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Abstract
Many methods exist for fitting ellipses and other second-order curves to sets of points on the plane-

Different methods use different measures for the goodness of fit of a given curve to a set of points. The

method most frequently used, minimization based on the general quadratic form, has serious deficiencies.

Two alternative methods are proposed: the first, based on an error measure divided by its average gradient,

uses an eigenvalue solution; the second is based on an error measure divided by individual gradients, and

requires hill climbing for its solution.

As a corollary, a new method for fitting straight lines to data points on the plane is presented.



Introduction
This paper discusses the following problem: Given some set of data points on the plane, how should we fit

an ellipse to these points? In more precise terms, let curves be represented by some equation (7(JC,J)=0. We

restrict G(x,y) to be a polynomial in x and y of degree not greater than 2. The curves generated by such a

function are the conic sections: ellipses, hyperbolas, and parabolas. In the special case where G(x,y) is of

degree 1, the curve represented is a straight line. Now, given a set of data pairs {(x?y? z=l,...,/i), what is the

function G(x,y) such that the curve described by the equation best describes or fits the data? The answer to

this question depends upon how we define "best"

The primary motivation for studying this problem is to deal with systems that use light stripes to measure

depth information [Agin 76] [Shirai] [Popplestone]. When a plane of light cuts a cylindrical surface it

generates a half ellipse in the plane of the illumination. When this ellipse is viewed in perspective it gives rise

to another partial ellipse in the image plane. The incomplete nature of this curve segment makes it difficult to

measure its intrinsic shape.

A similar problem often arises in scene analysis [Render] [Tsuji]. A circle viewed in perspective generates

an ellipse on the image plane. If some scene-understanding procedure can identify the points that lie on the

perimeter of the ellipse, these points may be used as the data points in a curve-fitting process to identifying

the dimensions of the ellipse. The relative lengths of the major and minor axes and the orientation of these

axes will then be sufficient to determine the plane of the ellipse relative to the camera.

Fitting ellipses and other second-order curves to data points can be useful in interpreting physical or

statistical experiments. For example, particles in bubble-chamber photographs may follow elliptical paths,

the dimensions of which must be inferred.

It is easy to see how a fitter of ellipses would be useful in an interactive graphics or a computer-aided

drawing package: Le^ the user could indicate a rough approximation to the ellipse or circle he wants, and the

system could infer the best-fitting approximation. This kind of capability is currently handled by fitting with

splines [Smith] [Baudelaire].

It is important to distinguish among the extraction of points that may represent the boundary of an ellipse;

the segmentation of collections of points into distinct curves; and the fitting of these points once they have

been extracted. This paper does not purport to describe how to determine which points do or do not belong

to any ellipse or ellipse segment Curve fitting can be of use in segmentation and extraction to evaluate the

reasonableness of a f^vea hypothesis; however this discussion is limited to methods for determining the

equation of the curve that best fits a given set of data points.



Representing Second-Order Curves
An ellipse in "standard position", such as the one in Figure 1, may be represented by the equation

• 4 + 4 " 1 - (1)

Figure 1: An Ellipse in Standard Position

Such an ellipse has its center at the origin of coordinates and its principal axes parallel to the coordinate axes.

If parameter a is greater than parameter 6, then a represents the length of the semi-major axis and b represents

the length of the semi-minor axis. The eccentricity (e) of the ellipse is defined by the formula

where e must be positive, and between zero and 1. If a= by then equation 1 represents a circle, and e is zero,

If (Kb then b represents the semi-major axis and a the semi-minor, and e is defined as

A shift of coordinates allows us to represent an ellipse centered on a point other than the origin, say

as in Figure 2. If we let

and y*=y — k

then the equation of the ellipse of Figure 2 is

V 2

(2)

or,



Figure 2: An Ellipse off the Origin of Coordinates

FigureS: An Ellipse Rotated and Moved

A rotation of the ellipse, as in Figure 3, can be accounted for by the transformation

and y = — JC *sin 8 + y fcos 8.

These transfonnations can be substituted directly into the equation for an ellipse, but we prefer the implicit

form:

.£- + £- = 1 (5)

where xn = (x— h)cm0 + (y— k) sin 8
and y = - ( JC - h) sin 8 + (y-k) cos 5 .



Equation 5 can represent any ellipse in any orientation. A total of five parameters are involved: a and b

represent the dimensions of the ellipse, h and k represent its center, and 0 represents its rotation.

The equation of a hyperbola in standard position is similar to that of an ellipse, but with a sign change:

Figure 4: A Hyperbola in Standard Position

A hyperbola is shown in Figure 4. Its eccentricity is given by

The center of th-e hyperbola can be moved and ks axes rotated by transforms similar to those we used fir

ellipses. We can represent ellipses and hyperbolas by the same equation or set of equations if-we let

eccentricity into (he equation, iw central conic (ellipse m hyperbola) can be represented as:

where xm = ( x - h) cos & 4- 0- k) sin 6
and f = — (x~h)nn$ 4- (y~

II should be soled here that an ellipse can also be represented parantetrically. For an ellipse in standanl



orientation, points on its perimeter arc given by

x = h -f a cos <f> (7)
y = & + 4 sin 0 ,

where <£ varies between 0 and 2TT. The rotation 0 of the ellipse can be taken care of by rewriting equation 7

as follows:

x = A -f a cos 0 cos 0 — b sin <£ sin 6
y = k + a cos <£ sin 0 4- b sin <£ cos 0

A hyperbola may also be represented parametrically, using hyperbolic functions. Points on a hyperbola in

standard orientation with its center at (h,k) are given by

x = h± acoshS
y = k± b sinh £ .

The value of f may vary from zero to an arbitrary upper limit. The various permutations of the ± signs give

rise to the four branches of the hyperbola.

A parabola is actually a conic section with eccentricity 1, but if we try to represent it ki the form of

Equation 6 a division by zero results. It is better to represent the parabola by the equation

y = ax?"

A shift of origin and a rotation give the form:

y = ay2 (8)
where JCM = ( x - h) cos B 4- (y— jfc) sin 0
and yn = - ( * - * ) sin 5 + (y-J^ cos ^

Givoi any parameters of size, position, and orientation, Equation 6 or Equation 8 can be rewritten in the

form

Ofcy) = A£ + Bxy+C# + Dx+Ey+F=b (9)

It may be shown that all conies may be represented in the form of Equation 9.

Purcell pPurcell, p. 130] shows that Equation 9 represents a hyperbola if the indicator, B2 — 4 AC is

positive, a parabola if it is zero, or an ellipse if it is negative.

Furthermore, the parameters of Equations 6 or 8 may be recovered by the following procedure: Apply a

rotation 0 in which 0 = 45 degrees if A = C and
R

tan 2 0 =
A-C

if A * C This transforms Equation 9 into an equivalent form in which B (the coefficient of the xy term) is

zero. It is then a straightforward matter to extract the other four parameters.



Minimization and Approximation Theory
Approximation tlieory is a mathematical discipline that addresses curve fitting [Rivlin]. Usually, a set of n

data points are specified as pairs of the form { (XJA), i = l , ..., n }, where x is regarded as an independent

variable and y. represents values measured at n particular values of x. Let the symbol v denote the set of given

data pairs. Let Vbe the set of all functions defined on {x.^ i = l , ... ,/?}. V is thus an /z-dimensional linear

space, and v€ V.

Admissible solutions to curve fitting problems are usually represented in the form y=f(x). The set of all

admissible solutions constitutes a subspace W of V, whose dimensionality corresponds to the number

parameters used to characterize/ For example, the set of all quadratic functions of one variable constitutes a

space of dimensionality three. Given some w £ W we need a measure of the difference between w and v,

which we denote as \w— vj, the norm of w—v. The norm may be defined in the Euclidean manner as the

square root of the sum of the squares of M>— V, where summation is over all values of x for which both n{x)

and v(x) are defined. Another norm in frequent use is the maximum of all elements of w— v, again over all

points where both filiations are defined

A central theorem of approximation theory states that there exists some w* such that

Jw*-vf<|w-v|
for all w€ W. When we use the Euclidean norm, we say the minimizing w* is the best approximation in the

least-squares sense. If the norm is the maximum of aU elements of w— v, the minimizing w* is referred to as

the best uniform approximation.

The paradigm outlined above can be generalized to several dimensions. For example, given triples of the

form { x., yl$ zf i= 1,..., n } and a space of functions n(xj) we may find w* that minimizes (in the appropriate

sense) the difference between nOc.jp and zf But however many dimensions there are, the basic assumptioa

remains: that wisa single valued function of one or more independent variables.

It is difficult to represent an ellipse as a single-valued function. Therefore, the "difference" between a daia

point and an ellipse is not uniquely and urambigtwisiy defined. Intuitively, the difference should represent

che perpendicular distance from the point to the curve. If an ellipse were represented in the form y=f(x\

then / would be multivalued over some range of xfl and have no value elsewhere. Usually ellipses am

represented implicitly by equations of Che form ^x^ )=0 . We might choose a norm that estimates the

magnitude of £ itself, (i.e., it measures tie difference between g and zero,) and search for a g* that minimizes

thai noim. But the f'*cfa$sicaJtf techniques of approximation theory are no longer applicable, so we muse

develop other techniques.
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Choosing an Error Function

The basic paradigm for ellipse fitting is as follows: First, choose a method of estimating the "error" of a

point with respect to any given second-order curve; second, choose a method of calculating an aggregate error

from all the individual errors; third, systematically search for the ellipse that minimizes the aggregate error.

The choice of an error measure and an aggregating rule affects not only the solution, but also the

computational effort needed to obtain the solution.

It should be noted that any five arbitrary points on the plane are sufficient to specify a second-order curve.

As long as no three of the five points are coplanar, there exists a unique second-order curve that passes exactly

through each of the five points. An algebraic procedure exists for finding this curve [Bolles]. . More

sophisticated methods become necessary only when there are more than five data points to be fit

If all the data points lie on, or very close to, a mathematically perfect curve, then almost any method for

fitting ellipses will give acceptable results. In practice, problems usually arise when the data become noisy

and dispersed. Very eccentric ellipses are harder to fit than nearly circular ones. Cases where only a portion

of the complete curve is represented by data points generally create problems: the less complete the

perimeter the greater the difficulty of estimating the curve to represent i t

For the rest of this discussion, we will consider only a Euclidean norm. In other words, we are restricting

our attention to least-squares methods. This reflects a desire to let the solution represent an "average" of all

the data, rather than being influenced primarily by the outlying points, as would be the case if we used a

uniform norm.

Using the General Quadratic Form

One possible choice of an error function is the general quadratic form of a second-order curve as given in

Equation 9. We must avoid the trivial solution ^ = # = C = Z) = JF = F = 0, so we arbitrarily assign

F = 1. This gives

G{xod = Axl+Bxy+Cyl + Dx-hEy+l = O. (10)

Given a data point (JC.J*), we let the pointwise error £t be given by

{. = Gfyj*) = Ax* + Bx^ + Cy* + D x{ + Ey.x + 1.

The aggregate error is given by

= S( AXi
2+ Bx.y. + Cy* +Dx. + Ey{ + I)2 (11)

Obtaining the partial derivatives of Equation 11 with respect to A, B, C, D, and E, and setting these to zero,



we obtain the following system of equations:

A 2x4 + B + + D ZJC3 + E ZJC2/ + 2JC2 = 0

C ZJQ/3 ' + D 2x2y + E Zjcy2 + 2xy = 0
+ B Zxy3 '+ C 2 / + D Zx/ + E T.y3 + 2 / = 0

ZJC3 + B 2x^y + C Zxy2 + D 2.x2 • + E 2xy + 2 x = 0
+ /̂  2xy2 + C 2 / + D Zxy + E 3Lf + 2y = 0

(12)

The solution to these equations represents the the ellipse that minimizes the error function given in Equation

11.

Figure 5: Fit Obtained by Minimizing Equation 11

Figure 6: Fit Obtained by Minimizing Equation 11

Figure 5 shows a set of computerjgeneratcd data points and the curve generated by this method to fit it
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The method appears to work adequately in this c But Figure 6 shows another case, where the minimizing

ellipse clearly misses the data points near the origin of coordinates. What we are seeing is the result of a poor

choice of error function. When we went from the ellipse representation of Equation 9 to that of Equation 10

by fixing F to be 1, we allowed the representation to become degenerate; we lost the ability to represent an

ellipse that passes through the origin. An ellipse as represented by Equation 10 that passes close to the origin

must have large coefficients A, B, C, D, and E\ hence the error measure Z of Equation 11 will be large.

Therefore, minimizing Z implies keeping the curve away from the origin.

A requirement of a useful curve fitting method is that it should be independent of scaling, translation, or

rotation of the data points. That is, the choice of a coordinate system should not affect the solution curve;

except, of course, that the solution curve should be scaled, moved, or rotated along with the data points.

The Average Gradient Constraint
Ideally, the error function we choose to minimize should be related to the distance from a point to the

curve. Suppose we were to choose some primitive error measure such as the G(x,y) given in Equation 9. G is

zero along the curve, and its magnitude increases when we measure G at points farther and farther from the

curve. For a point in a small neighborhood the curve, G is proportional to the perpendicular distance from

the point to the curve. The constant of proportionality is the reciprocal of the magnitude of the gradient of G.

We will choose a constraint on the coefficients of Equation 9 such that the average gradient is unity. Then

the resulting error function will be directly related to the distances from points to curves.

A shift in notation will make the following mathematics easier. Define the vectors X and V to be

X = 7
y
l

and V =

A
B
C
D
E
F

Then we may rewrite Equation 9 as

£(jy) = VTX = X T V.

Using the Euclidean norm, our aggregate error A is given by

T )V = V T P V . (13)

P = 2 X XT is a matrix of sums of powers of JC and y, whose first five rows and columns are, in fact, the

coefficients of A B, C, D, and E in Equation 12 and whose last column provides the constant terms.
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Be magnitude of the gradient of G, |v G\ may be determined from the partial derivatives of G w

to jtandj.
3(7 _ V T 3X = yT x

£^ = vT— = vTx
3u 3^

where

X. =

2x
y
o
1
o
o

0
x
2y
0
1
0

/ + x y x y
T ) v

y x y
) (

dx dy

= VT 2CXxXx
T+XyXy

T) V

= VTQV

Q= SsXX T +XX T ) i s another matrix summed from powers of x and y. The mean-square gradi

m^««rr«iataBdinpofaa{(x.^), 1=lT.»,n}kZ(vG)2/ n. Requiring this "average gradient ma

We wish It find the vector ¥ that minimizes the matrix product VT P V, under the constraint that

* & Us well ticwra {Cwr«it} that at the cmstraaed minimum there exists some LaGrange miii

P V * X Q V

This «pafi§t would be easy to solve by nonnadl €%envalue methods were it not for the fact thai

ntplai mimxf as4 P » searfy sopltr, (It ̂ wns that the closer the data points approximate a crate

ttit closer P jpf i m f w singularity.) The appendii gives a method for solving Equation 15 that fk

s&\6G% |f\r i* l ^ i | comspondtng 10 five eigenvectors {V., i= 1,,..,5}.

, Hqmtkn IX we may urn Equations 15 and 14 to produce the rest*li? dcwm«8W
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Then we know that the coefficients of the quadratic function giving the minimum aggregate error under the

given constraint are given by the eigenvector corresponding to the smallest eigenvalue.

Solutions to the curve fitting problem are invariant with translation, rotation, and scaling of the input data.

A proof of this is presented in Appendix B.

Figure 7: Curve Fitting with Average Gradient Constraint

Figure 7 show the same data points that were used for Figure 6 fit using the "eigenvalue" method

described above. Comparing figures 6 and 7, shows that the new method gives superior 'results.

Some Difficulties
The problem of curve fitting gets worse when the points to be fit represent only part of an ellipse. Noise

and digitization error accentuate the problem.

Figures 8 through 10 show increasingly difficult cases. The data points for Figure 8 are a subset of those

used to generate Figures 6 and 7.. There is a noticeable flattening of the solution curve, but not so much that

if we had no knowledge of how the points were generated we would say the fit was "wrong." The misfit in

Figure 9 is more apparent. The same ideal ellipse as before was used to generate the points, but a "fattening"

of the data points has been simulated. Figure 10 represents an extreme case. The data points were not

generated theoretically, but are from an actual light-stripe experiment [Agin 72].

What we are seeing is a systematic tendency for the solutions to flatten, becoming elongated ellipses

parallel to the general linear trend of the data points. rITie tendency arises from the fact that, all other 'things
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Figure 8: Curve Fit to a Short Segment

Fijwe 9: Curve Fit to a Short, Fattened Segment

bttaf equal, ttwe titor of i n t t t r of p i i t t about t curve Q(x,y) = 0 depends on the second

mm &acsiw € That & I ftuMtion wimp fiscliefit faries rapidly tends to "fit" better, in a noimtlfe

ityura imMh tea a ftwcikm wWi a ooostint $pa$mt Rattened ellipses and hyperbolas are cbm

If i tit§l mmA dertt«ft of Ittif # i t « | fiuicsioa TTK corYe fitting solution chooses these 9

curv& #ftr the m m teantfvt w t t t we wouUtpftltar*

prcH»(em « ?ki« tlmoedl fo ftning wi& tfie avenge gradient constraint Lyle Smith [Sinittil«

tisftg tfie ̂ ntral quadiatk ffim, ie^ minimizing Equation 11.



14

Figure 10: Curve Fit to a Gently-Curving Segment

It is tempting to try some method that would keep the general idea of constraining the average gradient, for

example by computing that average over the entire curve instead of over all the data points. This would

amount to a constraint on the coefficients A through Fof Equation 9 independent of the data points. A little

thought will show that this approach will not work at all. The RMS error can be made arbitrarily small by

choosing a very large and very elongated ellipse with a gradient magnitude near unity along most of its length,

but a vanishingly small gradient magnitude in the vicinity of the data points.
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Corve Fitting by Hill Climbing
The bc^i measure of the goodness of fit of a point or set of points to a given mathematical curve

Is provided by measuring the perpendicular distance from each point to the curve. A reason*

approximation to that distance may be had by dividing the error function Gfa.j-.) by the magnitude of

gradient of (7 measured at (x-jfi. With such a definition, aggregate error S is given by

- = 1(—-—r

- y vTxxTv

where V, X, X , and X, arc the same as in the previous settioa*

The peiRt-by-point division males It impossible to move the summation sign inside the matrix produc

ic did a the previous section. Minimizing Equation 16 will require a hill-climbing approach. We ir

postulate a coefficient vector V, use it to evaluate 3f, then choose another V to see whether or not It Impre

tie error S* esc

Even though there arc six elements in the vector V, there arc really only fi\c independent paramc

necessary f§ specif)1 an ellipse* The hill climbing algorithm will manipulate these five. We are free to spa

these parameters in any way we choose. We only require that it be possible to derive V uniquely from th

parameters* For «anpl«» we could chouse to optimize over a, e, f. A, and k ghen in Equation 6.

seine* hat better approach is to repreiesi the ellipse in the form

i optimum ©i»er & jB, y> h Mi k 'This formulation avoids iegmetxy in 0 (orientation) when the c l ips

H.-'iV1:!^;!*! rr.i ttiai guess as to the approximating ellipse. The easiest way to do t

:s -v-; h :r*2 f^:i d t t jt both ends and n o r the middle, and calculate the circle that pas

Ar-:.|;f; ^ € ^ £:?£ p^rm. HifaUTtxi* tfnds to preserve tfce fbrm -:f ihc inxrJ guess, ff the initial gui

rcprtrfc r̂.:- in c;;:r^e ;he "r-:^xi *;?! ^ -t :;::^ verge ti> n hjperholic >}Iut:on. A rcughl> circular ellipse will r

A . "i ;: i'̂ .c? ' i l - i ^ ^ s ^ n ^ Cure must be ^t2rc;sed to use the correct numcrd

1*. 'Af ;»:r..e ?r u i^-er j^nc^Ou- , I: :urr.sv:it tJ^tiiic xethxd ^f^l^pi

;; 4. ^ -*„}/', \r^;crt fci ;ve. !l>T,;v lake :r.ar,> minutes :f :onputcr Unc f
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then finding the eigenvectors of that matrix. The complete method is given in Appendix C.

We shall not attempt to prove formally that results obtained from hill climbing on the expression given by

Equation 16 are independent of position, orientation, and scale. Instead we shall appeal to an intuitive

understanding of an error function and its gradient. The error function should not be affected by changes of

coordinates, nor should its gradient. A change of scale will affect the error flmction and its gradient, but

should multiply them by the same constant value everywhere. Hence, a local minimum will stay a local

minimum under translation, rotation, and scaling. Depending on the particular hill-climbing method used,

there may be some dependence of convergence properties on scaling and rotation.

Figure 11: Hill-Climbing Curve Fit

Figure 12: Hill-Climbing Curve Fit
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Figure 13: Hill-Climbing Curve Fit

Figures 11 through 13 show die date points of Figures 8 through 10 fitted by hill climbing with an initial

. circular estimate. Figure 11 is approximately equivalent to Figure 8. Figure 12 shows a more noticeable

improvement with respect to Fipre 9. While the result doesn't come near the ellipse from which the data

points were generated (cf. Figure 7), the It at the tower end of die data points is more 'Intuitive/' In the case
of Figure 13, the improvement is dramatic
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Applying the Gradient Constraint to Straight Lines
The following section is a digression from the main topic of fitting second-order curves. A new

formulation of straight-line fitting is obtained when we apply the methods developed here to the linear case.

A straight line is defined by the

G (x,y) = A JI

We define

X =

equation

- + By + C = 0.

X

y
l

and V =
A
B
C

(18)

so that we may rewrite Equation 18 as

G{x,y) = V1 X = X1 V = 0.

We seek to minimize the error function

5 = 2 f 2 = 2 ^ 2 = VTPV

where

P = 2XX T = 2y
n

The magnitude of the gradient of G is constant for all x and y, and is equal to the square root of A1 + B2.

(vG)2 = VT
1 0 0
0 1 0
0 0 0

V = VT Q V.

If the gradient is constrained to unity, then the error function

perpendicular distance from (x,y) to the line ( 7 = 0 .

will be precisely equal to the

Just as in the second-order case, the vector V that minimizes S subject to the given constraint must be a

solution to the eigenvalue equation

P V = X Q V.

Some algebra yields the pair of solutions

V =
A
B
C

—s
r-X

(s2x-(r-X)Xy)/n

t-X
— s

s2y)/n

(19)

(20)
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where
r = 2JC - (Zxf/n
s = ZJCV - Zxiy/n
t = 2/ - ?

\ = -|-

'Die two fonns are mathematically equivalent unless 5=0, in which case one form or the other will

division by zero. For this reason, Equation 19 is to be preferred whenever r is greater than /, and Eq

when the reverse is true. Once A and B have been computed using either form, C may be easily con

-Mix + Bly)/n. The mean-square error of the fit is equal to X/n.

A
Straight One Fit Minimizing Vertical Distances

Figtww 14 and 15 show i attartling comparison between die traditional method of fitting straight BE*

th* metiKXt presented above. The data points show a wide scatter about a nearly-vertical line. The i

Ft&n U * » fit using fib* traditional Inor regrmioa foraiulas, where a line is represented by die equal

M *mi I ait afcated as

A 2.** - < S J f

Ii« »,rf figure 15 w« !ww«f on the line representation of Equation 18 and the



20

Figure 15: Straight Line Fit Minimizing Perpendicular Distances

A failure of a "tried and true" method deserves some analysis and discussion. In this case, the failure is

traceable to the assumption that x is the independent variable, that y depends on x. But when the trend of the

data is nearly vertical, it may be that x is more a function of y. A vertical line is degenerate using the

regression formulas. If it makes sense for a collection of points on the plane to approximate a vertical line,

then we should not use linear regression.

I have not seen this formulation published anywhere else. I would appreciate anyone who has seen this

result published elsewhere letting me know.

Conclusions
Three methods for fitting second-order curves to sets of data points on the plane have been presented and

malyzed. These methods are distinguished principally by the way they measure the amount of misfit between

i given curve and a given set of points. The three measures are:

L the quadratic form, with the constant term set equal to 1 (Equation 11),

2. the quadratic form (Equation 13) subject to the average gradient value being held to 1 (Equation

MX

3. the quadratic form divided by the gradient magnitude at each point (Equation 16).

As may be expected, -the three measures lead to different results when minimized. The first measure has

>een shown to be sensitive to translation in the plane, and to give grossly incorrect results under certain

onditions. The second measure has been formally shown to be insensitive to translation, rotation, and
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scaling, and reasons have been given why the third measure ought to be the same. The third measure has

been shown to give somewhat better results than the second, particularly in difficult cases with small angular

arcs and widely scattered data points.

The three measures also lead to very different computational procedures for their minimization.

Minimizing measures 1 and 2 both require summing products of x and y up to the 4th power; in this

summation they are O(n), where n is the number of data points. But for fewer than 100 data points, the major

use of computation time is in solution of the simultaneous linear equations (for measure 1), or the eigenvalue

solution (for measure 2). On a Digital Equipment Corporation 2060 computer, generation of Figures such as

6 and 7 typically require about 50 milliseconds.

On the other hand, measure 3 is very expensive computationally. Computation time is a direct function not

only of the number of data points, but also of the initial solution estimate and the accuracy required.

Generation of Figures 11 and 12 required 24 and 42 seconds respectively. Hence hill climbing is to be

recommended only when all other methods prove inadequate.
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Appendix A: Solution of the Generalized Eigenvalue Equation
We wish to solve the generalized eigenvalue equation

PV = \ Q V ,

given that Q is singular and P may be close to singular. The following method was derived by Richard

Underwood.

We know that the Last row and the last column of matrix Q are zero. Q may be represented by the

partitioned matrix

[Q* I 0

[ 0 | 0
We may usually expect the 5x5 matrix Q* to be positive definite. We may use a Cholesky decomposition

[Forsythe and Moler] to factor Q* into a lower diagonal matrix L* and its transpose L*T, so that

Q* = L* L*T

If we let L represent the augmented matrix

L* | 0

then we have the result

I o

0 I 0

where I denotes the five-by-five unit matrix and L"T is the transpose of L'1.

The original generalized eigenvalue equation, Equation 15, may be transformed into

L" 1 PL T L T V = L " 1 Q L " T L T \ V .

Applying the substitution

[ C* | U

~|V |T
and letting Y be the partitioned column vector

Z
Y = L"TV =s

yields the representation

C* | U

W

w
25 X

I 0 z
w

(21)

The bottom row of this result represents the scalar equation
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UTZ+aW=O.

This may be solved to give
U T Z

The top five rows of Equation 21 represent the vector equation

into which we may substitute our result for W, Equation 22, to yield
, ~ . 1

(22)

(23)
a

Equation 23 may be solved by usual eigenvalue methods, such as the Q-R algorithm [Isaacson]. Given a

particular solution Zi? the corresponding V. is given by

Z.
V, = L-T

1

w
where W is given by Equation 22.

Appendix B: Rotational, Translational, and Scaling Invariance
The rotational, translational, and scaling invariance of the method may be shown as follows: Let there be a

coordinate system (i/,i?) related to (xj) by the transformations

u = ax+by + e (24)
: dx + ey+f.

We may define a vector U analogous

U =

' 1? '
uv
V2

u
V

. 1 .

- HX =

to X such that

' a2

ad
£•
0
0

. 0

lab
ae+be

Ide
0
0
0

b1

be
e2

0
0
0

lac
af+cd

Idf
a
d
0

2bc
bf+ee

2ef
b
e
0

c2

}
c
f
1

X

y
L i

Just as a vector V defines an error function Gixj) = VT X, a vector V 'can define an error function G * = V 'T

U. Equating the two error functions (for all X) yields the relationship

Now, suppose that for some collection of data points {X, f=l,.../i} V minimizes the aggregate error given

by Equation 13. We have shown that V satisfies Equation 15, and that the corresponding eigenvalue X 5s the

smallest of all eigenvalues that satisfy the equation.

Rewriting Equation 15 and performing some algebra gives
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P V = A Q V

2 (X XT) V = X 2 (Xx XX
T + Xy Xy

T) V

2 ( X X T H T V ) = T H T V 'XTHTV'+X XTHTV)
x y y

2 (H X XT HT V') = X 2 (H XY Xy
T HT V ' + H Xv Xv

T HT V')v Xy y

2 (UUT V') = X 2 (UY UV
T V ' + U y Uy

T V')
X X

where Uv and Uv denote the partial derivatives of U with respect to x and >>, respectively. If the
x y

transformation of Equation 24 is an' orthonormal transformation, that is, if

<?+&=<* + *
and

ad + be = 0,

then it may be shown that

U x U x T + Uy UyT = ^ + ^ ^ u ^ 7 + U v U v T ) •
Substituting this result in the above,

2 ( U U T ) V ' = ( a 2 + 6 2 ) X 2 ( U u U u
T + U v U v

T )V ' .

yields the result we seek: any solution to Equation 15 in one coordinate system is also a solution in any

orthonormaUy related coordinate system. Since the eigenvalues are proportional, the smallest eigenvalues in

the two coordinate systems correspond

Appendix C: Hili Climbing Method
Hill climbing refers to a class of numerical methods that minimize a function G(U), where U may be a nr

dimensional vector. For our purposes, we may assume the existence of a subroutine MINI that minimizes G

along a straight line. It accepts an initial estimate U^ and an increment AU, finds a value of k that locally

minimizes G[U0 + k AU), and updates UQ to the new minimizing value. Different hill-climbing strategies

consist of different means of selecting a sequence of AU vectors- The sequence terminates when no further

improvement in (7 can be obtained.

A method that requires no knowledge about the function </ is to search sequentially along the n dimensions

of U, Le., to apply the sequence

' 1
0

0

"o
1

0

0
0

1

t

1
0

. 0

This is one form of the method of steepest descent. For some functions this method will suffice. But if the

function (7 is ill-conditioned, that is if the elements of U interact to- a great degree in their influence on G(\]\
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or if the equipotentials of G tend to form squashed ellipsoids, then this simple approach will converge very

slowly. Figure 16 shows a hypothetical sequence of iterations in minimizing a function of two variables.

Figure 16: Iterations in Method of Steepest Descent

Convergence can be enhanced by keeping track of the cumulative change in U as the minimization

proceeds. After n minimizations along the n coordinate directions of U, an additional minimization step^can

be attempted along the direction indicated by the sum of the individual k{ AU. terms measured in the

preceding n calls to MINI. This is called the method of steepest descent with accelerated convergence.

Some improvement in performance can be obtained if it is possible to evaluate the gradient of (7, that is,

the n partial derivatives of G with respect to the elements of U. At each minimization step let AU point in the

direction of the gradient Use of fee gradient can give a computational advantage in reducing the number of

calls to MINI, but it is doubtful whether this technique affects overall convergence properties.

The situation fllustrated in Figure 16 can be completely avoided if the second partials of G are available. In

the neighborhood of IL, G(U) may be approximated by the expression

G(U)s G0 + D T ( U - U O ) + I ( U - U / P ( U - U O ) (25)

where D = D (UQ) is the gradient vector, or vector of first partial derivatives, and P = P (XL) is the matrix of

second partial derivatives* P is a symmetric matrix. An eigenvalue analysis of P will give n linearly

Independent eigenvectors {Uj» I = l^^n} and associated eigenvalues {A., i= !,...»«} such that

These eigenvectors point in the directions of the principal axes of the equipotential ellipsoids of G. Function

minimization may like place in the eigenvector dircxtions independently without cross-coupling or co-
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variance effects. Convergence will be quite rapid.

If the eigenvectors are normalized to unit magnitude, and we let U = Uo 4- k I I , then Equation 25

becomes

(7(U) ^ Go + JfcDTU. + X. Jfe2. (26)

Taking tlie derivative with respect to k and setting the result equal to zero, we find that the minimum ought to

occur when k = DTU. / (2 k A.). If \ is negative, as it frequently turns out to be, then the k above actually

points to a relative maximum. This result can be used to guide the minimization by subroutine MINI, to

suggest initial step size for the search, but experience shows that the use of MINI should not be bypassed.

For the case at hand, ellipses are represented by

k) + y(y-k)2 = 1,

or

a JC2 + £ jcy -h y / - (2*h+fik) x - (fih+2yk) y + air2 + fihk + yifc2 - 1

Therefore let

= 0,

a
fi
y
h
k

and . V(U) =

a

y
-lah-Bk
-Bh-2yk

.af^+Bhk+yk2-! .

and let X, Xx, and X be defined as before. GpJ) is given by

1 D

where

N = V T XX T V = ( X T V ) 2

The first and second partial derivatives of N and D with respect to the elements of U are:

VN = 2

Fxyl

Fxy
Fy'2

-FF
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V2N = 2
•Fx2-2Fx'

V
x'y

-Fyx'/-Fx'

-Fxx
2-2Fx'

— F jfV — FV

F2+2Fa

F x'y-FFx'
Fyy

2-2Fy

VD = 2

2 F /

-2F/-FJ
L-Fj-lFy

V2D = 2

where

2JC>'

0
-4x'a-2F -2

4y'2

- 4 y Y - 2 F v

- 4 / Y - 2 F

The first and second partials of £. can be derived from the partials of N and D by use of the formulas
3 N DN - ND

3j? 2)

d1 N

dpdq D

D1

if

where p and q stand for any of the set {a, /}, 7, A, and &}, and subscripting denotes taking the partial

derivative. The derivative of a sum is equal to the sum of the derivatives of the terms. Hence, the partial

derivatives of 2 are the sums of the partial derivatives of the individual |t terms.
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