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SUMMARY

In an automated Flexible Machining Cell an Industrial Robot is required to carry out loading and off-

loading tasks and participate in off-line measurement. In these activities the robot speed, accuracy

and compliance are the important performance measures. Improvement in speed reduces overall job

time but this is generally achieved at the expense of accuracy. A further trade-off is that of weight-

lifting capability and accuracy. It is well known that commercial robot suppliers provide a range of

machines in which accuracy is lost as speed is increased.

This report summarizes some progress to date of basic research on the mechanical structural

analysis and control of an industrial robot. The research is addressing this speed vs. accuracy vs.

load capacity trade-off. To improve the robot performance a mathematical model of the robot

dynamics is desirable. The model developed relates to a Trallfa robot but the results are applicable to

other machines.

The initial set of model equations are highly non-linear, time variant and coupled. Thus model

reduction has been applied in which the gravitational fore components in each joint in the static mode

have been separated out. In addition the base rotation has been developed from the rest of the

system. The research results suggest that the third link should be heavily built to offset the gripper

loading effect.



1 INTRODUCTION

The existing industrial robots can be divided into three categories according to their control

equipment [1];

• point-to-point type

• limited-sequence type

• continuous-path controlled type.

The first category, point-to-point, is the simplest The robots in this category are usually built for

pick-and-place type of jobs in a highly structured environment. The motions involved here are back-

and-forth between two end points. The actuators move the robot joints from one position to the other

and the motion is stopped either by a limit switch or by some mechanical stop devices. The position

accuracy is guaranteed by the stop devices. The robots in this category are usually very fast and

accurate.

The second category, limited-sequence machine, is the natural extension of the point-to-point type.

The robot in this category moves along a space trajectory which is specified by multiple set-points.

The robot moves from a set-point to the next set-point, and then to the next..etc. The joint

coordinates at those set-point are pre-calculated and stored in the memory. Each joint is controlled

by an independent position servo and all joints move from position to position independently. When

all joints have reached a set point, then they start approaching to the next. Servo gains can be

adjusted independently by the operator, and the motions can be optimized to any given task. The

limited-sequence machine is fast, but its motion is uncoordinated in the sense that the trajectory

between set-point is not controlled. Further, as the individual servo gains are adjusted, the path

described in space changes. The robot in this category can be used for "gross motion"f in which the

path of the end-effector does not matter [2].

For more advanced applications, like parts assembling, the path between adjacent set points must

also be controlled [3]. The continuous path controlled robot is capable of coordinated motion from

point to point along the path. An example is the Cincinnati Milacron's T3 robot [4,5] in which all

motions of the end-effector are along straight lines with controlled acceleration and deceleration.

Unfortunately these motions require constant mathematical transformation between cartesian

coordinates of the end-effector to joint actuator coordinates in order to control the robot [6,7].

The control of the robot manipulator is essential to the robot performance. In the analysis of a

manipulator, two problems are encountered. The first, called the positioning problem, can be stated

as follows: 'Given the desired position and orientation of the free end of the manipulator, what are the



joint positions (angles) which will position the free end at the desired point in space with the specific

orientation' This is a kinematic problem and it had been studied by Pieper [8]. The second problem is

one of the manipulator dynamics and control. It can be stated as follows: 'Given the initial and final

positions of the end-effector, how should each joint move from the initial to the final position'

2 MANIPULATOR DYNAMICS AND CONTROL

The manipulator is in effect a multiple degree of freedom chain linkage with a joint between each

linkage pair. Each joint must change its coordinate in order to position the end-effector at the right

place. If each joint moves from initial to final position independently, the trajectory of the free end is

uncoordinated. For example, a two dimensional motion from point A to point B is shown in figure 1. It

can be seen that different servo gains for X axis and Y axis will cause different trajectories. If a

particular path (say a straight line from A to B) is to be followed, then the joints must be driven in a

constraint manner. Obviously, an algorithm is needed to correlate the motion of each individual joint

This algorithm is basically the mathematics of homogeneous coordinate transformation. If the speed

of each joint is constrainted in some manner, the motion is called coordinated motion. The practical

difficulty with the coordinate transformation approach is that it involves too many trajectory

calculations. In a real-time environment, the existing mini/micro computers simply do not have

enough computing power to finish the calculation in the required time frame. There are a number of

ways to handle this difficulty;

1. A multiprocessor computer system with dedicated CPU for the calculations. Other CPUs
can be used to handle general I/O and servo loop control

2. A hierarchical controller structure is proposed by Albus [9]. A high level minicomputer is
used for trajectory calculation. A low level microcomputer receives the results of that
calculation from a 'shared memory1, and in term controls each servo loop.

3. Anderson [10] suggests an easier way to implement a coordinated motion without the
transformation calculation. The speed of movement is also improved. But the trajectory
is not a straight line between two set points, though it is predictable.

There are some studies about the manipulator control reported in the literature [11,12,13]. Most of

these advanced control schemes do not consider a coordinated motion. Two of them are cited here.

In reference [11], a multi-structure-system (VSS) approach for controlling a hexapod locomotion is

presented. The plant under computer control is a hexapod. There are 6 legs mounted on this unit,

each teg is composed of 3 articulated linkages powered with electric motors. The motors are

regulated by phase angle control which has well known nonlinearity. The friction between moving

parts varies widely during operation. Loading has a substantial effect on the system dynamics. Afl in

all, such a non-linear system is nearly impossible to model, even empirically, and is a prime candidate

for the sliding mode method.



Sliding mode control, an example of a variable structure system (VSS), is designed so that the

system operates on a preassigned trajectory in the phase plane, and thus becomes insensitive to

external influences. The entire group of variable structure control system is characterized by

discontinuous switching between different control laws depending on the state of the system.

In the cited example, the phase plane is formed by joint position error 0err vs. its angular velocity 9.

A sliding line S = 0 is decided to be:

S = -C0err + 9

where C<0. The sliding line S = 0 and the Y axis divides the phase plane into two pairs of regions;

namely, define Region 1 to be where 0errS>O and define Region 2 to be where 8errS<0. ©errS is

the switching condition. The VSS decision rule is to apply different control laws in Region 1 and

Region 2. Two sets of control laws, opposing each other, are implemented; these are

V= Sgn(0err) * / ^ + y ^ e r r Region 1

= Sgn(Gerr) * fi2 + y20err Region 2

where p^ P2 y1 y2 are the controller parameters. V is the voltage to the driving motor. The effect of

the first control law, with y1 = 0> k shown in figure 2b. The effect of the second control law, with

y2 = f$2 = 0 is shown in figure 2c. It can be seen, figure 2d, that once the system reaches the line S = 0,

it will "slide" along the line toward the origin, assuming that the switching between control laws can

be done at infinite frequency. The existance of a sliding mode is guaranteed by having both the

control laws forcing the state of the system toward the line S = 0. Once the system is in the sliding

mode, then its motion is described by:

©err(t)

which depends on parameter C only. Therefore the sliding mode method is intrinsically insensitive to

the unit's parameter variations and interaction effects with other links.

In reference [12], another novel approach is presented to control a six«degree-of-freedom robot

arm. The use of conventional linear control techniques limits the basic dynamic performance of

manipulators in a number of ways. Two of these which are very significant are

1. The dynamic characteristics of general spatial manipulators which are highly nonlinear
functions of the positions and the velocities of the manipulator elements.

2. The degradation of the dynamic performance of the manipulator by the inertia! properties
of the objects being manipulated.

In view of these drawbacks, Model-Reference-Adaptive-Control (MRAC) is introduced to attack the

nonlinear, time varing system. The basic ideal behind MRAC is to force the system characteristics to

be the same as that of a reference model, by means of nonlinear compensation. In figure 3, t ie plait



output is compared with the reference model output. The difference E, is used to drive an adaptive

mechanism, which in turn adjusts the plant feedback gains such as to minimize the error signal E. The

theory of MRAC is beyond the intention of this report, however the method applied in this cited

example is probably the simplest among all MRAC implementations. An excellent reference about the

theoretical background is in [14].

3 ROBOT MODEL DEVELOPMENT

The investigation of these manipulator control strategies is an essential aspect of improving

manipulator accuracy for such applications as automated inspection of turbine blades. A useful way

of comparing rival control strategies is modelling of the mechanical system.

The robot under consideration is depicted in Figure 4. It is of fairly general type, with 3 linkages for

the arm connected by 3 rotary joints. The first link rotates with respect to a vertical axis from the fixed

robot base. It simulates the waist motion of a human body. The second link rotates along a horizontal

axis which passes through the tip of the first link. This motion is similar to that provided by the human

shoulder. The third link rotates along a horizontal line at the tip of the second link. This link is the

elbow of the robot arm system. With these 3 links and 3 rotary joints, this robot is of 3 degree of

freedom, and is capable of putting the gripper to any location in its reachable working environment

The orientation of the gripper is handled by the gripper actuator, which is a 3 degree of freedom

device in itself. It should be pointed out that the gripper, or the hand, is not included in the current

manipulator model.

The first step towards the present model of the robot is to derive the equations of motion, tn ths

work, the equations of motion are derived from the fundamental principles of force-moment balance.

There are similar robot models reported in the literature [1], However, all of these previous

investigations were done by the Lagrangian (energy) approach. The reactional force and moment at

each joint may be more useful from the viewpoint of the mechanical structure analysis and design

optimization.

Within the scope of a vectorial approach, the D' Alembert method has been chosen to formulate the

problem for its simplicity and clarity. The D'Alembert principle can be stated as follows;

Since the product of mass and acceleration is equivalent to force, a body possessing
acceleration could be considered1 to be in "equilibrium" -under the action of a hypothetical
inertia force whose mangitude is M*A and whose direction is opposite to that of the
acceleration A,

According to the method outlined above, a kinematic analysis is performed to find out the absolute

acceleration for any point (actually a small element of mass) on the robot arm (Appendix A), Once the



acceleration is known, then the inertia force can be calculated by F = M*A and can be applied to

oppose the acceleration. If so done, the robot dynamics becomes a static problem and the

equilibrium equations can be easily derived. These equilibrium equations are solved in a reverse

order; the third link first, then the second link, then the first link (Appendix B).

It is desirable to put the equations of motion thus derived into a state-space form to facilitate the

further analysis and computer simulation. For the robot system under consideration, it is natural to

choose the angles of the rotary joints and the rates of change (angular velocities) as the state

variables. However, this attempt is not successful, due to the square terms and the cross-coupling

between the angular velocities. The result of this attempt is given below;

{L, + m2l^ + m3l2 + l3sin2(02 + 93) + (l2 + m3l2)cos202

+ 21., (m2c2 + m3l2)cos92 + 2m3l1c3sin(02 + ©3)

+ 2m3l2c3cosG2sin(02 + 03) }G1 = T1 +

01G2{2[m2l1c2 + m3lj2
 + ^2 + m3'§)cos02]sinG2

-2m3l2c3[cosG2cos(G2+ G^-sinGgSin^ + 03)]

-2[m3l1c3 +l3sin(G2 + G3)]cos(G2 + 63) }-

01G3{2m3c3(l2cosG2 + l^costG,, + G3) + 2SBsln(e2 + G3)cos(62 + 63)} (1)

-(m2c2 + m3l2)gl3COsG2 + (m3l2<^)g sin(G2 + 03)sin03

2
+ m3I3l2C3Sin(G2 + ©3)]sin02

+ 63)]sin63 cos(G2 + G3) }

m3l2c3sinG3)cos63}

m3 !2

cosG2



ine3)g sin(G2 + 03)2 + 03)

+ m3 l1 l2C3Sine3

m A ' l C3 + m ^ 2
l 2 C 3 C 0 S e 2 + m3>1 !2C3

m3l2c3sin03cos63

2 3 ^ 2 3 ^ 3 3 (3)

The robot model thus derived is highly coupled and non-linear, and all the coefficients are time

variant. It is felt that unless this model is simplified greatly, there is little hope to extract any general

information about the robot manipulator system. The next step therefore, is model reduction.

4 MODEL REDUCTION

The robot model is reduced by two schemes; (1) gravitational force compensation and (2)

decoupling the waist rotation from the rest of the system. These are as follows;

(a) Gravitational force compensation

The (static) torque required for each rotary joint to hold the robot at any stand-still posture can be

pre-calculated and stored in the robot contoi memory, ideally in a data base. To be specific the static

torques are (from equation 1):

T1s = 0 (For any 9 ^

T2s = m3g[l2cos62 + c3sin(02 + 03)] + m2g c2cos02

T3s = m3c3g sin(©2 -i- 03)

Upon motion, the DBMS retrieves the value of the static torque required for its instantaneous

position along the path of motion. The robot controller, on- the other hand, is to calculate the

additional (dynamic) torque which is responsible for the arm. motion as well as the gripper loading
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effect. The sum of these two is the total torque which is sent to the actuator and then to the rotary

joint, Figure 5. If the gravitational force data base is considered an integral part of the robot system,

then the total torque can be expressed as follows:

T i = T i d

T2 = T2d + T2s
= T2d + m3gfj2cos62 + c3sin(92 + 93)] + m2g c2cos92

T3 = T3d + T3s
= T3d + m3c3g sin(92 + 63)

By substituting these transformations into equation"!, the model equations can be simplified to the

following form;

{ I , + m2l
2 + m3|2 +I3sin2(92 + 83) + (L, + m2j

+ 2l.,(m2c2 + m3l2)cos92 + 2m3l1c3sin(92 + 93)

+ 2m3l2c3cos92sin(92 + 93) } 9 1 = Tld +

9192{2[m2l1c2 + rrig^lg + (^ + m3l2)cos92]sin

-2m3l2c3[cos92cos(62 + 93)-sin62sin(92

-2[m3l1c3 +XjSin(92 + 93)]cos(92

9193{2m2c3(l2cos92 + \Jcos(Q2 + 93) + 2lgSin(92 + 93)cos(92+ Q^} (4)

+ 93)sin93cos(92

+ m3l2c3sin93)cos93}

{-(Ej + m3l2c3sin©3)}T2d

02 + J3 + m3l£ + 2m3l2c3sin93}T3d

1C2
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3 2 + 93)

m ^ l2c3 + m3li*c3cos02]cos(02 + 93)

03)

m3l2c3sin03cos03

G2{m3I2c3(m3l2c3sinG3 +T3)}cos©3

(b) Decoupling the waist rotation from the rest of the system

In order to simplify the model equations further, the rotation about the first axis is decoupled from

the rest of the system. To be specific;

When Q1 #0, then 0 2 = G3 = 0

When 0 2 or G3#0f then 0 1 s 0

While this appears arbitrary at the first sight, it smoothes the load to the actuator system. When all the

rotary joints are moving simultaneously, a higher power demand will be required- Thus the

decoupling may produce a smoother load profile such that the actuator system can be made smaller

and cheaper as well as more energy efficient The saving is particularly significant for the hydraulic

type actuator systems. Besides, in gross motion there are very few tasks that cannot be accomplished

by simple rotations and simple reaching. In this case, the model can be further reduced to the

following form;

l^ +X3sin2(02 + 93) + (

2^ (m2c2 + m3l2)cos02 + 2m3l1c3sin(G2 + ©3)

2m3l2c3cos92sin(e2 + 63) }G t = T1d (7)

'G3 + m3l2c3sin03)T3d

+ m3l2c3sin93)cos03}

(8)
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1 ! 0 ^ " 2 ^ ^ = {-^ + m3l2c3sinG3)}T2d

+ 2m3l2c3sin93}T3d

3 +1^ +1^ + m3l2)}cos63

{ 3 2 3 ( 3 2 3 3 +I3)}cos03

+ G2e3{2m3l3l2c3 + 2m2|2c2sin03}cosG3 (9)

After adopting these schemes, and applying the following change of variables;

Then, the model equations are in very simple form (Figure 3 and equations below)

{^ + m2l2 + m3l2 +ljSin2(e2 + 93) + Q^ + m3l2)cos292

+ 21., (m2c2 + m3l2)cos82 + 2m3I1 c3sin(e2 + G3

+ 2m3l2c3cos82sin(e2 + G3) }X1 = T1 d (10)

{(T2 + ms l^-m|g(|8hi«e3}X2 = ̂ d - O g + m3l2c3sin03)T3d

-X2(m3l
2c3sinG3cosG3]

^ ^ ^ X g = {-(m3l2c3sinG3)}T2d + Q ^ m3l2+

m3I2c3sin03}T3d

+ x|[m2i2c2sinG3cosG3] (12)

The robot model just derived is still non-linear, coupled, and time-varing. However, due to its

simplicity, an analytical approach is possible. Through this attempt some general conclusions may be

reached and are applicable to other similar robots. One accredited contribution of this model is that it

cuts down the cost of computer simulation.
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5 CONCLUDING REMARKS

An interesting observation can be reported at this moment. If C3 is designed to be zero by a

counter weight on the third link then the model equations can be put into an even simplier form.

{L, + m2|2 + mgl^+I3sin2(e2 + 93) + 0 , + m3

2(m2l.,c2 + m3l1l2)cose2}e i =T1d (13)

2 (14)

(15)

In this last version, the robot equations are linear, completely decoupled from each other, and with

constant coefficients (except that for the waist rotation). This linear model is invaluable for the future

system analysis. The current research work seems to suggest a balanced design for the third link,

and it should be built massively to offset the gripper loading effect. Ongoing work is concerned with

data collection of the gripper loads during the manipulation of turbine blades being manufactured in a

flexible manufacturing cell. Once the spectrum of activities has been identified proposed

modifications to the arm design can proceed. The result of such modifications will be a robotic

manipulator with greater positional accuracy.
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APPENDIX A

The general kinematic equations for relative motions in a moving reference frame are (figure A-1):

Rb = Ra + w x (w X pB) + w X p B + 2w X p B + p B

Such equations state that:

/absolute velocity \
\of point B J ~

/absolute velocity \
I of point A J

/ relative velocity \
^ofBtoA I

absolute
accel. of
point B

/absolute \ /relative \
[ accel. of 1 + I accei. of j
\ point A- / \ B t o A /

Corioiis
terms

For the robot under consideration, the relative motion is caused by a rotation with respect to the

moving frame. For clarity, the absolute acceleration of each rotary joint is determined first; (Figure 4)

v = 0

For any point P on the third link, the absolute acceleration of P can be found by applying the

genera! kinematic equation. The rotation of the moving frame is composed of two components, one

to the Z axis, the other to the -6 axis. (Figure A-2)

ao3 = ai3 * relative acceleration of point P
with respect to the rotary joint j3

* * "A »•

(due to 8 t )

(due to 8 t )

(due to 9 2 4
(dueto82-

-X3sin(02

X3(92 + e3)cos(G2 + 93)i r
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+ X3(G2 + 93)2cos(e2 + 93) iz (due to 92 + 93)

-X3(G2 + e3)2sin(92 + 93)fr (due to 92 + 93)

+ 2X39^9., + 93)cos(92 + 93 ) ie (Coriolis term)

= iep1 + l2cos92 + X3sin(92 + 9 3 ]9 1

+1r[X3(92 + 93)cos(92 + 93)-X3(92 + 93)2sin(92 + 93)-X392sin(92 + 93)

-I ie
2-I292cos92-I292sine2-I292cos92]

+ iz[X3(92 + 93)sin(92 + 93) + X3(92 + 93)2cos(92 + 93) + I292cos92

-I292sin92]7z

+ iQ[2X391(92 + 93)cos(92 + 93)-2l29192sin92]

By the same procedure, the absolute acceleration of any point P on the second or on the first link

can be found to be (Figure A-2):

^ .. . *
ap2 = ie[(X2cos92 + l^e

+ X292sin92 + X292cos92 + ̂ G

izp<292cos92-X29^sin92]

Once the absolute acceleration is known, then the D' Alembert principle can be applied.
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APPENDIX B

The equations of motion are derived in a reverse order, the third link first, then the second link, and

then the first link. The general procedure in deriving these equations are:

1. Find the sum of the inertia force to the local coordinate axis

2. Find the sum of moment by the inertia force to the rotary joint

3. Write equilibrium equations and solve them

For the third link, the sum of inertia force can be found as follows:

(-i )[x3(e2+e3)cos(e2+e3)-x3(G2+e3)2sin(e2+e3)

-x392sin(92+93)-i192-i292cos92

-I292sin92-I292cos92]dm3

ir[nr»392(l1 + l2cos92 + c3sin(92+93))

+ m3c3((92 + 93)2sin(92 + 93)-<92 + Q^cos(Q2 + 93))

+ m3l2(92sin92

3c3e i(e2+ 83)cos{82 + 83)

+ 2m3l2eie2sin82]

= iz[m3l2(92sin92-92cos92)-m3c3((92 + 93)sin(92+93) + ( 8 2 + 93)2cos{92+93))]

J\r]X3cos(e2 + 93)dm3 + /[-tp3T]X3sin(02 + 93)dm3}

+ 93) + 013031^^003(92 + 93)

+ m3c3!2[92cos92cos(92 + 93)-92sin93 + 02cos03]>

The equilibrium equations are (Figure B-1):

R r+"F r-0
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m3g c3sin(92 + 03) = 0

Solving for the unknown

Rr = ' r { - m 3 e i [ ' i + l2cose2 + c3sin(92 + 93)]

-m3c3[(G2 + e3)2sin(O2 + 93)-(9*2 + '93)cos(92 + 93)]

-m3l2[92sin92 + 92cos92] }

"Rz = iz{m3g-m3i2(92sin92-92cos92)

+ m3c3[(92 + 93)sin(92 + 93) + (9 2 + 93)2cos(92 + 03)3>

"T3 = -ie^m3c39 s i n ( 9 2 + e3)-m3c3l192cos(92 + G3)

+ I j (9 2 + 03)-l302sin(02 + 93)cos(92 + 93)

-m3c3!2[92cos92cos(92 + 93)-92sin93 + 02cos93]}

The reactionaJ force thus derived is to be used when writing the equilibrium equations for the

second/first link.

By the same procedure, the equation of motion for the second link and for the first link can be

expressed as follows:

T2 + -«e{92a2 + m3c3l2sin93

+ 92fjC2cos92sin92+m2l1c2si

-m3c3l1cos(92 + 93)-m3c3l2cos92cos(92 + 93)

+ m3l2sin92(l1 + l2cos92 + c3sin(92 + 93)]

-92[m3c3l2cos93]

m3g[l2cos92 + c3sin(92 + 93)] + m2g c2cos92

T 1

+ 2l1(m2c2 + m3l2)cos02

+%^n2te2 + e3) + 2m3l1c3sin(e2 + 93)

+ 2m3i2c3cos82sin(82 + 93) J
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-9182[2(m2l1c2 + m g l ^

-2m3l2c3(cos92cos(92 + G3)-sin(92 + 93)sin92)

-2(m3l iC3 +ljSin(92 + 93))cos(92 + 93) ]

+ G193[2m3c3(l2cos92 +1^003(92+93) + 2133111(92 + 93)cos(92 + O3)]}
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Figu re 1: Different paths by servogains.

K - X a x i s servo gain, Kv - Y axis servo gain.

Figure 1. Different paths due to different servo gains
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Figure 2:
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Figu re 3: General model reference adaptive control system
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Figure 3- General model reference adaptive control system.
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Figure 4: The Robot Schematic

•tf

/ 3rd Link, with Mg, 35

////////////^^^^

2nd Link, with Mgj 2' ̂ 2

1st Link, with M-j, ^ 3 I-j

M: mass, : lenath, I: Moment
of inertia

Figure 4. The robot schematic.
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Figure 5: Gravitation force compensation.
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Figure 5. Gravitation force compensation.
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Figure 6: The Robot Mode! After Reduction.
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Figure 6. The robot model after reduction.
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Figure 7: A1.

Y 1

Figure A - l .
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Figure A-2. The 3rd l ink.

Figure 8: A2 - The 3rd Link

Figure A-3. The 2nd l ink.

Rgure 9: A3 - The 2nd Link
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Figure 10: B1. Equilibrium of the 3rd Link.

\

F i g u r e B - 1 . E q u i l i b r i u m o f t h e 3rd l i n k .


