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Abstract Inference of statistical models and discovery of patterns in random data sets
are problems common to many fields of investigation. In particular, in the
observation and control of processes where the physical mechanisms are too
complex or not well understood to provide a model structure a priori, the choice of
model structure and model size becomes a key element in the analysis. This
paper describes an unsupervised technique for the ranking and model structures
and choice of model size based on the expression [-log likelihood + model size
(in bits) ] . This criterion is shown to be equivalent to seeking a parsimonious
representation for data, and its derivation is motivated through a Bayesian
argument. Limiting properties of the criterion and applications to number of
clusters, dimension of a linear predictor, degree of polynomial approximation, or
order of a Markov chain are discussed.
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1 Introduction

' Although statistical models are now widely used in almost every field of science and engineering
the methods of constructing such models from the available data, i.e. the methods of model
identification or model inference are still far from being perfected. This paper presents a ww
approach to model inference which has important advantages over the conventional methods mainly
by being more general and allowing one to construct reliable models of a form that would not be
feasible with the classical techniques.

The model inference problem can usually be formulated in the following way. There is a set of
models Q and an order (reflexive, transitive and antisymmetric binary relation) ORDCx11) defined on
Q. The order ORD(xn) is a function of the observations xn A x ^ , . . . ^ , such that for any xn the sat Q
is well ordered, i.e., Q has a minimal or First element The model "inference procedure finds the
minimal element in Q with respect to ORD(xn), for a given set of observations xn. The order cm the eat
of models is usually given by an increasing (decreasing) ordering on a set of values of seme real
function r(q,xn) of a model q and the observations. This function may be referred to as a rostaum of
goodness of a model with respect to the observations or a measure of It of a modal to ttte
observations. The inference procedure in this case selects a model in Q using a criterion of minimum
(maximum) of r(q,xn).

The most commonly used conventional inference methods are based on sither a likelihood or an
average quadratic error function. These methods are attractive because they require no knwrftd^

. or assumptions about the prior distributions, the resulting estimators have good asymptotic properties
and the estimation procedure is usually quite simple. However, tiiose inferwc© methods cannot be
meaningfully applied to many interesting and useful classes of models. The probtem is usually
caused by the fact that certain sets of models are not well ordered with respect to either the likelihood
or the quadratic error function. This problem frequently arises ki connection with the choice of the
dimensionality of a model. Typical examples include the choice of the degint for a pdtfnomtA
regression, the choice of the order for an autoregressive model or fie choice of the number of
components for a probability mixture, where the maximum BkeHhood or the minimum quadratic mmt
criteria always lead to choosing the highest possible dimension*

The conventional ways of treating such problems include interactive methods based on
judgment sometimes supported by an- indicator such as an error step sbca, «K4 •
The conventional analytical techniques usually require either a prohibits amount d
(e.g. leave-one-out or cross validation method) or an excessive number of dftta (e.g. holdout •
A survey of these techniques and their various mcxJIfications (such as leave-two-out) w » provtdad by
Toissant [TOI] with regard to estimation of mteclasstficatton

A more recent approach to model identification ŝ repose1'
Schwarz [Schwarz]. They incorporated the nvmzer c* zzrzr.
selection criterion which increasingly penaiizes ^.i3*er :J r»*
maximizes the function



where L(xn) is the likelihood and k. is the dimension for the model j . The penalty term k. arose
somewhat arbitrarily as an approximate bias of the Kullback information function. The criterion of
Schwarz maximizes

logL(xn)-(1/2)kjIogn

and the resulting estimates were shown to be asymptotically optimal under a 0-1 loss function, for
Li.d- observations and for a specific class of linear models. Neither of these methods, however,
provides a basis for discriminating among models having parameters of different type, range or
different effect on the likelihood function since only the total number of the parameters appears in the
criterion.

These deficiencies in the above methods stimulated the search for a more general inference
technique. The result of this investigation, a criterion selecting a model that leads to the most
compact representation of the observations, was initially introduced in [Minimum]. This criterion is
motivated by a Bayesian argument with a 0-1 loss function and a prior distribution assigning lower
probability values to more complex models. Such choice of the prior distribution was stimulated by
the ideas contained in the work of Solomonoff [Solomonoffi] on inductive inference. Solomonoff has
also considered the model inference problem [Solomonoffi], [Solomonoff2] in a form of a general
probability estimation. The approach that he proposes, however, requires two impossible things: To
find the shortest program for a Turing machine for generating a given sequence, and to calculate a
sum of an infinite series without knowing the analytical expression for the elements. The first problem
is in general unsolvable[Chaitin1] and the solution to the second task can only be approximated.
Although Solomonoffs approach to the probability estimation problem is practically and theoretically
unfeasible in its direct form, his ideas initiated the development of algorithmic information theory
[Kolmogorov] [Chaitin], [Willis] to which our method is to some extent related.

An approach resulting in conclusions that are equivalent to ours but based on a different
motivation has been proposed earlier by Rissanen [R11]. His method uses Gibbs' theorem as a basis
for model identification, although he also noticed the possibility of a Bayesian interpretation.
Rtssanen has also shown that this method applied to AR and ARMA models with an unspecified order
results in consistent order estimates [RI1], [RI2]. This makes it better than the Akaike method which
cannot estimate consistently the order of AR model as was shown by Shibata [Shibata].

The methods proposed in [Minimum], and in [RI1] are also related to the work of Wallace and
Boulton [Bouiton], They explored an idea of using the minimum of a required storage size as a
criterion in the context of classification.

This paper expaiKfe the approach presented in [Minimum] and introduces some new results on
asymptotic properties of the method. Section 2 provides the motivation for the proposed inference
procedure. Section 3 presents some erf its properties ami Section 4 illustrates the procedure with
several applications.



2 Minimal Representation Criterion
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more general problem described below.

the output string T(p, en the output ^ " ^ t l output string T(p), or no ou.pu, a. aU

fflSSSi may halt or il may p

forever.

INPUT TAPE

OUTPUT TAPE

WORK TAPE

Figure 1: Uimmmai Turing mrncfoimm

i there are no specific assumptions about the programs then it is reasonable to choose as 'the a

priori probability for a given program p 'the 'value

PtpJ»2"^^

where s|p| is ttie tongtt) erf the program p In tits*

This choice is equivalent to an assumption that the program p is generated by s(p) random tosses

of a lair coin, and i may be c&nsidered to be an extention of the principle of insufficient reason

(Sotofftonoffi).



For a given sequence of integer observations

Y*1 == Y Y Y

we will call a program p a representation of xn if the sequence xn is a prefix of the output string
produced by p. Define a class of representations of xn as

R(xn) = {p| xn = PREFIX [T(p)]}

Similarly, for a given set H of programs, a class of representations of xn in H can be defined as

R(xnlH) A {p| xn = PREFIX [T(p)], p€H } = R(xn) H H

Given a program p, the conditional probability that xn is a prefix of T(p) is

P(xnip) {
0 otherwise

Hencef the posterior probability of p, given that xn is a prefix of T(p) fa

Gotherw.se

where tfie symbol « means "is proportional to"

Similarly, for programs from a given set H

P(p f l H) r 2'^9hp(H) $ p€H| P ^ . {
P(H) Oolherwfee

and

For a given sequence x" and a set of programs H one may attempt to find a program p* in H which
maximizes the a posteriori probability P(pf xn

f x€H). ft follows from the above formula that this
program is the minimal length representation of x° in H, i.e.



s(p*) = min {s(p)| p € R(xniH)}

The minimal representation criterion is a rule selecting the minimal length representation of a
sequence xn in a given set of programs as the most likely program producing xn.

The minimal representation criterion can be used to discriminate among competing statistical
models as will be shown below.

Definition

A function f: I* —• [0,1] is e-computable if there exists a computable function fc(x
n,k) which for any

xn€l* and for any k > 0 evaluates the first k digits of a binary expansion of f(xn) if f(xn) > 0, or it returns
some predefined code if f(xn) » 0.



Lemma 1

Let C be a class of discrete probability distributions for xn such that each distribution P (*) can be
uniquely determined by a discrete parameter set q, q€Q, and for any xn there is a q such that
P (xn) > 0, and P (xn) is e-computable as a function of q and xn.

There exists a nonempty set of programs H(C) and a computable isomorphism

v: {(n,q,xn)I Pq(x
n)>0, q€O} -> H(C)

such that if v(nJq,xn) = pthen

s(p) = D + s(n) + s(q) + [-log Pq(xn)l,

where D is a constant independent of xn and the notation lyl means the smallest integer greater than
or equal to y. The inverse of v is also computable.

Proof

First, notice that if P (x**) is e-computable then the function

is computable, since to find I • log yI for y > 0 it is sufficient to evaluate y up to the first nonzero digit
For any q and any n the sequences xn having nonzero probability P (xn) can be encoded by binary
strings forming a prefix set, in such a way that if c (xn) is a code for xn then

sfcq(xn)] - f-Iog Pq(x")l

and there are effective encoding and decoding procedures. To prove the above statement we
present the procedures for encoding and decoding.

Let /*(t )f ^(2), y°(3)... be the natural enumeration of the sequences of length n.

Encoding procedure E; To find a code for a sequence xn, given q, compute h(qsy
n(i)) for all the

sequences y^fi) which precede x11 in the natural enumeration. Then, to each of the sequences
having a nonzero probability assign as a code c(«) the smallest binary number of length
which Is not a prefix or an extension of the codes c(1)f c(2)f ... c(I-l). The correctness of this
procedure is implied by Theorem 3.2 of Chaftin [Chaitin].

Decoding procedure ET1: To decode a code c, given n and q, compute for i = 1t2s... the codes
€(/*{!)) ami the values

z(I) . F-tog [1 - P ^ t D ) - Pqif(2)) *.... Pq{y
n(i))j1

until «ther of tie follmving two co-nditions is satisfied:



1. c = c(yn(i)); then return yn(j)

2. z(i) > s(c); then halt (error)

The second condition insures that the procedure will terminate even if c is not a code of any
sequence.

Now, the program p = v(n,q,xn) will contain the number n, the parameter set q, the code c (xn) the

decod.ng program E" , and an executive routine (EXEC) placed in first position on the input tape:

p = {EXEC,E-1,n,q,cq(x
n)}.

The routine EXEC is a program for T that reads the remaining portion of p from the input tape,
executes the procedure E" , and writes the result on the output tape (see Rg. TUR2), We can see that

TKv(njq,xn)] = xn

Clearly, for a given class of probability functions C one can construct the mapping v as a procedure
producing a program p in the above form from n,q, and xn. This procedure will use the encoding
routine E to compute c (xn).

q n EH EXEC

I

Figu re 2: Taring machine as a decoder

The inverse mapping v 1 is a procedure which simply executes the program p on the machine T and
in addition copres n and q from p , returning (n,q,xn).

The set H(C) is given as

H(C)) « { p| vCn,q,xn) . p, Pq(x
n) > 0, q€Q}

and is clearly nonempty.

The tength of the program p corresponding to given n,q, and xn
is

s{v(n,q,xn»] . s(EXEC) + s(F1) + s(n) + s(q) + s(c
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= D + s(n) + s(q) + f-Iog Pq(x
n)l

and this completes the proof of the lemma.

The above lemma shows a correspondence between a class of probability distributions C and a
class of programs H(C). The statistical inference problem can be now approached by applying the
minimal representation criterion to find the most likely program within the set H(C) which produces
the observed sequence. To use this approach it is not necessary to construct the set H(C). We can
see that for a given sequence xn

minp€H(C) S<p) s D + S ( n ) + minq€Q

So, the probability distribution corresponding to the minimal length representation of the sequence
xn will be determined by q* such that

s(q*) + f-logPq.(x
n)] = minq€Q{s(q)q . (x)] = minq€Q

To discriminate among probability distributions we will minimize the function:

s(q) - log Pq(x
n)

since if

then

S(q*) + f-log Pq,(x
n)l = minq(.Q{s(q) + f-log Pq(x

n)l}

It will be shown in the next section that such q* always exists.

One may notice that if the a priori probability of q is taken as P(q) » 2"s(q) then r(q,xn) a P(qjxn), so
minimizing r(q,xn) is equivalent to seeking maximum of the a posterior probability of q, given
observation sequence x°. However, by the former derivation, the principle of minimum of r(qtx

n) is
shown to be a special case of a more general principle- the minimal representation criterion.

3 Properties of r(q*,xn)

As mentioned in the introduction, the likelihood function does not always have a maximum In a
given set of probability measures. In contrast, the function r(q9x

n) not only reaches the minimum, but
the minimum of r(q,x°) can always be found in a finite time.

Lemma 2

There is an effective procedure for finding q* such tfiat

Proof

The search procedure can proceed as follows: First find some value q\ such that P ,{xn) > 0. This



can be effectively clone by enumeration, since it has been assumed (in the definition of the class C)
that such qJ always exists for a given xn.

Clearly, r(q,xn) > s(q), so s(q) > r(q',xn) implies that r(q,xn) > r(qJ,xa). Therefore, all the values q
such that r(q,xn) < r(q\xn) will be in a finite set

Q' ={qis(q)<r(q),xn)}.

The function r(q,xn) has a minimum in Q' which is also a minimum in Q, and it can be found in a finite
time, which proves the lemma.

One property of an estimator that statisticians usually attempt to show is consistency, i.e.,
convergence of the estimated probability distribution to the true distribution when the number of
observations tends to infinity. Strong consistency of the estimates of AR and ARMA models obtained
through a procedure equivalent to minimizing r(q,xn) was shown by Rissanen [RI2], [RI3].

In general, to speak of consistency in ttte usual sense, i.e., mean square consistency, consistency
in probability, or strong consistency, one has to assume that the true probability distribution lies
within the closure of a given set of distributions. This assumption, however, seems to be
unnecessarily restrictive for at least two reasons:

1. Usually, one does not know the general form of the true distribution for a given set of
observations.

2. Even if the general type of the true distribution is known it may often be advantageous to
use a different form of the modeling distribution (for example, a distribution which is
simpler or easier to identify than the true one, and still adequate with respect to some
objective such as data prediction or compression).

Therefore, to characterize the limiting behavior of the estimates an alternative form of consistency will
be studied; a convergence of the estimates to a certain best model of the true distribution.

Definition

A probability distribution P ~(xn) is a best model of P(xn) if the function

is defined on some subset Q' of Q, and it has its minimum at q~> i.e., minq€Q.l(q) - KQ~)-

There may be more than one test model within a given class of distributions, so we will talk about a
set of best models B~. The above definition is motivated by the following properties of l(q).

If the function I(q) is defined, then:

1J{q)>0

Z if for some q there is m < oo such that P(xn) = P (xn) SLS., for all n > M, then l(q) = 0.
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3. If the process defined by Pq(x
n) is stationary and r-order Markov and P(xn) defines a

stationary process, then l(q) = 0 implies that for every n > r

Pfrjx"-1) = P (xn|xM) a.s.

Proof

The properties 1 and 2 are implied directly by the properties of the Kullback information [Kull].

Property 3: Let

and
Hq^-ElogPq(xnIxn-1)forn>r.

The value H is well defined under the conditions stated in 3. The condition l(q) 0 is equivalent to

and it implies that H H(xn|x
n-1) for n > r, since

H -H(xn|x ) > 0, for n > r, by Kullback information properties [Kull]
and H(xjxn*1) is nonincreasing.
Hence, for every n > r

Elog[P(xnlx
n-1)/pq(xnIx

n"1)] = 0
which proves the property 3.

If one cannot assume that the true distribution is approachable by the estimator, it may be
interesting whether best models exist and if so, how the estimates behave with respect to the class of
the best models B~. Certain cases when something can be said about the existence of the test
models and the behaviour of the minimal representation estimates with respect to B~ are presented
by the following fhree lemmas,

Lemma 4

If the following assumptions are satisfied.

1, The true model is stationary* ergodic and it has finite entropy.

2, The models P_ are stationary and finite order Markovian.

3, For someM< oo and for all q € Of s(q) <; ML

then

(I) The set of best models B~ to not empty
(II) P{q • € ET for all but finitely many cases, as n -+ oo} « 1

Le.f the minimi repr^^ntation estimator will almost surely select a test model every time, after some
finite number of steps.

Proof
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First, notice that assumption 3 implies that the number of models is finite so their order is bounded
by some k < oo.

(i) The initial assumption that for any xn there is q such that P (xn) > 0 implies that there is q' such
that P ,(xn|x

n"1) > 0 for any n > k. This can be shown by contradiction. Namely, if the above statement
is not true, then for any q € Q there is k + 1 element sequence: ao,a1,...,ak+1, such that
P (ao|a1,a2,,..,ak + 1) » 0. If one constructs xn as a concatenation of all such sequences then for any
q, P (xn) = 0 which contradicts the initial assumption. Hence, for some q1 € Q, P ,(xn|x

n*1) > 0 for all n
> k, so E log P ,(xn[x

n*1) is finite, and by assumptions 1 and 2 the limit I(qJ) is defined and finite.
Therefore, the subset Q1 is nonempty and finite, since Q is finite, so l(q) has a minimum in Q* and the
class of best models B~ is not empty.

(ii) The elements of the infinite sequence {q*} belong to a finite set (q|s(q) < M}, so there is a
nonempty set Q" C Q, such that each q € QH occurs in {q*} infinitely many times, and for some
finite m q* € Qlf for ail n > m.
We will prove that P(Q" C B~) = 1 by showing that P(QW i£ B~) = 0. If Q" fl£B~, then there is
q1 € Q" which is not a member of B". First, we consider the case when there is a sequence of values,
3 ^ ^ , . . . ^ , such that P(ao,a1,..Mak) > 0 and P^ia^di^^.^a^ = 0. If this sequence occurs in xN, then
r(ql»xn) =s oo for all n > N, so q' ^ q* for alt n > N since for each x" there is q such that rfox0} < oo.
The element q' can occur in {q*} infinitely many times only if the sequence ao,a1,...,ak never occurs in
{xn}, but this event has probability (X

Now, assume that P(aora1,-..,a^ > 0 always implies that P >(at^ara2,..Mak) > 0. The value

is then finite for all n > k, and the limit

l(q') = Hq, - l i 1

exists. If q1 € B", then there exists q~ € B~ such that l(q") < l(q'), so Hq- < Hq,, giving

q,Hq

foralln>k.

Hq,-Hq~ = Epog Pq-(xnlxrv1>log Pq,(xn|x
n"1)] = e > 0

Now, let

Rn(q\q~) = (1 /n)*[log Pq-(x
n)-log Pq>(xn)]q ( x ) l o g Pq>

Pq-(xn|xn1)-log Pq,(xnix
n-1)] ^ C/n.

It follows from assumptions 1 and 2 that

so almost surely there exists N such that Rn(q',q~) > e/2 for alt n > N,

q q n*e/2 for all n > Ns a.s.

&> there is Ns < oo» such that

^ q f o rn>N\ aus.

Hence, rCq\xrt) > rfq^x") for all n > H\ as. which implies that
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P{q* s q\ infinitely often (i.o.) as n —> 00} = 0..

Therefore, Q" C B~ always implies a zero probability event, so

P(Q" <t B~) = 0

and

P(QH C B~) = 1

which proves (it).

If the size of the models is unbounded, then the set of best models might be empty. It may happen
either if the function I(q) is undefined on the entire set Q, or if the function l(q) is defined on some
infinite subset Q' of Q and for every q € Q1 there is q1 € Qf such that l(qJ) < I(q). We will show that if B~
is an empty set, then the size of the minimal representation estimates will almost surely tend to infinity.

LemmaS

If the assumptions 1 and 2 of Lemma 4 are satisfied and B~ is empty, then

P{s(q$ -> 00} = 1

Proof

If s(q*) does not tend to infinity, then s(q*) < M infinitely often as n —• 00, for some finite M. This
implies (as in the proof of Lemma 4) that there is q such that q* = q infinitely often asn- foo . The set
B~ is empty, so either l(q) is defined and there is q' such that l(qJ) < l(q), or I(q) is undefined which,
under assumptions 1 and 2, can happen only if there is an event a^a.,,...^, such that P(ao,a1,...,ak) >
0 and P (ao[ara2,...,ak) = 0. It has been shown in the proof of Lemma 4, (ii) that in either of these
cases

P{q* = q,i.o-asn-*00} a 0.

Hence the event NOT{s(q*) - * 00} implies a probability zero event, so

P{NOT[s(q;p -* 00]} * 0, and
P { ( ) }

If we do not know whether the set B~ is empty or not but we know that the minimal representation
estimator produces a sequence of estimates whose size is bounded, how could this knowledge be
utilized? The following Lemma provides an answer.

Lemma 6

If the true model is randomly chosen from a class of stationary ami ergodic models, and the models
P are Mationary, ergodic and finite order Markovian, then
P{s(q^) < M implies that B~ is not empty and c£ 6 Ef\ Lo. as n - • 00} » 1.

Proof

Leni'ma 5 implies that Pfsfq^) < M and B~ is empty} * 0. Mm), from the proof of Lemma 4(ii) It is
evident that
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p{s(q*) < m and q* € B~, i.o. as n - * 00} = 0.
By taking a sum of the above events we obtain
p(s(Q*) < M and [B~ is empty or q * € B, Lo. as n —• 00]} = 0
and since the above event is a negation of the event in the thesis, this proves the lemma.

Lemma 6 shows that from knowledge that size of minimum representation estimates is bounded
one can almost surely conclude that a best model exists and the estimates converge to the set of best
models. This result can be used in practice to evaluate a given class of models used to explain the
observed data. If the size of the minimal representation estimates reaches a stable level and then
remains constant with the introduction of new observations, then the assumed class of models may
be considered to be adequate. Obviously, one cannot guarantee that the model size will remain
constant forever, but as long as it does it corroborates the hypothesis of existence of a best model

I and of convergence of the inference process.
I
! It might be interesting to notice the relation of the above results to the intuitive approach used in
• scientific inference, which preserves hypotheses leading to stable models, and calls for a search of an

alternative hypothesis whenever the current hypothesis yields models whose complexity continues to
increase with the introduction of new data [Kuhn].

i 4 Practical implementation

The minimal representation criterion can be used with at most countably infinite classes of
probability distributions- This is not a major limitation for the parametric distributions, since any
reasonably well behaved function of real parameters can be arbitrarily closely approximated by a

I function of rational parameters as is done in numerical statistics.

! To apply the criterion it is necessary to specify a form of representation for the parameters q, t o
I evaluate s(q). While the choice of this representation may to some extent affect the estimation results
I for a given set of observations, the limiting properties of the minimal representation estimator, shown

in the preceding section, do not depend on this choice.

I
Clearly, any chosen scheme for representing the parameters should allow one to express all the

members of the set O. Furthermore, the parameter representation should be least redundant in the
I sense that given two representation schemes 1 and 2, such that s^q) < s jq ) for some members of Q,
- and S^q) = s2(q) for the remaining elements of Q, then the scheme 1 should be preferred over the

scheme 2.
i
I
I The following representation schemes can be used for typical applications:

• If Q is a finite set with m elements, then its members are represented by I log ml bit
numbers. So, s(q) = I log m I for every q. Natural number n is represented in a ternary
code using 2 bits for each ternary digit (00) = 0, (01) = 1, (10) = 2; the remaining code
(11) indicates the end of the number.

s(n) = 2*[logJn + 1)l +2
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Integer i is a natural number with a one bit sign, so

s(i) = 2*[log3(|i| + 1)l + 3

• Rational number F having a finite binary expansion is represented in a normalized floating
point form as a pair of integers i and j , where

i = Llog2(|F| + 1)J

F = c * 2*

c _ j*2-bog2li|+ij

and til is the smallest integer satisfying the above.

s(F) = s(i) + s(j)

Notice that sQ) = 2 * ld(F)/log23i + 3 where d(F) is the number of significant binary
digits in F or in its characteristic C.

The application of the minimal representation criterion to a problem where the probability
distribution is a function of integer and real parameters will involve a search over values of the
parameters and over the precisions of binary expansions of the real parameters. A side result of this
process is that an estimate of each real parameter is given in a precision which is in certain sense
optimal.

An exhaustive search can usually be avoided if the set Q of models can be represented as a sum of
sets Qj such that the maximum likelihood or an equivalent estimation procedure can be applied to any
Q., and within any set Q. the value s(q) depends only on the precisions of the parameters. If the
probability distribution is reasonably well behaved as a function of real parameters, then a near
optimal value of r(q,xn) within each set Q. can be found by calculating the maximum likelihood
estimates with the highest allowable precision and then searching over their possible truncations to
minimize rfox"). The global minimum of r(q,xn) in Q is then found by comparing the estimates
obtained from each of the sets Q r An alternative procedure, which has been used by Boulton and
Wallace [Boulton] and Rissanen [R11], is based on the assumption that the truncation errors are
uniformly distributed, and it determines the optimal truncation levels analytically.

5 Applications

Several examples presented below illustrate the applicability of minimal1 representation approach to
inference problems where the maximum likelihood method would fail.

1. Aatocegresslve model

The atoregressfve model of order k for time series has a form:

where a.f i * i&o.Jt are constant coefficients, and {un} Is a discrete white noise with variance CF2. if
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the order k is fixed, then the maximum likelihood method may be used to estimate the coefficients eu
and the variance a2 [Box], [And]. However, if the order is unknown and has to be determined, the
maximum likelihood method is not sufficient. To simplify the expression for P(xn) we assume that
xn ~ a

n
f o r n =

Forn>k

Pq(xn[x
n-1) = (27r<T2r1/2 * e

where vn = xn - a tx A - a2xn 2 -... - aRxn k and D is a constant normalizing for finite precision of xn- So

-log Pq(x
n) - n * log(27ra2)/2 + (log e/2a2) \ [ X ) ? l

s s k + 1 vf

+ n logD

andS(q) = S{aJ + S(a2) + ... + S(ak) + S(<x) + S(k). The inference procedure searches for a set of
coefficients and variance that minimize the value of r(q,xn) = S(q) - log Pq(x

n). The practical
algorithm which has been implemented uses the method described in [Kashyap] to estimate the
coefficients and the variance for a given order k, then it iteratively truncates the parameters to
minimize r(q,xn) for that order, and finally it selects the order that gives a global minimum of rfox0).

Example

The AR model identification algorithm based on the minimal representation method has been
applied to sequences of 50,100, 200 and 400 values generated by a 3rd order autoregressive model
with coefficients: a1 = 0.7, a2 * -0.5, and su » 0.5 . For a comparison, a procedure using Akaike
criterion was applied to the same data.

The minimal representation procedure chose a 3rd order model in each case (50,100, 200 and 400
observations). The Akaike method selected the correct order only for 200 and 400 observations, while
it selected a 12th order models for 50 and 100 observations. The behavior of both criterion functions
vs. the order of an AR model for each of the cases is shown in Figure AR. Each function was subject
to a transformation y = log( x * min x + 1) to show more clearly the position of its minimum.

2. Polynomial fitting

We are trying to find a polynomial function to represent a relationship between the variables x and
y. The measurements of y are taken at predetermined values of the variable x. The assumed model of
the relationship has a form:

yn - *0 + a iXn + ¥n + - + Vn + Un

where {un} is a Gaussian white noise with variance a2. For n measurements

log Pq(y") = n log(2ir<r2y1/2 + (log e/2c2) * 2Z"=1vf+ n log D

w h e r e v i = V V a i V ~ - a k x n ' a n d

S(q) = SfrJ + S(ai) + ... + S{aJ + S(<x2) + S(k)

The algorithm for finding near-minimum of r(q,x") in this case can be constructed similarly to the
previous one, by using the conventional least squares method for estimating the coefficient at a given
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polynomial degree k, iterating over the parameter precision and selecting the polynomial degree that
gives the global minimum of r(q,xn). This method can possibly be extended to a procedure for fitting
spline functions.

3. Clustering

The term clustering generally refers to the grouping of a given set of objects into subsets
containing objects with similar properties. If the probability distributions within clusters and the
distribution of the clusters are specified in their general form, then the clustering may be considered
and used as an identification procedure for a statistical model-the probability mixture. There are
many clustering algorithms [Hartigan], [Patrick], [Duda], each having specific characteristics and a
performance that greatly depends on the character of the data . Almost all of the algorithms require a
specifiction of the number of clusters, and frequently other parameters as initial values for the
iteration.

The results of clustering for a given data set strongly depend on the specified number of clusters
and on a choice of the algorithm and its initial parameters. To be able to apply clustering in a
meaningful way to a set of data with little known characteristics it is necessary to have a method of
evaluating and comparing different results and a criterion for selecting one of them as the best.
Criteria related to likelihood or quadratic error function, such as the minimum of the average
Euclidian distance within clusters cannot be used to determine the number of clusters [Friedman].

Other techniques, based on a heuristic application of the ratio of the between- to within-cluster
scatter measures [Fukanaga], [Coleman], or a more rigorous method of Vogel and Wong [Vogel]
based on pseudo F-stattstic can help to determine the number of clusters, but their application is
limited to the cases where either Euclidian or Bhattacharyya distance is used and the clusters are
oval-shaped.

The minimal representation criterion provides a natural and the most general method for selecting
a cluster configuration whenever the clustering is used in a probabilistic context The application of
the minimal representation criterion to clustering problems has been proposed by Segen and
Sanderson [Minimum], and a related approach has been used by Wallace and Boulton [Boulton].

For a given set of k clusters the probability of x can be written as:

where P (x|i) is the probability, given that x is a member of the cluster i, and P (i) is the probability of
the cluster i.

Let a (x) be a decision function which assigns x to one of the clusters. If the form of the P (x(l) Is
such that P (xfi) = 0 if i # a (x), then

Pq(x) - Pq(x!aq(x)) * Pq(aq(x))f

and since the observations xf are assumed to be independent, then

logPq(x"> = IZjLtttogP^x^xp) + log Pq(aq(x,))l.
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•" Mrf $f piramslers q contains the information about P(x|i), P(i), and the number of clusters; its
m 4f< fctm and the value of S(q) depends on the assumed general form of P(x|i) and P(i). The
*%W tunl^umticn is given by the decision function a(x). To select the best configuration of
s'tff me mmmtzQ r{q,xn) for each given configuration and take the one giving the global minimum
.'-. '~:Jfta6 can be us&d to discriminate among results of different clustering algorithms and

**'? assumptions about the number of clusters and the initial parameters. The clustering in this
sd :»zn fiw mttrpmtad as a search-space decomposition in the problem of searching for the best
:«' n'fit teli0wing simple example illustrates the use of the above technique.

? rave *CQ observations-natural numbers, distributed according to the histogram in
*an! to decide whether to represent the observation as one cluster (0-300), two
*rd {200-300), three clusters (0-50), (50-100), (200-300) or four clusters (0-50),
:} i r d 1250*300). The distribution within the clusters is assumed to be uniform. The
--a i&lomng parameters:

r^ of ihB duster I

*la»drat»l)<

« v ^ t t ^ S i ^ •v:/?ien!s:h8 evaluated cluster assignment

« ccmoared cases will g i v e :
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S(q) = S(1) + S(0) + S(300) = 22
r(q,xn) = S(q) • log Pq(x

n) = 844

2- clusters
B1 = 0, T1 = 100, B2 = 200, T2 = 100, P(1) = P(2) = 1/2
-log P (xn) = 100 log 200 = 764
S(q) = S(2) + S(0) + S(200) + 2S(100) + S(0.5) = 54
r(q,xn) = 818

and similarly for 3 clusters r(q,xn) = 848, and for 4 clusters r(q,xn) = 880.

These results are plotted in Rgure CL2 where the optimal two cluster case is clearly indicated by a
minimum.

50"

100 260 300

Rgure 4: Histogram of observations for Example 1.

Example 2

100 two-dimensional values were generated by a mixture of 3 Gaussian distributions. Each of the
component distributions had independent marginals with equal variance. The means and the
variances of the component distributions were:

1. Mean (0,0), variance 1

Z Mean (1090), variance 9

3. Mean (0,5)s variance 4

Each of the components had equal probability of 0.333..-. The generated values are shown in Rgure
CL3, The k-means [Hartigan] clustering algorithm was applied to 30, 40, 60, and 100 values using
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NUMBER OF CLUSTERS

»*'/ J>'"«

Rgur. 5: Representation size function vs. the number
of clusters in Example 1.

* — conjuration was evaluated by an algorithm computing r(q,xn) and the
C : ; C L 4 i n g the logarithmic transformation to show cfearly the minimum.

V - s s f c w how many observations were used. The minimum in each case was
« ^ ** program discovered the correct number of the mixture components.

**.*Ur*o

:-;" ;* crder-k for a sequence of symbols from a finite alphabet has a

•. be jsed to climate the transition probabilities for a given
-.2^!r^m JJkelihood method is used to determine it, as a result
:Z*. zczstble order, which makes it not very meaningful. The

:» a sample answer to this problem.

distributed and x. « N(m.,a2) where m. ĥ . for t < i
lt i.e., the mean shifts k times during the

f the number of shifts is unknown, the application of
Tr fs i v.-cuid always give a meaningless result k = n-1.

- : i s ar- approach to this problem, although additional
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..It •

Figu re 6: Data for clustering in Example 2



22

30 observations-

i •

40 observations

60 observations

i # i ' » # # # » » i t i #

100 observat ions

l 2 3 4 5 6 7 S f

MJMBBt OF CLUSTHIS

; B9pf9sentMhn «lz0 maSuaiion of citisi&ring, Exmmph 2



23

A large body of applications may be found among problems of concept formation, inductive
inference or learning which are of strong interest to artificial intelligence. These problems are
presently approached on a more heuristic level [Lenat], [Buch2] [Quinlan].
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