D. Gupta (editor), Computer In Engineering 1982, pages 73-75. ASME, August, 1981

[Grossman 82b] Grossman, D. D.
Decade of Automation Research at IBM.
In Robots VI, pages 535-543. Robotics International of SME, xMarch, 1982.

[Lieberman 77] Liebcrman, L. I. and Wesley, ML A,
AUTOPASS: An Automatic Programming System for Computer Controlled Mechanical

Assembly.
IBM Journal of Research and Development 21(4}:321-333, July, 1977.

[Lozano-Perez79]
LazaaoHPonz, T.
A Language for Automatic Mechanical Assembly.
In Patrick H. Winston, Richard, H* Brown (editor). Artificial Intelligence An MIT

Perspective pages 245-271. The MIT Press, Cambridge, MA, 1979.

19

[Montague 74] Montague, R.
Formal Philosophy: The Selected Papers of Richard Montague.
Yale University Press, New Haven, 1974.

[Mujtaba 79] Mujtaba, S. and Goldman, R.
AL User's Manual
Technical Report Memo AIM-323, Stanford University, January, 1979.

[Mujtaba 82] Mujtaba, M. S., Goldman, R. and Binford, T.
The AL Robot Programming Language.
In G. D. Gupta (editor), Computer In Engineering 1982, pages 77-86. ASME, August, 1982.

[Paul 77] . Paul R. P.
"WAVE: A Model-Based Language for Manipulator Control,11.
The Industrial Robot 4(l);i(H7, March, 1977.

[Paul 81] Paul, RJP.
Robot Manipulators: Mathematics, Programming and Control
The MIT Press, Cambridge MA, 1981.

[Popplestone 78] Popplestone, R X Ambler, A.R and Bellos, L
RAPT: A Language for Describing Assemblies.
The Industrial Robot 13:131-137, September, 1978.

lQuine59J Quint, W.V.O.
Methods of Logic
Holt, Rlnchait and Winston, New York, 1959.

[SIGGRAPH 791SIGGRAPH Standard's Committee.
A Quarterly Report of SIGGRAPH-ACM,
SIGGRAPH 13(3):759-764, August, 1979.

{Uaimtftettt] Ultimate.
Uxfs Guide to VAL: A Robot Pmgrummingand Control System.
Unimaiion Robotics, Danbury, CT 06810 (203)-744-1800,1980.

(Waterman 781 Waterman, DA. and Haycs-Roifa, F.
An 'Overview of Pattern-Directed Inference Systems.
In Waterman, DA. and Hayes-Roth, F. (editor^ Pattern-Directed Inference Systems, pages

3~2Z Academk Prcss, New York, 1978.

fWin^md 71] Winograd, T.
An A»L Approach to English Morphemic Analysis*
Memo 24U Artificial Intelligence Laboratory, M.LTV, February, 197L

[Wnght 821 WnghU P.K., Bonmc, DA^ Colyer, JP. t Schatz, G.C and Isasi, 1A.E
A Flexible Manufacturing Cell for Swaging.
In Manufacturing Cells and Their Subsystems, 14th CIRP International Seminar on

Manufacturing Systems, Trondhcim, Norway, June, 1982.

Table of Contents

. DP run-time environment

1.1 Operating system 2
1.2 Installing the system on a Perq 2

1.2.1 Ethernet 2
1.2.2 Floppy Disk 3

1.3 Starting the program 3

2. DP: basic concepts 4

2.1 The basic elements of a drawing 4
2.2 Status line and Prompt Area 5
2.3 Mouse buttons 5
2.4 Selecting and deleting 7
2.5 Editing strings 7
2.6 Windows 7

2.6.1 Windows and file-names 9
2.7 Layers 9
2.8 Check-pointing 10
2.9 Fonts 11

3. DP command set 12

3.1 Basic items . 12
3.2 Parameters and Fonts 13
3.3 Select and Delete 13
3.4 Copying and moving 14
3.5 Symbol-related commands 14
3.6 File I/O 14
3.7 Display commands 15
3.8 Mouse commands 16
3.9 Unusual Commands 16
3.10 Miscellaneous commands 17

4. Advanced topics 18

4.1 The coordinate'system 18
4.2 The size of a drawing 18
4.3 Editing items 18
4.4 Symbols and Instances 19

4.4.1 Creating a symbol 20
4.4.2 Symbol names 20

4.5 Memory allocation 21
4.6 Alternate input for commands 21

I. Command set table 22

List of Figures

Figure 2-1: DP: primitive graphic elements 4
Figure 2-2: Moving one item at a time: Yellow button 5
Figure 2-3: Moving the items within a rectangle: White button 6
Figure 2-4: Moving the selected items: Green button 6
Figure 2-5: Changing the shape of a window 8
Figure 4-1: Editing a spline by moving a Control Point 19

Introduction

DP is a highly interactive circuit drawing program that runs on a PERQ computer. It allows a designer to
create the description of an electronic circuit in a graphical form that corresponds to the way circuits are
normally represented in logic diagrams.

DP is a purely graphic editor: it does not try to "understand11 what the user is drawing. All the semantic
interpretation is performed by post-processors that are able to extract electrical information out of the
drawings. This makes the program itself reasonably simple, giving the designer greater freedom. It also
introduces a clear separation between the tool used to create a drawing and the "meaning" of the drawing
itself, with the result of a much wider range of possible applications.
Although primarily intended as a tool for drawing electronic circuits, DP may be used as a general illustrating
program, able to draw arbitrarily complex pictures.

Chapter 1 explains how to build the program on a new machine and how to start it

Chapters 2 and 3 contain the essential information; after reading those chapters one should be able to use DP
for simple tasks.

Chapter 4 contains details that may be skipped at a first reading.

The Appendix contains a brief summary of the command set

Version 5.6 is documented in the present manual.

1. DP run-tirne environment

The following is a description of things one should know 'before trying to use the program; a short
explanation about how to build the program on a Perq and how to start it is also given. A general
understanding of the philosophy and operation of the Perq computer is assumed throughout this chapter.
The reader should be able to perform the basic operations required to turn a Perq on and to reach the right
directory.

Since the interface with the. Perq operating system is still rapidly evolving, some of the information in this
chapter is likely to become obsolete. Please consult the author for more detailed information.

1.1 Operating system

DP version 5.6 runs under POS, the Three Rivers Computer operating system for the Perq, version D.65.
Previous versions of the operating system are no longer supported

The program may run with both 256 Kbytes- and 1 Mbyte-memory. The smaller memory is not
recommended, however, since many of the fast operations must be replaced by slower functions.

1.2 Installing the system on a Perq

Two standard procedures are available for installing the program on a Perq, depending on the physical
medium used to transfer the files.

1.2.1 ehernet

The standard procedure uses the Ethernet transfer program CMUFTP. The complete set of files needed to
build the system is stored in the CMU-X, the Spice Vax/750. Two different command files allow to retrieve
either the whole circuit-design system or DP alone. The two different procedures are listed below1:

• retrieve the whole circuit-design system (DP, WLIST, DWL, SL):

cmuftp retr /usr/dzg/ALL all
Sail

• retrieve the graphics editor (DP) alone;

cmuftp retr /tisr/dzg/DP dp
§dp

In order to use one of these procedures the Perq must of course have an Ethernet connection. The previous
commands start Cmuftp and retrieve a command file that in turn retrieves all the modules in the system*

m POS commands: type then when you have the POS pnmpt

1.2.2 Floppy Disk

The alternative distribution medium is a Floppy disk, written in the standard FLOPPY format and available
upon request. The disk contains the relocatable files, the Help and Command files for DP, some command
files and the definition of the fonts used by the program.

The first file to be retrieved is called getdp.cmd; this command file will in turn retrieve all the others and
generate the executable files. Typing

floppy get getdp.cmd
Qgetdp

will copy all the files from the floppy to the system disk and will generate the .RUN files.

1.3 Starting the program

Once the program is present on the disk of a Perq it can be started by typing

dp

This starts DP with default values for all the variables and switches. Such values are currently:

• Current Function = line;
• Mouse Grid = 3;
• Display Grid = 6;
• Gravity Field = 5;
• Display Scale = 1;
• Current Thickness = 1;
• Current Font = 1 (Gacha7);
• Current Layer = 'STANDARD';
• Color = 1 (Blade);
• Pin display OFF.

Typing a filename after "dp" on the command line starts reading commands from an alternate input file; see
section 4.6 for further details.

To exit the program type q; answer y to the request of confirmation. Normal exit mechanisms, such as
CTRL-C, are disabled by DP to prevent accidental termination.

2. DP: basic concepts

DP is an electronic-circuit drawing tool. It allows the user to interact with a circuit schematic, creating it from
scratch or editing an existing one. The output generated by DP may be used as input to post-processors that
perform error checking and generate a set of lists, such as a wire list, a stuffing list, a wrap list for wire-
wrapping a board, etc..

DP runs on the Three Rivers PERQ computer and is entirely written in Pascal; it uses the high-quality
graphic display and the pointing device (mouse) of the Perq. The mouse is the main input device; the
keyboard is used for function selection and for typing strings,

DP is a general-purpose graphic editor that can be used to produce drawings other than electronic circuits. It
therefore supports advanced graphics operations, such as instance transformations and generic curves, as well
as the simpler graphics primitives.

2.1 The basic elements of a drawing

DP drawings are composed of a few primitive elements: lines, circles and arcs, splines, text strings, and pins.
All the primitive element0 may be combined to form larger elements, called symbols. Figure 2-1 shows
examples of primitive elements in DP.

3
m.

I TimesRonianl2
C9

Lines Circles and Arcs Splines Strings

Figure 2-1: DP: primitive graphic elements

The following basic elements are mod in DP:

L lints2 with have any slope; the cidpoints of a line ha¥e gravity.

2. Strings, composed of ASCII characters; all strings are truncated above a maximum length*

3. Grcles, and arcs of a circle*

m reality

4. Splines, generic curves whose shape is controlled by a set of control points.

5. Pins, that is connection points; when used in a symbol pins have gravity.

6. Symbols: sets of basic items and possibly other symbols that may be used to represent electronic
components. Symbols may be nested, thus allowing hierarchical drawings.

2.2 Status line and Prompt Area

The bottom part of the screen shows the status of the editor. The following items are displayed:

• command character of the function being executed;
• name of the function being executed;
• mouse buttons. Most functions perform different actions for different mouse buttons; the image

on the right side of the status line describes the action of every button. The top square stands for
the top (or Yellow) button, and so on.

Many commands that require the user to type text use the Prompt Area, located at the lower right-hand
corner of the screen. When the program is waiting for keyboard input the area is highlighted; all the
prompting commands may be aborted by typing a Ctrl-c (lower-case "c") while the area is highlighted. While
the area is highlighted the string may be edited with the standard string edit mechanism; see section 2.5 for
more details.

2.3 Mouse buttons

DP usually assigns different meanings to different mouse buttons. The current version of DP uses only three
buttons of the mouse; in the case of 4-button mice, the Blue button performs the same function as the Yellow
button.

Figure 2-2: Moving one item at a time: Yellow button

All the commands that use mouse buttons to form a set of items use the following conventions:

1. The jmUm button creates a set with the single element pointed to by the cursor, the Move

White

Figure 2-3: Moving the items within a rectangle: White button

command, for instance, moves a single item at a time when this button is used. If several
candidates exist the smallest object is always chosen; this prevents large objects from "shading"
smaller ones.

2. The white button creates a set with all the items entirely enclosed in a Rectangle3.
3. The green button creates a set with all the selected items; for instance using the green button while

in Move mode will move all the selected items.

Green

\

Figure 2-4: Moving the selected items: Greea button

Figures 2-2, 2-3, 2-4 show the effort of a Move command on the same drawing when the three different
buttons are used (the small arrow pointing NW represents the cursor).

Other functions use the mourn buttons differently; this is displayed in the Status line at the bottom of the
screen, where each snail black square represents a button.

tfte rectangle is dynamitaUy displayed while the button is field lowi

2.4 Selecting and deleting

Selection is used to form a set of items that should be handled together. Unlike the temporary sets created by
the mouse buttons, the Selected set does not change unless explicitly specified by the user. Selected items are
displayed with a small black square near the center of the visible portion of the object. In the case of strings,
the whole area occupied by the string is inverted, so that selected strings are displayed as white text on a black
background.

To provide some protection against mistakes during delete commands, deleted items are not immediately
erased; they are kept in a special list that is neither displayed nor affected by normal operations. It is possible
to undo the deletion, bringing back the objects.

Because of memory limitations, however, objects cannot be kept around forever. Every time a Delete
command is issued all the items that had been PREVIOUSLY deleted are physically erased and their storage is
released. In other words, only objects that have been marked as deleted since the last delete command may
be undeleted.

2.5 Editing strings

A consistent string-editing mechanism is used throughout DP. This applies both to text strings and to aU die
commands that prompt the user for a string; in particular it can be used for strings in the Prompt Area. Any
time a string is being edited, a special cursor4 is displayed- Characters are always inserted and deleted at the
position following the cursor.

The following characters have a special meaning during string editing:

• BS: delete the character immediately preceding the cursor.
• OOPS: delete all the characters preceding the cursor.
• RETURN: terminate the string editing, Le. close the string and erase the cursor.

The Mouse may be used to position the cursor within the string and for other functions:

• The white button positions the cursor before the character pointed to.
• The yellow button positions the cursor before the character pointed to, if possible; the character

following the cursor is then deleted. Holding the button down deletes several characters.
• The green button terminates the string editing, just as the RETURN key.

2.6 Windows

DP provides a powerful window facility that allows dealing with several drawings without improper
Interactions between their contents.

i thin iiifi betweoa two characters

Each window has a separate address space. The following is a simple way to visualize that feature: a sheet of
paper is dedicated to each window, and only the sheet corresponding to the current window may be written
on or changed. Operations on a window may affect only the items that have been drawn on that sheet of
paper; for example a Select All operation selects all the objects associated with the window. Only some
special functions (see section 3.4) may cause an object to "jump1* onto another sheet of paper; these functions
erase the object from the source window and write it into the destination window.

U193-4

S138 6
B 074 s

4
A 3

2

EIABLE

74S04

U86-5

74S04

6-4

K74S04

Figure 2-5: Changing the shape of a window

Windows may be manipulated through mouse movements only; the interaction takes place when a button is
depressed over the border of the window. Different areas in the border have different functions:

• square at the upper-right corner: change the shape of the window. The corner follows the mouse
until the button is released.

• square at the tower-left comer: create a new window, using one half of the area used by die
current window. The new window has a different address space and is initially empty.

• square at the upper-left corner delete the window. The window must be empty; the last window
cannot be deleted.

• gray border: move the window in the screen,, without changing Its shape.

the window the cuftor is m

Figure 2-5 shows how to change the shape of a window by clicking with the mouse over die upper-right
corner of the window.

Many commands are disabled when the cursor is not inside a window, since they would not be applicable. It is
impossible, for instance, to perform a Select All operation outside a window. If this is the case, the Status
Line will not show the new command and a 'beep' will be heard.

2.6.1 Windows and file-names

A region of the border of windows, near the lower left-hand corner; is used to display the file name associated
to the window. This is the same mechanism used by Emacs6: if no file name is associated with a window when
a file is input, the name of the file is displayed and is associated with the window itself. That file name is used
as the default name when an output command for the window is issued (both Output and Hardcopy).

If a window has been modified since the last output command, a "*" is appended to the file name. The Quit
command checks this flag for all the existing windows and issues a warning if some window is marked as
modified. The algorithm used to decide whether a window has been modified is rather conservative
(sometimes the window is flagged even if its contents have not actually been changed). The following rules
determine the status of the window:

• the Output command clears the Modified flag;
• input commands do not alter the status of the flag;
• all the non-immediate functions set Modified to true;
• the immediate functions do not alter the flag, with the exceptions of Delete and Undelete.

2.7 Layers

DP supports a powerful layering mechanism: a drawing may be thought of as being composed of multiple
layers7 , independent of each other. This is intended to provide the same effect as multiple transparencies
containing parts of a drawing: single transparencies may be added or removed, modifying the drawing itself.

The layer mechanism is especially useful for complex drawings that contain logically separated parts. An
example is a Printed Circuit Board: only one layer at a time is usually being worked upon, but it is essential
that all the layers be visible. Setting all the layers but one to read-only constitutes a protection against
accidental changes to items on different layers.

The layer mechanism is also used by the circuit post-processors (see [4]) to quickly discard useless
information. For instance, the post-processors totally ignore items in the "Comment" layer.

In the case of symbol instances, layers act as a filter* If an instance is on an invisible layer, for example, it will

A screen-orientcd, multiple-windows tat editor

Hie original idea of multiple kycrs was suggested by Joseph Newcomer

10

be totally invisible even if It contains items that belong 10 visible layers. If the instance is visible, on the other

hand, the visibility of nested kerns depends oe each item's own layer.

Layers an be manipulated through the levers menu, accessible through the Unusual Commands menu. The

ta>ef$ menu displays all the currently defined layers together with the sellings of the layer parameters.

The following parameters arc associated with each layer, and can be Individually set or reset A black

rectangle in the Layers menu means thai the parameter is ON.

• Display; if ON, the layer is visible* If OFF, the items in the layer are Invisible and do not have
gravity.

• Alter: if ON, the items in the layer are affected by DP operatiom; If OFF, the layer Is write-
protected.

• Output; ;f ON, Ihe items in ihe layer may be written to- files, printed and sent to the plotter.

When a layers set to invisible {Display OFF), it is automatically write~pn>toctod.

The La) ens nrenu also displays the ^ ^ f f l L ^ f f i * i,& ^e layer for acw items that will be created The
Current Layer may he cfesged by citckmg the Default rectangle of a diffcreat layer.

The 1 a;ers ner/j hj$ x r e buirens at the betters T*!± ihe following functions:

• C'IX? •: ne^ '^er: ti?s iLiire 6 prompted fcn

2,8 Check-pointing

S *:^ r pi;w-i -*w.:;rg ^,i'c*s * ' " ." ! :c- be &d; !ong, a check-pcindng mechariism has
r « c ^ ; c i hacfi *:ri-^v* n-B i ;^.-r:t5r ^ . c a t a i H.:fji ;f; ±e :cunter is incremented e*ery time a new

*:j\::^}t. -:. crt?:-:i *r .*.-: Ai? * n -̂;A s x t * e . \f'.cr ^ | f ^ n numfeer of events* U12 whole conieois of the
-r;&'-. ^r? ^rpur ^.»i ^'c c->^:^ ^ -s^ci T"h;s j^iure^ tiha: a recent copi of ihe drawing 3 ama>s available
f -^: r, %nt a^ ;: 1 :.v^cr; .r.^r.. 'n%c ;? t^i -p^^! ^:e r^nts s fcrTrcd h% appending X K F to the file-same

TV ^^;nf- ,-? : - r ^ i ^ ^ bc^et^ .h^k^cixs TZ* ^^ ^tfdi^ec bv &e Unysual Ccntmands sienu (set

11

2.9 Fonts

DP supports multiple fonts. A "font" consists of the full specification of a font plus the name of a Perq font
used to display it. The font specification is device-independent, i.e. it describes an "abstract" font such as
Helvetica? or TimesRomanll

The description of an abstract font consists of four items:

Face:

Size:

one or two characters that describe the particular face used. Valid characters are {r b i}: r
means Roman (the standard face), b means boldface and i means italics. Some characters
may be combined: for instance, bi means boldface italics.

an integer indicating the size of the font. Although this number does not have a direct
relation to some specific unit, small numbers mean small fonts. See [1] for more details on
font lore.

Rotation: an integer indicating the rotation of the font The rotation angle is measured in minutes,
starting from 0 for a standard-oriented font; a font that runs vertically up the page has a
rotation of 5400 minutes (90 degrees).

Family: the Ascii name of the family. A font family specifies a set of fonts with similar
characteristics: Helvetica, Gacha, TimesRoman etc.

The previous entries are intended to specify the font contents of a drawing unambiguously, and for each
output device the best possible approximation will be used.

The Perq font is a particular, device-dependent specification that tells DP what font to use when displaying a
string on the Perq screen. It may thus happen that the same Perq font is used to display different fonts in a
drawing, when there is no Perq font that matches exactly the different "abstract" fonts. The font information
is however carefully preserved in all the drawings and used for different output devices.

12

3. DP command set

All DP commands are single keyboard letters. No Control key is required, in order to make it easier to type
commands with one hand while holding the mouse in the other hand. Upper- and lower-case command
letters are considered different Some of the Perq keys are labeled with a whole word; in the following they
are listed in capital letters, e.g. "DEL".

Some commands are Immediate, they are immediately executed when the keyboard command is typed. Such
immediate commands do not change the function being executed, and at the end of the operation the
previous function will be displayed again in the Status Line of the display.

3.1 Basic items

1 line mode. Whenever one of the mouse buttons is depressed a new line is created; when
the button is released the line is "frozen". Depending on the button, the line may or may
not be constrained to be only horizontal or vertical. If a Gravity buttons is used, both
endpoints of the line may be attracted by a gravity point9; the first endpoint is attracted
when the button is clicked, the second endpoint is attracted when the button is released.
The Current Thickness is used for the line,

a Asm String mode. Clicking a button causes a string to be prompted for and inserted at the
current position. The Green button reads a sequence of strings and aligns them below the
first one; the sequence is terminated by an empty line. Every character up to the end-of-
liae is inserted in the string; strings longer than 80 characters are truncated. The Current
Font is used for the string.

6 Grtfe mode. Qidang a button starts a circle with the center in the current position;
releasing the button freezes the circle. The Green button creates an arc out of three points:
the two endpoiBts, in counterclockwise order, and the center. The Current Thickness is
used for the aide.

9 $nfijie mode. All the buttons but Green enter a new control point; the Green button
creates a curve out of the set of control points. The endpoints of the curve will always lay
on the first and last control points; at least two control points are required The Current
Thickness is used for the spline.

p KM mode. Every time a button is clicked a pin is inserted at the cursor position; the pin
number is prompted for. If the Green button is used no prompting occurs, and the
previous pin number incremented by 1 is used.

c Edt items: change the shape of existing items. See 4J for the item-specific details of this
command; is genera!, the new shape of the item is always redisplayed dynamically in order
to provide an accurate visual feed-back.

cither Use mipmmt of a segment or a pia in a symbol

13

3.2 Parameters and Fonts

- (minus) choose the Current Thickness. The value of this parameter will be used for all the new
lines, splines and circles10,

n use New Parameters for existing items. Alter some or all the parameters of already defined
items; for instance, convert strings from one font to another or change the thickness of
lines. A menu is used; the previous choice is always suggested as a default. The following
parameters may be changed:

• thickness (applies to lines, circles, splines);
• font (applies to strings);
• layer;
• color (applies to all items except symbol instances).

f choose the Current Font or enter a new font in the Font Table. A menu with all the active
fonts is displayed; clicking over one of the black rectangles in the Menu selects the new
Current FonL The last entry in the menu is labeled "New Font": clicking it will install a
new font, reading a Perq font file if necessary, and use it as the Current FonL See section
2.9 for an explanation of the meaning of the font parameters.

3.3 Select and Delete

s enter Select mode. New items are added to .the Selected list

z enter Deselect mode. Items are taken out of the Selected list

S select all the items in the current window. Immediate function.

Z

d

deselect all the items in the current window. Immediate function.

physically erase the previously deleted items; enter Delete mode, adding new items to the
"deleted" list.

D physically erase the previously deleted items; delete the selected items in the current
window. Immediate function.

undelete the items in the "deleted" list (since the last D or d command), and select them.
Immediate function.

T h e valid range for the thickness is L.8 in the current implementation

14

3.4 Copying and moving

Move and Copy arc the only commands that work across window boundaries, so that an item may b

conveniently moved across windows.

m c pick a set of items and move them until the button is raised, A new temporary set i
created for each Move operation*

Cogy. pick a set of items, male a copy, move the copy until the button is raised.

Simtck pick a set of items and move them, streteMng all the lioes that are connected to the
items, Hie current implemeatation stretches lines connected to lines, strings or symbols
This command tries to preserve all the existing connections and not to create new ones.
Strings thai represent signal names (on a line) or chip locations (on a symbol instance) are

with lite item they are attached to. Not completely implemented.

3*5 Symbol-related commands

These c:/JTirr:ar;ds rnan;pi2lute s>mbol deflations* See also section 4A

h create 2 se: of :icms a r i pack them in a new symbol definition. The symbol same is
prompted for; entering an empty line generates ao automatic name. If the name matches
ere i)(tr.c %?TQ?J'A already cer'red OP asks %he±er the old definition should be deleted.
k ±:s uuy,* references to s t e a l s *:ih rise old ̂ sme are changed to 3 e new definition; this

and the cIJ defiraJtiori is destroyed.

cr^f? a wr of s>rnsoi :n^nces and u^p^ci then: into their basic cornpenens; the
nces Aemsc^cs are gr^vrii*". This funct^n ;eai^ nested symbols and top-level items

cd a> be.

irrtcr T r2"iAfcnr.at;cr** ^ece. Symbol jnsiarxes inay be arbitrariJj iransfbmiec! by means of
route. ^;t;s a^d :T}.rr;)r:.persons; 2iis c^rrsmsnd allows to apply a transfcrmation to ses
of s>r^-,}I x^ti^c^., A Menu :s û -ed ro specify ihe desired transfonnaticn: a column of
^k bu!i<:5 and im 3 -i.-ipuyed. Cocking o^er one of the buttons selects fee
L'oTiS:":r?riJ5ti;'-n; 'krrtc ef *jie wb-func^ons pmnipi ±e user &r the vaJne of a panuneter,

3,6 File I/O

^-frnil cf DP dra*;rg Ses is aesenbei in {3J. The
ii;> jp^:-r:d tiie default e^teas^n 10 ihe user*iypeci

15

o write all the items in the current window to a drawing file; the file name is prompted for,
and if a file name is associated with the window it is used as a default If a file with the
same name already exists, it is first renamed with a dollar sign at the end; the file "testdp"
will thus be saved as "tesLdp$". This is the standard mechanism used by the Perq editors;
it always makes a backup copy of a file before overwriting it

H create a hard-copy of the drawing in the current window. A Press file is generated and left
on the current directory; the filename is prompted for. The Press file consists of a single
page, arid may be shipped to the printer later on.

0 send the drawing in the current window to a plotter. The plotter must be connected to the
Perq through the RS232 line. Only the HP-7221A plotter is currently supported.

1 read a drawing file and merge it to the items in the current window. To start from scratch,
all the items should be cleared before typing this command13. The file name is prompted
for; if the file does not exist an error message is generated
If the window is empty this command adds an offset to all the new items, so that the image
is centered in the window.

i read a single symbol definition from a drawing file. Both the symbol name and the file
name are prompted for. If the symbol is not defined in the file an error message is
displayed; if the search is successful an instance of the symbol is created and centered
around the cursor position.

j read a text file and display it as Ascii strings.14 The Current Font is used for the new
strings.

@ read commands from an alternate input file whose name is prompted for. The normal
operation is resumed when the End Of File is reached; input is directed .to the keyboard
again.

3-7 Display commands

These commands affect the way the drawing is displayed; they do not change the internal representation of
items.

R redraw the whole screen; this command may be used if the display image has been

damaged. Immediate function.

r redraw the current window. Immediate function.

= display the current window with a different scale. This command "zooms" the image, it

This can be obtained by typing SOD

This command is extremely useful to aamiue the output of a post-processor, for Instance, together with the drawing from which the
output was obtained.

16

does not change the size of items; other windows are unaffected. The scale value is a
number; the default scale is L A scale of 0.5, for instance, means that objects are displa

half the real size. Immediate function.

4 (back-quote) Display Grid on/off; useful for aligning items. Immediate function.

display a black square ("diamond") at the connections of lines; two lines that fonn a con
are not flagged Immediate command; diamonds are not permanent items.

w move the image in the current window; the image "follows" the cursor and is refreshed

the end The Green button uses a faster algorithm that requires less startup time.

caablc or disable the displaying of pin numbers, and redraw the screen.

P enable or disable the displaying of pins, and redraw the screen.

INS insert a Marl il the cencer of the current window. Each window has a circular buffer <

Marks^that are used to remember important positions in the drawing. Immediai
function.

0 p to Ihc next Mark in the dicular buffer for the current window; that is, change th
position of Ihc window over the items. The next Mark is placed at the center of tb
window. This command allows one to "jump" between various places in a drawing
Immtiktc fiinction.

0EL delete the previous Mark. Immediate function.

3.8 Moist commands

$ change the House grid, 3»c is the distance between the two nearest points the cursor can be
i% High p d values make cursor movements gross; small values yield a smooth motion but
Its accurate paHeiiag, The recommended grid value is 3; this is the best value to1 vat
*hea dealing with normal dawiagi H e smallest grid value is L The value of the Gravity
Fscld is rtUiti to the current Mouse Grid: the recommended value is

ZM Unusua! C<:r*nand$

I rcnund gr.ci access to a set of rarely used functions; the previous value for (be
• zrxui jvtf̂ Txicrs 5 ahajs displayed as a default

>V%xh^imdim: surfer of key-strokes between checkpoints. A checkpoint
''? .• :u--rr.;:::a;:v wnrten -Ahen more than the specified number of
; "".r«:i+^ • urci *n a window.

- . ^ r-> t ^ ^ { ;, v ^rrvr of Varis in a window.

17

• Display Grid: alter the distance between the dots in the Display Grid. This
simulates "graph paper" and is useful for aligning items.

• Gravity Field: size of the gravity field, in screen units. Smaller fields mean
weaker gravity.

• Clip on window when printing: indicates whether the whole drawing or just the
visible portion should be printed16 . In the latter case the printed page will look
exacdy like the screen, without any centering or justification of the image.

• Diamonds when printing: indicates whether diamonds should be used at the
connections of lines in the hard-copy.

• Show invisible items: redisplay the whole screen, showirig all the invisible items
(including items nested in symbols).

• Toggle cursor shape: toggle the direction of the cursor between North-West
and North-East

• Layers: invoke the special Layers menu (see section 2.7).

3.10 Miscellaneous commands

? print out internal information; primarily intended for debugging purposes. This command
displays the following items:

• parameters of the current window;
• list of the Deleted items, if any;
• segment allocation table and number of free segments;
• Font Table, with the font numbers and the associated Perq font file;
• names of the Symbol Definitions, if any.

h, HELP type the help files for DP. There are currently three help files: introductory help, complete
command set with a short explanation for each command, and changes in the latest version.

q quit DP. It asks for a confirmation (type 'y* if you really want to quit, everything else to
remain in the program). If some window is marked as Modified and its contents are not
null, a new request for confirmation is issued.

^applies only to Press files,

18

4. Advanced topics

This chapter contains some of the advanced techniques a designer needs to know in order to use DP as
efficiently as possible.

4.1 The coordinate system

DP uses a standard-oriented, cartesian coordinate system to represent the objects in a drawing. 16-bit integer
arithmetic is used throughout, and therefore the integers in the range [-32767..32767] are valid coordinates.
No special meaning is assigned to the absolute value of the coordinates in a drawing; translating every item by
a fixed amount does not change the drawing at all.

When DP is started the point (0,0) is placed at the center of the window. Both the window and the drawing
may be moved, performing any arbitrary translation. As a quick "beam find" operation, specifying a scale of
0 (see 3.7) goes back to the initial position with the window centered around the origin and scale equal to L

4.2 The size of a drawing

DP does not restrict drawings to the size of a single screen. Using the window mechanisms one may create
drawings that are about 64 x 96 times the size of the screen17.

In practice, however, very large drawings are not recommended for output devices like the Dover printer.
Large drawings must be either split into smaller ones or printed with small magnification. This does not
apply to lai^er-paged output devices, such as plotters.

4.3 Editing items

The action performed by the Edit command depends on the particular kind of item being edited. Items are
always opened for editing by pointing at the item with one of the mouse buttons depressed. Circles and
Splines are opened by pointing at one of their endpoints; the whole item is "sensitive" in the case of lines*
strings, pins, and symbols.

• Lines: clicking over the line picks the nearest endpoint and moves it following the mouse. The line
is dynamically adjusted and appears to follow the cursor in a rubber-band fashion. The same
options are available as in Line mode: constrained/gravity, etc.

Circles clicking over one endpoint with the Yellow button changes the radius; all the other
buttons drag the endpoint, changing the subtended angle but keeping the radius constant
The circle is always scanned counter-clockwise; the First point marks the beginning of the visible
portion of the arc and the Last point marks the end of the visible portion. When the order of the
two points is swapped, the circle changes shape abruptly, e.g. from a short arc to an almost full
circle.

This imam, theoretically, a drawing as big as 6000 sheets of paper.

19

\

Figure 4-1: Editing a spline by moving a Control Point

If a circle is embedded in a symbol and the symbol is rotated of mirrored, the endpoints of the
circle are also transformed. It may thus happen that when the symbol is unpacked the endpoints
of a full circle are no longer at (Radius,0); they might be for instance at (0,Radius).

• Splines: after opening the curve for editing (button down over one of the endpoints) the Control
Points are displayed. Moving the cursor over one of the control points locks the point to the
cursor; the spline is recomputed when the cursor is moved. When the button is released the
spline is frozen. Figure 4-1 shows how to edit a spline by moving one of its control points.

• Pins: change the position of the pin number. Clicking over the pin and moving the pointer moves
the pin number in one of the four quadrants; Pin Numbers Display should be OR Notice that the
display position for new pins is computed automatically when they are used in a symbol.

• Strings: alter the characters in the string. The string is displayed in the Prompt area and is opened
for editing; see section 2.5 for more details. A string cannot be deleted this way: entering a null
string simply puts the original string back.

• Symbols: display or alter the name of the symbol. The Green button "opens" the name and allows
to modify it; this means that all the instances of the symbol will have their name changed, and the
old name is deleted. The other buttons simply display the name of the symbol.

4.4 Symbols and Instances

A symbol is a set of items that are grouped together and represent a single object, such as a transistor or a
NAND gate; the set is always identified by a unique name.

Although not clearly spelled out, the word "symbol" has been used in this document to mean "a symbol
definition". The word "instance" has been used to mean ftan instance of an already-defined symbol". To draw
an analogy between symbols and programming-languagc concepts, a symbol (or symbol definition) is
equivalent to the definition of a procedure; an instance is analogous to a procedure call

20

The symbol defines the structure of a graphical object: a set of basic items and possibly otlier nested instances.
The definition is just a "template", since it specifies how to draw a graphical entity if requested; the definition
itself does not add any item to a'drawing. It is only by creating instances of that symbol that items will be
made visible on the page. See [2] for a discussion of symbols and instances.

An instance, like a procedure call, may specify the value of certain parameters, indicating where and how the
graphical symbol is to be displayed. Each instance specifies the following parameters:

• X- and Y-offset: coordinates of the center of the symbol. This specifies the global translation that
is to be applied to each item in the symbol.

• Rotation angle: the global rotation of all the items in the symbol This parameter is in minutes, a
positive value meaning a counter-clockwise rotation. A rotation of 30 degrees clock-wise is thus
specified as -1800 minutes.

• Scale: two values that specify the global scaling of the symbol and possibly mirroring
transformations. A scale of 1 means do not alter the size of items.

4.4.1 Creating a symbol

The best thing to do when creating a new symbol (especially for circuit schematics) is to look closely at
existing shapes, A grid value of 3, the standard value, is strongly recommended, A rather high scale, like 3 or
4, should be used when drawing the lines for a shape; when drawing very short lines Gravity should be offi

A good way to create a shape is to edit an old one. To do so, create an extra copy of the old symbol and
unpack it; the basic components will be available for editing. When the shape is all right put down the
strings** and the pins. It is usually better ta use the Rectangle button for the final Make Symbol command.

4.4.2 Symbol names

DP allows one to create a symbol without explicitly giving it a name; an internal name19 is generated This
happens when an empty line is typed as the symbol name.

Symbols with automatic names should not be used at the top level in a circuit drawing, since they cannot be
retrieved by name from a drawing. They should be used inside other symbols; as an example consider an
integrated circuit symbol. "Pins" in such a symbol are usually complex items: they have a pin, a string (the
visible pin name), and possibly other items. Packing these items in a symbol is the basing naming convention
for pins used by the circuit post-processors; automatic names are very handy for symbols like this.

is
Do this with scale I* in <wter to position the strings correctly

19
Sudi as $$12:28:32; tills is called an autmmk mm

21

4.5 Memory allocation

The current operating system of the Perq restricts the total amount of storage that a program may allocate. DP
tries to use as much storage as possible for drawings, but sometimes the available resources may be exhausted.
Here are some suggestions about memory allocation:

1. Deleted items should always be physically erased when no longer needed Simply .deleting an
item does not release the associated storage, since the item may still be "undeleted"; it is thus
necessary to use Delete commands twice, since this physically destroys the deleted items. To get
rid of a whole drawing, for instance, one should type "SDD": Select All, Delete All, Delete All
(the second D releases the storage).

2. Working with many complex drawings at a time requires large amounts of storage; unneeded
drawings should be promptly deleted.

3. Using many fonts requires several data segments to be permanently allocated; once a font has
been installed it is not released until DP exits.

4.6 Alternate input for commands

There is a mechanism for reading commands from a transcript file instead of from the keyboard. A command
file is read via the @ command and should contain the same commands that would be typed on the keyboard,
plus cursor-positioning commands.20 The alternate input file mechanism may conceivably be used as a
"macro" facility to perform simple initializations of switches and parameters.

transcripts of DP sesioas may be created with the S command; this command alternatively opens and closes a transcript file, called
"dpScript"*, The $ command is not yet officially supported

22

I. Command set table

a enter Ascii String mode.
b create a symbol definition.
B unpack symbol instances into their components.
c copy items, move until the button is released.
d delete items.
D delete all the selected items.
e enter Edit mode.
f choose the Current Font or enter a new font
g change the mouse grid.
G go to the next Mark in the circular buffer.
h (or HELP): type the Help file.
H create a hard-copy of the current window.
i read one symbol definition from a file, put it at the current position.
I read a drawing from an input file, merging it with the current window.
j read a text file, create strings.
k unusual commands.
1 enter Line drawing mode.
m move items.
n force new parameters for existing items.
o write the contents of the current window to an output file,
p enter pin mode.
P toggle displaying of Pin Positions.
q quit DP.
r redraw the current window.
R redraw the whole screen.
s enter select mode.
S select all the items in the current window.
t Transform symbol instances.
u Undelete items deleted since the last delete command.
w move the image inside the current window.
x pick and move items, stretching connected lines. . •
z enter deselect mode.
Z deselect aO the items in the current window.
0 enter Circle drawing mode*
9 enter Spine drawing mode.
~ toggle the displaying of pins.
4 toggle the Display Grid.
= enter a new scale for the current window.
display Diamonds at the intersections of lines.
- enter the Current Thickness.
? print out internal information.
INS insert a Mark at the center of the curreRt window.
DEL delete the last Mart

I
I
I

23

References

[1] Robert F. Sproull.
Font Representations and Formats.
Technical Report, XEROX - Palo Alto Research Center, October, 1980.

[2] William M. Newman, Robert F. Sproull.
Computer Science Series: Principles of Interactive Computer Graphics.
McGraw-Hill, 1979.

[3] Dario Giuse.
DP - Format of the drawing files.
Technical Report, Carnegie-Mellon University, 1981.

[4] Dario Giuse.
SL: a hierarchical wire-lister for DP drawings.
Technical Report, Carnegie-Mellon University, March, 1982.

