
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Design Study of

RIP 1:

An Image Processor

for Robotics

Carnegie-Mellon University

Robotics Institute

Rafael Bracho

Arthur C. Sanderson

Copyright © 1982 Rafael Bracho
5 May 1982

Proposed design and preliminary evaluation of a multiprocessor system suitable for real-time image
processing.

This research was partially sponsored by the National Science Foundation under research grant number ECS-7923893

Table of Contents

Abstract 1

1. Introduction 2

1.1 Image processing in robotics 2
1.2 Needs and goals 3

2. Image preprocessing algorithms 5

2.1 General model 5
2.2 Brightness Transformations and Thresholding 6
2.3 Filtering 9

2.3.1 IIR filters - 10
2.3.2 FIR filters 11

2.4 Transforms 12
2.5 Edge detection 13
2.6 Edge Following v 15
2.7 Segmentation 15
2.8 Adaptive Image Modeling 16

3. Architectures for image processing 19

. 3.1 Single-processor architectures , 21
3.1.1 Conventional processors - The MC68000 . 21
3.1.2 Microprogrammable processors - The PERQ 23

3.2 Multi-processor architectures 24
3.2.1 Asynchronous communication 24
3.2.2 Synchronous communication - The RAPID bus 25

3.3 Array processors 32
3.4 The Robotics Institute Signal Processor (RISP) 33

3.4.1 Central Processing Unit 35
3.4.1.1 General description • 35
3.4.1.2 Control Unit 37
3.4.1.3 Processing Unit 38

3.4.2 Bus Interface 44
3.4.2.1 General description 44
3.4.2.2 An example - Interfacing to MULTIBUS 44

3.4.3 RISP's performance 46

4. The proposed multiprocessor system - RIP 1 48

5. Summary 53

List of Figures

Figu re 1 - 1 : Computational tasks in the robot-control problem
Figu re 3-1: MC68000-based image processing system
Figu re 3-2: Timing waveforms in an 8-processor RAPID-Bus system
Figu re 3-3: Two-processor RAPID-bus system
Figu re 3-4: RAPID-bus prototype (block diagram)
Figu re 3-5: Prototype's interface (block diagram)
Figu re 3-6: RAPID-bus configuration for image processing
Figure 3-7: Block diagram of RISP
Figure 3-8: RISP programming model
Figu re 3-9: RISP's Central Processing Unit
Figu re 3-10: RISP's Control Unit
Figu re 3-11: RISP's Processing Unit
Figu re 3-12: Registers and Shifter
Figure 3-13: Main ALU
Figure 3-14: Multiplier Unit
Figure 3-15: Auxiliary ALU
Figu re 3-16: RISP's Bus Interface
Figure 4 -1 : View and graph of a simple cube
Figu re 4- 2: World graph for the cube's graph (thicker trace)
Figure 4-3: Computational tasks in the robot problem (expanded view)
Figure 4-4: The RIP 1 multiprocessor system

3
22
26
27
28
30
31
34
35
36
37
38
40
41
42
43
45
48
49
51
52

Abstract

A multiprocessor system, specially designed for image processing in a Robotics

environment, is proposed. Preliminary evaluation of this system suggests it is possible to

perform image segmentation and to extract the necessary information to control a robot at

speeds approaching real-time, using 8-bits of gray-level information in the raw signal. The

proposed Robotics Image Processor 1 (RIP 1) can deliver a command to a robot

approximately every 100 ms.

The system consists of six processors sharing a high-speed time-multiplexed bus

(RAPID Bus). Four of them are 16-bit microprocessors (MC68000-based) while the other

two are high-performance bit-slice signal processors. The architecture of these signal

processors (RISPs) is presented in enough detail to be compared against four other

architectures. Results show that RiSP performs well for typical image processing

algorithms and that, due to its power and flexibility, it may be used for other digital signal

processing applications such as speech and EEG modeling.

It is shown that RIP 1 , due to its key features of speed and programmabifity, could be

used in vision-based robot control or other situations where high speed processing of

large amounts of data is needed. Results suggest that it is especially well suited for

industrial inspection problems where rapid decisions based on visual information must be

made.

1. Introduction

1.1 Image processing in robotics

Traditionally speaking, a robot has often been thought of as a machine with a very strong similarity

to human beings. In science fiction, robots attain humanoid characteristics: they walk erect, talk, see,

act, sometimes even feel the same way humans do. Evaluation of industrial applications now

suggests that sensor-based robots offer major advantages in flexibility and precision of robotic

systems.

A vision system consists of several parts. In its most simple form, it must have a receptor and an

analyzer. In the case of human vision, the receptor would be the eye while the analyzer is the brain (it

should be pointed out that some analysis is performed in the retina.) In a robot, the receptor is usually

a TV camera while the analyzer is a computer. The field of discrete mathematics that deals with the

analysis of the pictures "seen*1 by. the camera, is called Digital Image Processing.

In a computer, an image is often represented by an array of numbers. Logically speaking, this two-

dimensional array represents the quantized value of the brightness function sent by the camera as it

sweeps across the screen. It is obvious that there is a finite number of such values or pixels (picture

elements). In a typical arrangement, an image is represented by 65536 pixels, organized as a 256 x

256 square array, while each pixel takes one out of 256 possible values (8 bits of information).

Digital image processing deals with these arrays by performing various mathematical manipulations

on them, extracting features and describing the image. The results of such manipulations are further

analyzed to extract the meaning of what is being seen by the TV camera. This next stage in the

analysis is performed by a set of pattern recognition algorithms. There is a final stage of computation

in robotics: control. By now the image has been analyzed in such a way that the computer has

extracted the necessary information from it, and it is time to execute an action depending on what the

robot "sees". Figure 1-1 shows the algorithmic pipeline of the robot-control problem.

EYE

t TV
Feature

Extraction

Image

Modeling

ARM

Servo

Control

Pattern
Recognition

Figu re 1 - 1 : Computational tasks in the robot-control problem

1.2 Needs and goals

Now consider the following problem: We want to control a robot so it makes decisions in real-time,

i.e., so it can manipulate objects, avoid collisions, etc. The problem of doing it in real-time forces us to

give commands to the robot approximately every tenth of a second (~ 100 ms), due to typical

mechanical time constants of a robot It is reasonable to assume that we have one-third of those 100

ms for the image preprocessing ' while the other two-thirds are consumed by the pattern recognition,

Interpretation and control tasks.

The problem of analyzing a 256 x 256 image in 33.3 ms is not a trivial one. It means analyzing a

pixel every 500 ns. That in turn, means that the computer has two to eight machine cycles, depending

on Hs technology, to work on a pixel. Of course, there are a number of 'tricks' that can be used to

effectively speed up the computation. A number of them are discussed in chapter three.

' it m customary to apply the term bnag* pfmpmcmssimg to all the processing clooe to the Yaw" image; that is, to the array of
omels thai coin© directly from the digitizer

A final requirement is that, due to the unpredictable nature of the robot's environment, we should

retain as much useful information as we can. This means, in terms of image preprocessing, that we

want to do the analysis on all eight bits per pixel. In the past, there have been systems developed that

first reduce the number of bits per pixel and then work on several pixels at a time (see section 2.2).

Our goal is to develop a system with the following characteristics:

1. Capable of performing image preprocessing algorithms in real-time, i.e., able to analyze a
complete TV frame every 33.3 ms.

2. Capable of utilizing the relevant information contained in the 8 bits of quantized
brightness per pixel.

3. Capable of doing pattern recognition and control fast enough so the robot is given a
command every tenth of a second.

2. Image preprocessing algorithms

In this chapter we will outline a few algorithms commonly applied to raw images. It should be noted

that this is neither an exhaustive survey, nor is it mathematically rigorous.

A few words about notation are in order:

• We will denote matrices by uppercase boldface letters, such as U, V, etc. The (ij)th.
element of the U matrix is denoted by u... The jth. column is denoted by u..

• If U is a matrix, UT is its transpose, U * is its complex conjugate and IT1 is its inverse.

• Let {u..} be a N x N sequence, we define the N2 x 1 ordered vector u as:

• where the subscript r denotes, row ordering. We could similarly define the column
ordered vector u .

2.1 General model

Many image processing algorithms are simply linear operations performed on the square array of

pixels. The output image field is formed from linear combinations of pixels of the input image field.

Such operations include filtering and unitary transforms. Other transformations, like thresholding and

edge detection,- are distinctly nonlinear.

The linear transformations can be represented as matrix operations on an N x N array of pixels.

Thus if the image is the (square) array U, we have:

V = TU

which may be a filtering, transforming, or some other operation on the original image U.

We should note that, in the most general case, the number of operations needed is proportional to

N4, for the case where the output matrix V is of the same dimension as U. A number of shortcuts can

be taken depending on the characteristics of the linear operator T. If T is separable such that it can be

represented in the direct product form

then the number of operations is proportional to N3. It is important to note that, even in this case, for a

typical 256 x 256 image, we are talking about 224
$ or ~16 x 106 operations.

6

In the case of unitary transforms, a further reduction might be possible, with the aid of FFT-like

gorithms. In this case, the number of operations is [

this represents around 219, or -500 x 103 operations.

algorithms. In this case, the number of operations is proportional to N2log(N). For a 256 x 256 image,

For the non-linear case, some of the algorithms can also be modeled as an operation on the N x N

image, the superposition of a n L x L matrix. This (typically smaller) matrix is "rastered" through the

image, producing an output array that is a not necessary linear function of the input array. An

example of this is thresholding (where L is taken to be 1,) or certain types of edge detection (with

typical values of 3 or 5 for L). Some cases of segmentation also lie within this general model.

A characteristic of this type of algorithm is that it usually leaves the dimension unchanged. In other

words, the output array of pixels is also N x N. Therefore the number of operations needed is N2 (from

the "raster" effect) times the number of computations needed within the L x L matrix. In the case of

L = 3, we are talking about 9 multiplications and 8 additions per pixel, in other words, 9N2

multiplications and 8N2 additions. It is important to note that the next stage of processing would also

require a number of operations proportional to N2; the robot-control problem, as it was previously

mentioned, has several stages of computation.

In the next few sections, we will briefly describe some of the algorithms mentioned.

2.2 Brightness Transformations and Thresholding

There are a number of algorithms that deal with transforming the brightness function. In terms of

our general model, most of them can be thought of as linear operations on the image matrix. If we

represent the picture as a square array U of dimension N x N , this means performing linear

combinations on the uf. elements-

Probably the simplest transformation we can perform on the brightness function is to count the

number of pixels that have a particular value. If we plot the number of pixels against the brightness,

we obtain a histogram which gives us an idea of the distribution of shades within the gray spectrum.

Sometimes this histogram is bimodal with one peak close to pure black, probably representing a dark

background, and another peak near white, perhaps representing a light object. When the histogram

doesn't have this bimodal shape, the image's objects are very similar in color, either to the

background or among themselves. A number of algorithms have been developed to make the bimodal

shape "appear" in the histogram,. Examples include scaling and the use of the Laplacian operator.

Since there are N2 pixels, we need to increment up to 256 counters (for 8 bit pixels) N2 times. A

problem is that the addressing takes some computation since we are using the value of the pixel as

address of the counter to be incremented.

Sometimes the histogram is too "compact", in the sense that the range of values found in the pixels

is not 256. This happens when there is a uniform shadow over the image or the contrast is too low

(perhaps the iris of a camera was too closed.) In this case, a simple transformation that gices good

results, is to scale everything so the full dynamic range is used. This involves searching for the

maximum and minimum values. Unless a trivial 0 or 255 is found, we have to test all the N2 pixels in

order to find:

a=*MIN(u..) Vi,j = 0,1,...,255

and

fi = MAX(ui.) Vi j =0,1,...,

Then the transformation, which again has to be performed in all N2 pixels, is:

ur. = (u]:i-a)*{M/(fi- a))

where

M = 2n - 1 (n bits per pixel)

A more sophisticated approach is that of histogram equalization. In this case it has been shown [1]

that if we perform the transformation:

where pu() is the prob. density fen. of {u..} and s (s*) are the brightness values of the pixel before

(after) the transformation. The resulting probability density function for {v..}, p 0, is uniform in the

range [0,1] (it has been assumed that all pixels are normalized to lie in the range [0,1]). For the

discrete case, which is the one we are interested in, we have the probability mass function:

where (M +1) is the number of gray levels (256)f £k is the kth level and nR is the number of pixels

with this gray level in the image; note that the histogram is a plot of py{{k) vs. f k. The discrete form erf

the histogram equalization transformation is, therefore:

8

It is important to note that the previous transformation requires almost 2N2 additions and N2 n-bit

shifts (assuming that n is. a power of two.) This is in addition to the N2 increments needed to obtain the

histogram. Also, the histogram is never completely uniform, although a good approximation is usually

obtained.

Weszka, et al. [2] have suggested the use of a Laplacian operator to aid in the threshold detection.

In a continuous image field,the Laplacian operator:

V2F(x,y) = d2F(x,y)

forms the second partial derivative of the image field along the image coordinate directions. As an

example, consider an image region in the vicinity of an object in which the luminance increases from

a low plateau level in a smooth ramp-like fashion. In the fiat regions, the Laplacian is zero and along

the ramp it is nearly zero. However a large positive value will occur in the transition region from the

low plateau to the ramp and large negative values in the transition from the ramp to the high plateau.

A gray level histogram formed of only those points of the original image that lie at coordinates

corresponding to very high or low values of the Laplacian tends to be bimodal with a distinctive valley

between the peaks. This is due to the fact that the histogram only contains gray levels occurring at the

beginning and end of gray level slopes. This approach has been tried, with some success, in cases

where the shadows produced by the objects are the source of different gray shades.

Once the histogram has been obtained, we can use it to change our image into a binary image.

Remember that, hopefully, we obtained a bimodal histogram. The idea is to select a threshold 8

somewhere between the two peaks found in the histogram. Any pixels whose brightness is less than

the threshold, i.e. u. .<0§ are assigned the binary value of zero. Conversely, a value of one is given to

all pixels brighter than the threshold. The main advantage to this method is the data compression

since no matter how many bits were required to describe each pixel, the new image uses only one bit

per pixel. This is why this type of image is called a binary image. It should be obvious that at the same

time we are doing data compression, we are also suffering a loss of information. There could be

objects in the image that have very similar shades of gray. This method of thresholding could possibly

assign the same binary value to them. The same is true with black or white objects when the fighting is

far from ideal

pa

9

Computationally speaking, we have to test every pixel in the image which means we have N2

i
comparisons to make. As far as setting the threshold, there is some simple hardware that can be

added to the digitizer that would automatically send a binary image to the computer. The main

problem is that a human operator typically decides where the threshold should be, therefore adding a

subjectivity factor.

The idea of thresholding could be extended to several levels. In a multi-threshold situation each

pixel is assigned one out of N +1 values, where N is the number of thresholds. The number of bits

required is INT(log2(N + 1)) where INT() is the function that gives the smallest integer greater than its

argument.

Some attempts have been made to provide for automatic thresholding. One idea [3] is to "fit" a

curve to the section of the histogram between the two peaks. For example, one could fit a quadratic

equation y = ax2 + bx + c, where a,b and c are constants. This could give a good approximation of the

histogram's valley. The minimum of the valley would be found at the point 0 = - b / 2 a . Other

approaches have been tried, such as trying to fit gaussian distribution curves to the histogram, etc.;

the goal being to find the best point to place the threshold.

In summary, if we are willing to sacrifice the loss of information inherent in the procedure,

thresholding offers the advantage of being able to process several pixels at a time. In addition, if we

stay with the binary image, all the possible operations on pixels are boolean in nature. Special

purpose hardware can easily be built to perform them in real time. From the robotics point of view

however, the binary image is not a sufficient representation for many problems. As described in

section 1.2, we would like to retain the gray level information that comes from the camera.

2.3 Filtering

When a signal is passed through a linear system, a convolution between itself and the system's

impulse response occurs. This linear operation is called Filtering. In digital signal processing, there

are two main types of filters: those with infinite impulse response, or IIR, and those with finite impulse

response* or FIR.T

There are many ways to realize a one-dimensional digital filter. When a two-dimensional Filter is

* Tfwe is a thW type of filters, the so catted lattice* which we recursive but have a different realization from the ttwMoml
lift. These, ho^aar, are not used much in image processing.

10

desired however, the problem becomes more complex. For example,-in the one-dimensional case,

when we want to implement a particular filter, we first obtain the Z-transform of the desired transfer

function, arid then perform a polynomial factorization which gives us a series of first- and second-

order pole/zero factors to be cascaded. The problem in the two-dimensional case is that this

factorization doesn't necessarily exist, since the filter's transfer function depends on two variables

and, in the general case, there are cross-products of them.

In the case where there is such a factorization, the problem is reduced to two one-dimensional

filters. In an image field this means that we may filter in the row and column directions independently.

In the more general case however, we have to perform a two-dimensional convolution or transform

the image and do the filtering in the frequency domain. We will talk about transforms in section 2.4.

2.3.1 HR filters

The IIR filters offer several advantages in the one-dimensional case. They may be obtained from

existing analog filters via simple transformations and they usually require a much lower order to

achieve a particular frequency response; they can be unstable, however The stability issues have

been discussed for the one-dimensional case but when the signal is two-dimensional, stability cannot

be guaranteed except for very few special cases.

Computationally, an IIR filter can be expressed by a recursion formula. The number of operations

per pixel depends on how many terms this formula has. Since each pole introduces a term, at least in

the one-dimensional case, then we can say that the number of operations per pixel depends on the

order of the filter. IIR filters are seldomly used in image processing. An exception is the Kalman filter

which leads to recursive implementations that have been used widely in one-dimensional digital

signal processing.

A problem in applying Kalman fitters to two-dimensional signals is that computational loads grow

linearly with the number of pxefs. Woods et al. [4] introduced two new approximations to a Kalman

fitter. One, called the strip processor, updates a line segment at a time; the other, the reduced update

Kaiman fitter (RUKFf) is a scalar processor. In the latter case, the equations were obtained for the

undfetorted stgnaMn-ootse observation model* The signal model was of the AR type with a general or

rraitsymmetric half-plane (NSHP) coefficient support. The resulting filter equations were seen to

constitute an MSHP recursive filter. The filter was shown to be weakly optimal [5] and also

approximately strongly optimal in several examples. Recent work [6] extended the RUKF to

deeowoluttoivtype problems where we observe a noisy and distorted version of the signal and wish

11

to estimate the noise-free signal. They accomplished this through modeling the signal distortion as an

FIR filtering with NSHP support.

2.3.2 FIR filters

The FIR filters do not have poles and therefore are not susceptible to stability problems. The one-

dimensional techniques of windowing, etc. have been applied to images with some success. It is

nonetheless important to consider the case where the filtering is performed by convolving the image

field with a mask.

A typical low-pass mask, used for image smoothing, would be:

+1 +2 +1

H s +2 + 4 +2

+ 1 +2 +1

This mask is centered around the pixel we are analyzing. The convolution of the image with the

mask performs the low pass filtering.

V. . =

Note that since the mask is biasing the brightness of the pixel, we include the 1/16 factor in front of

the summations.

High-pass masks have been used for edge crispening. The idea is to enhance the brightness of the

pixel we are interested in when compared to its neighbors. A typical high-pass mask that doesn't bias

the image is:

H s

+ 1

- 2

+ 1

- 2

+ 5

- 2

+ 1

- 2

+ 1

12

All these cases require 8N2 summations and 9N2 multiplications and leave the image's dimension

unchanged so the next stage of computation will also take a number of operations proportional to N2.

2.4 Transforms

In this section we will discuss a number of unitary transformations. A unitary transformation is a

specific type of linear transformation in which the basic linear operation is exactly invertible and the

operator kernel satisfies certain orthogonality conditions. The forward unitary transform of the N x N

image field U results in another N x N field V as defined by:

where a. . . . represents the forward transformation kernel. The reverse or inverse transformation

provides a mapping from the transformed domain to the image space as given by:

where / ? - . * , . denotes the inverse transformation kernel. If the kernels are orthonormal to all other

forward and inverse kernels, the transform is said to be unitary. If the kernels can be written in the

font!

then the transformation is said to be separable. A separable two-dimensional unitary transform can be

computed in two steps. First a one-dimensional unitary transform is taken along each row and then a

second one-dimensional unitary transform is taken on the partial result. Unitary transforms may be

represented as matrix operations on the image array. Then the forward transform is:

V = UA

white1 the inverse transform is;

U - VB

Obvious^, B = A"1. For a unitary transform, A"1 « A*1".

Examples of transforms Include Fourier, Cosine, Sine and Hadamard transforms. They al tew

• -

13

been used for image representation purposes. Since all these are unitary transforms, it is possible to

compute them using FFT-Iike algorithms. As discussed in.section 2.1, by using these algorithms it is

possible to change the number of operations from ~N4 (for general transforms) and ~N3 (for

separable unitary transforms) to ~N2Iog2(N).

2.5 Edge detection

In this section we will explore a series of algorithms that deal with the problem of detecting the

edges of an object that appears in the image. An edge is defined as a change or discontinuity in the

brightness function. We will only consider local discontinuities. The global ones will be treated in

section 2.7.

A common approach for edge detection has been to first enhance the edges and then to threshold.

If we choose the threshold to be a brightness value less than the edge brightness, only the edges will

have a binary "one". Selecting the threshold is a problem since too high a threshold will miss

important edges while a threshold set too low will misinterpret noise as edges in the image.

A variety of edge enhancement techniques can be utilized to accentuate the edges before the

thresholding operation. One of the simplest techniques is discrete differencing. Horizontal edge"

sharpening can be obtained by the running difference operation, which produces an output image V

from the relation:

Similarly, vertical sharpening results from:

Diagonal sharpening can be obtained by subtraction of diagonal pairs of pixels.

Horizontal edge accentuation can also be accomplished by forming the differences between the

slopes of the image amplitude along a line, according to the relation:

or

\i+t

14

Similar equations exist for vertical and diagonal slope differences.

Two-dimensional discrete differentiation can be performed by convolving the original image array

with a 3 x 3 compass mask. There are eight such masks, each tailored to enhance edges in a

particular direction. For example, the North mask is:

+1 +1 +1

H = +1 - 2 +1

- 1 - 1 - 1

while the Southwest mask is:

+1 - 1 - 1

H s +1 - 2 - 1

+1 +1 +1

This is the L x L submatrix case we mentioned in section 2.1. Computationally speaking, we have to

perform L2 multiplications and L2~ 1 additions per pixel, with N2 pixels total.

Nonlinear operations have also been introduced to enhance the edges before thresholding. Most

techniques process each pixel in a very local way. Roberts [7] has introduced a simple nonlinear

cross operation as a two-dimensional differencing method for edge sharpening:

He also infrodoced a computationally simpler operation:

Extensions to this idea have teen proposed for the case of looking at the eight surrountfng

; 1

15

neighbors of the pixel being analyzed. Masks with three or five levels, allowing estimation of the

position and the orientation of an edge, have been introduced by Sobel [8] and Prewitt [9].

2.6 Edge Following

Once the edges have been found; it is desirable to develop a structural description of the image. As

a first step, we might like to know whether or not the edges define convex regions, called blobs. A

straightforward way of attacking this problem is by following the edge.

Perhaps the simplest contour following algorithm is the commonly called the bug following

procedure. A conceptual bug begins marching from the white margin to the black pixel region. When

the bug crosses into a black pixel, it makes a left turn and proceeds. If the next pixel is also black, the

bug again turns left; if the pixel is white, the bug turns right. This procedure continues until the bug

returns to its starting point. It is easy to show [3] that this procedure is dependent on the starting point

and that if the object has holes, the bug might get lost.

Other schemes have been developed: Rosenfeld, et al. [10, 1.1] applied a connexity-approach to the

problem; Horowitz and Pavlidis[12] have developed split-and-merge methods. Finally, Ashkar and

Modestino [13] introduce prototype edges to be followed, by using a dynamic programming

algorithm.

2.7 Segmentation

In this section we will discuss some algorithms that are used to find objects in a given image field.

The idea is to classify the various regions that appear in the picture. To do this, a global approach is

used in which the classification takes place while keeping all the other regions in mind. A number of

local algorithms were discussed in section 2.5.

In the past, people have tried several methods of doing the classification. Most of them have two

phases. In the initial phase, a clustering algorithm is employed to define classes with similar levels of

brightness. After the clustering has provided a set of regions, a relaxation algorithm is used to test

each pixel and see whether it belongs to a particular region (blob) or not. Typically, the relaxation

phase is iterative in nature since the blobs are modified with each pass. This relaxation phase can, in

most cases, be thought of as a specialized filtering operation similar to those discussed in section 2.3.

For example, Basseville et al. [14] utilized a Kalman filter in their adaptive segmentation algorithm

(see section Z8).

16

It is difficult to talk about the number of operations needed for doing segmentation in an N x N

image because clustering may be done in various ways. Consider the following simple procedure: We

first find out which pixels have a brightness f k. If we assume that each pixel is represented by eight

bits, then k can take values in the interval [0,255], Once we have this information (in fact, we obtained

a histogram,) we want to know whether two pixels, say p ; and p., belong to the same blob. A number of

criteria may be used. For example, we can define a connected region as that enclosed part of the

image whose pixels have the same f k, where the "trick" here is to define enclosed. We might, for

example, analyze a pixel by looking at its eight neighbors. Then it is said that two pixels belong to the

same enclosed region if their brightness is the same and if there is a path of 8-connected pixels

between them. [1]

It is easy to see that in order to obtain the enclosed regions (blobs), a number of very different

algorithms might be used. This is why it is difficult to determine the computational complexity of the

clustering phase. The relaxation phase might be done by moving a mask through the image. Each

time the L x L mask is used in the image L2N2 multiplications and (L2 - 1)N2 additions are needed.

2.8 Adaptive Image Modeling

In the previous sections we have reviewed several algorithms that apply to the image in the same

way, independently of what it actually contains. Several attempte have been made to model the image

which has led to another set of algorithms called adaptive algorithms.

There are several ways to model an image. Two-dimensional models have been proposed but they

generally require too much computation. One-dimensional models, on the other hand, tend not to

show two-dimensional relational information. Nevertheless, one-dimensional models are wry

appealing in terms of computational loads and, if carefully developed, yield two-dimensional

information.

to the early stages of image processing, the one-dimensional signal token from raster-scanning the

image was modeled -using stationary second-order models* These models were later found to be

inadequate. So, in the past few years, several authors have tried nonstationary statistical models* Fm

example, Hunt and Cannon [151 tawe used models in which the 'mean is not assumed constant and

the covariance statistics are described as stationary fluctuations about a spatially nonstatfonaiy mean

vector. Jain [16] has decomposed pictures into a stationary process and a boundary process; fife

structure has been used in the area of picture coding.

17

It is important to note that most natural scenes can be thought of as a composition of locally

stationary regions (blobs) separated by edges. In the global nonstationary model, the edges are the

areas where abrupt changes occur in the first- and second-order statistics. They separate

homogeneous areas in which these statistical properties, or textures, are constant or slowly varying.

The problem of detecting the changes in the statistical models is not a new one and several

approaches have been tried [17]. Basseville etaL [14,18] have shown that edge detection is possible

by using algorithms that detect a sudden change in the mean of the brightness function. They present

a recursive procedure to find the edge elements on each line. The edge-following problem is solved

by a Kalman filter, the state model corresponding to a noisy straight line.

In general, the approach of segmenting a signal by detecting abrupt changes in its statistics have

been used in more complex one-dimensional signals. Sanderson et al. [19] have applied an adaptive

autoregressive (AR) model to the EEG signal. Segen and Sanderson [20] showed that it is possible to

detect changes in a piece-wise stationary signal by detecting the points where the cumulative

prediction error of the AR model exceeds a threshold. At this point, the change is recorded and a new

model is generated for the next segment. Sanderson and Segen [21] also showed that their method is

applicable to the image segmentation problem where the prediction is the mean value (similar to a

zeroeth-order AR model).

The execution time of this adaptive segmentation algorithm depends on the number of changes

detected since a new model must be generated for each change. For each pixel, however, we must

test the current model and decide whether a new model should be generated or not This means that

we must execute the following loop N2 times:

1. Fetch the pixel u...

Z Calculate the new cumulative error e,:

e, = «, + (U|J - /i.),

where predicted ft. is the mean value,

a Compare c. to 0 (a threshold dependent on the the model's standard deviation).

4. Increment the index /•

5. If either z. is greater than 6 or / exceeds 255, record the change and generate a new
model. Otherwise return to step 1 above.

This loop will be used as a benchmark in the fallowing chapter where we compare different

architectures for image processing algorithms.

18

Current work is being done to determine whether the AR model should include a recursive term to

also take shading into account. - . .

AR models have several properties that are very appealing. First, they may be obtained sequentially

from the image, either row by row, or column by column. It is important to realize that the AR

representation assumes that the image has additive gaussian white noise on it Therefore, the

stochastic processes theory for discrete random processes applies in full. If we let uf be the row-

ordered vector of our random field U, then each element u. can be represented as:

u. = Uj + c.

where

n = 1

0. is the best mean-square predictor of uf based on its past p samples. The sequence e. is a zero-

mean white-norse random process independent of its past outputs. For a discussion of the main

properties of AR models, see Jain's paper in mathematical models for image processing [22].

In any AR model, the main difficulty lies in obtaining the autoregressive coefficients a.. Several

methods have been proposed, with various degrees of success. One problem is that since the AR

representation is recursive, it can lead to instabilities. In order to avoid this, some methods rely on the

positive-definite characteristics of the covariance matrix of any given random process. A matrix

inversion is typically needed with the size of the matrix being no less than p x p (p is the order of the

model.) There are other methods that don't require the matrix inversion at the expense of potential

instability. A newer method, based on a Lattice filter realization, has been found to yield stable models

without matrix inversion. Rabiner and Schafer [23] showed that the Lattice method requires almost as

many computations as the covariance method on a general purpose computer. The only apparent

advantage is that it can be performed sequentially, an important advantage if we are talking about a

signal that is raster scanned from a TV camera. In the next chapter we will compare several

architectures performing the Lattice algorithm to obtain the AR coefficients of a tenth-order model.

19

3. Architectures for image processing

In this chapter we will analyze several architectures that have or could have been used for image

processing. It should be noted that this is not an exhaustive survey of possible architectures.

As discussed in chapter one, we would like to perform near real-time analysis on the image. Since

image acquisition takes ~33 msM it is desired to start the analysis before the whole image is in

memory. This constrains us to use sequential algorithms; the following algorithms are illustrative of

the processing we wish to consider:

• A filtering operation utilizing the low-pass filter mask described in section 2.3. Note that
this is a convolution of the whole image with a 3 x 3 matrix. As such, the execution time
for this algorithm should be representative of several other ones.

• A 1024-point, one-dimensional FFT. This is a typical benchmark for signal processing
architectures. Even though it is one-dimensional, repeated application of the algorithm is
used to achieve a two-dimensional FFT.

• The computation of the coefficients for a 10th order AR model from 100 points of data.
AR modeling is used extensively in signal modeling, and may be used to describe texture.
We will deal with the recursive Lattice method, which is related to more complex
recursive algorithms.

• The adaptive segmentation procedure presented in section 2.8. The part discussed will
be the inner loop where each pixel is tested against the mean value and the cumulative
error is compared to a threshold.

The first three of these algorithms are of general interest for evaluation of image processing

architectures, while the fourth is of direct value for real-time image feature extraction. We will present

approximate execution times of these four algorithms for each architecture analyzed. First, let us

define the necessary operations for each algorithm.'

1. Low-pass fi ltering. In this case we are performing the following operation:

Note that 9 multiplications and 8 additions are needed per pixel. The a^ l coefficients are
assumed to be 16 bits wide.

2. FFT. Since a 1024-point FFT is computed, we have 10 stages with 512 butterflies per

* In our discussions, we will assume a 256 x 256 x 8 inrtage. In other words, the TV ftmme mil have 256 lines, each having 258
pixels, and each pixel mil have am 8-bit brightness value.

20

stage. Then, a total of 5120 butterflies will be computed. Each butterfly requires one
complex multiplication and two complex additions (or four real multiplications and four
real additions.) The data is assumed to be 16 bits wide.

3. AR coefficients. In order to obtain the 10 coefficients in a sequential manner, the
Lattice method [23] is used, where two error sequences are computed for each pixel: the
forward prediction error e •(m) and the backward prediction error b^(m). They are given
by the equations:

ew(m) = e (i- 1)(m) - k

and

(3.2)

where

K • A (3.3)

and

The AR coefficients are obtained from the following formulae:

and

The procedure for obtaining the 10 coefficients ar...9aw consists of the following steps:

a. Sete(0)(m) = b{0)(m) = um, the pixel value, V m = 0,1,...,99.

b. Compute k1 = a^1 ' from eq. (3.3).

c. Determine e(1)(m) and b{1J(m) from eqs, (3.1) and (&2).

A Set I -2 .

e. Compute kf = B^ from eq. (35).

' i Obtain a ^ for j «1 f ...J - 1 from eq. (3.4).

21

g. Determine e(l)(m) and b^(m) from eqs. (3.1) and (3.2).

h. Leti = i + 1.

i. If i is less than 11 go to step d. above.

j . TheTOAR coefficients are a (10) for j = 1,2,...,10.

Summarizing, we need 201 multiplications and 199 additions for step b., 200 additions for
steps c. and g., 301 multiplications and 298 additions for step e., one addition for step h.,
and one comparison for step i. Taking into account that steps e., g., h. and L are repeated
9 times and adding 45 additions (total) for step f., we have a grand total of 2909
multiplications, 4935 additions and 10 comparisons. The data is assumed to be 16 bits
wide.

4. Adaptive segmentation. Since we are only concerned with the inner loop, 3 additions
and one comparison are needed per pixel. All operations are byte-wide. We would like
to execute this algorithm in less than 33 ms., to achieve near real-time image
segmentation.

3.1 Single-processor architectures

A number of general purpose (GP) computers have been used for digital signal processing and

image processing. In most cases, their use has been limited to off-line types of algorithms. This is

partially due to the fact that if the GP computer is very fast it is also expensive; slow computers don't

lend themselves to real-time signal processing except for a few rare cases (image processing is not

among them)..

We will analyze the MC68000 and the PERQ as conventional and microprogrammable processors,

respectively.

3.1.1 Conventional processors - The MC68000

The term conventional processors describes a computer designed to perform many different tasks,

one that hasn't been optimized for performing mathematical operations, string manipulations, etc.; it

is, in this sense, a very-general purpose computer. A characteristic of conventional processors is that

the user sees a virtual machine (also called programming model,) and doesn't have direct control of

the hardware.

The MC68000 is a VLSI 16/32-btt microprocessor manufactured by 'Motorola Semiconductors* Inc.

It 'has a very regular 32-bit internal architecture with an instruction set designed for structured high-

level languages. This processor offers several advantages for digital image processing:

22

• 16 MB addressing space. Enough for several images plus whatever software is needed to
process them.

• Post-increment addressing mode and extensive indexing capabilities. Useful for keeping
several pointers on the image.

• Long-word (32 bits) operations which enable the processor to obtain up to four pixels at a
time.

• Multiply instructions. Although not as fast as dedicated hardware, these instructions may
be used when implementing signal processing algorithms.

Processor I

68000

A

"\

k

Monitor

CTVJ

Memory I/O Storage

640 KB

\

Ethernet

A i

10 MB
Display

Memory

c
Camera

TV

Frar

Grab

ne
ber

L _

MULTIBUS

Figu re 3-1: MC68000-based image processing system

Figure 3-1 shows a typical image processing system built around the MC68000. This system has

been implemented and it is in use in the Image Processing Laboratory at Carnegie-Mellon University.

Table 3-1 gives the approximate execution times for this system. It is easy to see that the MC68000 Is

far from our goal of obtaining the adaptive segmentation in -33 ms. In general, such conventional

processors do not have the speed required. It should be emphasized that, although the MC68000 fe a

microprocessor, it compares very well with most minicomputers. It is slowed down for some

algorithms by the lack of a hardware multiplier.

. 23

Low-pass filtering 46,268,416 cycles => 5.784 s.

7024 -point FFT 2,191,360 cycles => 273.92 ms.

AR coefficients 348,954 cycles ==> 43.619 ms.

Adaptive segmentation 2,097,152 cycles ==> 262.144 ms.

Table 3-1: MC68000 execution times

3.1.2 Micreprogrammable processors - The PERQ

Another type of GP computer, where the user is allowed to interact with the hardware, are the

microprogrammable machines. By writing a program in microcode, the user is allowed to control the

data Row inside the CPU.

The PERQ, manufactured by Three Rivers Computers Corp., is a stand-alone computer that uses

the AM2910 microprogram sequencer with a standard ALU. It is intended primarily for text processing

and graphics but, since it is possible to write microcode for it, it performs quite well for simple

algorithms. Table 3-2 shows the approximate times for the four benchmarks using simple microcode

routines. Note that the PERQ is 4 to 5 times faster than the MC68000.

Low-pass filtering 10,223,616 cycles => 1-704 s.

1024-point FFT 399,360 cycles => 66.56 m&*

AR coefficients -63,925 cycles => 10.654 ms.

Adaptive segmentation 294,912 cycles =*• 49.152 ms.

Table 3-2: PERQ execution times

At first, it may seem that the PERQ is good enough for our application (-49 ms for the adaptive

segmentation algorithm*) there are two major problems in using the PERQ however: first, it also lacks

a hardware multiplier, which Is why it doesn't perform as well in the other algorithms, and second,

24

loading the memory with the image would slow down the PERQ. The latter problem is due to the fact

that DMA in the PERQ is done by cycle-stealing*. Let's look at what this means in terms of execution

time: The data rate is one pixel every 250 ns, on the average. Since the PERQ's microcycle takes

166.67 ns, it may execute 3 /icycles in the same time it receives 2 pixels (500 ns). If we have to steal a

cycle for each DMA transfer, this means that the PERQ is slowed down 66% during the 16.67 ms that

takes to load an image! During that time, the PERQ is merely 1 % - 1 MB times faster than the MC68000,

This timing assumes that the memory bandwidth is utilized at maximum, which is the case of the

adaptive segmentation algorithm. In order to overcome these problems, the PERQ would have to be

substantially modified.

3-2 Multi-processor architectures

The solution of using more than one processor to speed-up computation has long been

contemplated by computer architects- Ideally, if we have N processors performing the same task, they

should finish N-times faster than a single processor would. In reality, however, there is always some

overhead due to the interprocessor communication.
w

3.2.1 Asynchronous communication

The most straightforward way to design a multiprocessor system is by connecting several

processors to a common bus. Bus arbitration may be done on a cycle-by-cycle basis or the bus might

be assigned to a processor for a certain period of time. In any case, each processor is running at its

own speed, performing its own task. It is this "independence" what introduces problems when we

want the processors to perform a small part of a complicated task; whenever a processor has to know

what some other processor is doing, it is forced to go through some protocol. If they are sequentially

using the same data (as in a pipeline,) the software is responsible for synchronizing the data transfers;

this is typically done via mailboxes and semaphores [24].

In a multiprocessor system, the less the communication overhead, the closer it gets to the ideal

system. For a system like the one just described, this means that we should minimize the number of

times a processor has to know the status of another processor. This can be done, and very effectively,

when all the processors are running separate tasks or when the tasks are loosely coupled.

Unfortunately, if we want to utilize a multiprocessor for digital signal (or image) processing, we may

want each processor to run a section of a particular algorithm. The tasks are, therefore, very tightly

coypled.

' trt the MG89Q0Q system, the display memory m auahpc^ez so I can be mM ami beaded simuftaoeoesfy

25

3.2.2 Synchronous communication - The RAPID bus

One way to overcome the synchronization problem is to always keep the processors informed of

what the others are doing. As an example, consider two processors which clocks are supplied from

the same source; one of them could know what the other one is doing, at any given time, by knowing

each other's programs. This system works provided the two processors were in a known state once

(reset).

If we have such a synchronous system, it is possible to create pipelines> a very useful structure in

signal processing, where the result of one processor is used as input to the next one down the pipe.

No software overhead is introduced since, once synchronization is achieved, every n cycles

processor A finishes a computation and puts the result in the mailbox mA B . Processor B may use

whatever is there ([mAB]) knowing that it becomes valid every n cycles.

The RAPID bus (Rotary Access Parallel Implementing Digital bus,) first conceived by Sanderson

and Zoccoli [25, 26] and lately refined by Bracho, et al. [27], is a time-shared bus that can be modeled

as a special case of a synchronous system since the processors' clocks are synchronized to a master

clock. A processor connected to the bus may make a transfer whenever needed since each processor

believes it always owns the bus. This "effect1' is accomplished by a very fast latching interface that

makes the switching between processors transparent to them. In actuality, each bus-master has a

window-address associated with it and the bus is switched between masters at a high speed.

Master/slave transfers occur during a very narrow window in which the bus-master selected (via the

window-address bus) is allowed to make a quick transfer.

Figure 3-2 shows the timing relationships between the master clock, driving the window addresses,

and the processors' clock. The figure assumes that the system has eight masters and that a processor

receives the bus on alternate cycles of its clock. The figure also shows when the processor with

window-address six would communicate with a slave: A master/slave link is established every other

processor cycle (every 250 ns. if the frequency of the processor's clock is 8 MHz,) it is during this link

that the data transfer takes place. Three types of master/slave communications are recognized:

• Initial. Initially, a master specifies to which slave it wants to be connected. The slave
recognizes that is being addressed by comparing the contents of the address bus with its
slave-address(es). Then the slave latches the type of request (whether is a read/write,
etc.) and the master's window-address. Hence, the slave becomes selected by the
master.

• intermediate. A number of transfers, from zero to infinity, occur in which both the
master and the slave are looking at the window-address bus. When the master's window-

26

W. Addr | 5 | 6 | 7 | 8 | 1 | 2] 3 | 4 | 5 | 6 | 7 | 8

Phase 1 I I I I I I

Phase 2 J I I | | L__T

Phases I I I I I I

Phase 4 ~1 I | | I I L

Ex: Processor 6 (phase 2)

-rrsi i—xi msn r

t t
Communication Communication

fakes place takes place

Figure 3-2: Timing waveforms in an 8-processor RAPID-Bus system

address comes along* their latching interfaces open and a communication Fink is
established between the master and the selected slaw.

• Final. During the last transfer, it is the masters responsibility to release the slave. From
then onf ttie slave no longer tooks at ttie window-address bus but, instead, at the address
bus. Therefore, the slave can recognize an initial transfer again.

Figure 3-3 shows a system with three masters. The boxes labeled "FAST interfaces" are

responsible for afl ttie protocols needed in establishing proper master-slave communication. Included

27

Masters Slaves

Proc.

Virtual
bus I-—•,

FAST
Interf.

RAPID

Proc.

L i

f

DMAC

f i

f

i i

f i

Mem.

t y

f

A

r i

Mem.

i, i

r i

i

i x

I/O

r i

i i

r l

I 3

L

k

bus L

Ftgure 3-3: Two-processor RAPID-bus system

(n them are the latching interfaces and the window-address specification-recognition systems. Two

types of interfaces exist; they are pictorially represented by the direction of the arrows. A down-

pointing arrow means a master's interface while an up-pointing arrow is a slave's interface. Not

shown in the figure are the main clock and the window-address generator. Note that there is a virtual

bus between the interfaces and the masters/slaves, which enables us to use off-the-shelf units.

The current implementation uses the Versabus protocol for the virtual bus. The prototype under

construction has two monoboard microcomputers (Motorola's VM02,) which serve as both masters

and slaves simultaneously (the VM02 has 128KB of dual-ported memory). This situation has posed

several restrictions on the interface cards since they must deal with the problem of the local master

wanting to make a RAPID-bus access while the slave is also being accessed externally. Figure

3-4 shows the block diagram of the prototype just described; note that the contention is resolved at

the Versabus level since the Versabus is shared by both the master and slave portions of the interface

(single path in the Figure). A problem, which could lead to a deadlock situation, arises when both

processors try to access each other's slave at the same time, if both interfaces are allocated to their

28

respective masters (via the normal Versabus arbitration logic,) the accesses will not be completed.

Currently the cycles simply time out and the retry facility of the MC68000 is used. This hazard will be

less present in later implementations where there will be global slaves, then programs may be written

in which the number of accesses to other masters5 local memory is greatly reduced.

VM02
+ MC68000

+ 128KB RAM

EIII

VM02
+ MC68000

+ 128KB RAM

VERSA-Bus

INTERFACE INTERFACE

Rapid Bus

Figure 3-4: RAPID-bus prototype (block diagram)

The interface supports the full Versabus protocol, as defined by Motorola Semiconductors*

[28J. It may be configured as a master, slave or master/slave interface. Two key features of the

interface are:

• Memory management. The interface includes an MC68451 Memory Management Unit
(MMU) that enables the user to define 32 variable length segments to be mapped
anywhere within the 16MB physical address space. This MMU also provides the user with
write protection to the segments as well as enough information to implement a virtual
memory system. For high speed applications the MMU, which poses an extra 130ns series

29

delay to any memory access, may be circumvented by setting a bit in the interface's
control register.

• Address Generator. A special mode of master/slave communication which enables
one master to send data to several slaves has been provided within the RAPID bus
specification. This mode, called broadcast mode, requires the slave to be able to
generate the address where the data is to be stored. The inteface has an AMD2940
address generator for this purpose.

Figure 3-5 shows the block diagram of the interface. It is completely housed in a single Versabus

board.

If we want to use a RAPID-bus configuration for image processing, we would have to load the

image in global memory via a DMA channel. Then all the processors could access the same picture

frame; figure 3-6 shows such a system. The approximate execution times for it are given in table 3-3.

In order to obtain those times, the following assumptions were made:
• Six processors, MC68000s, are used.*

• The communication burden between processors is negligible. This is probably the most
difficult assumption to justify and it should be noted that, in an actual case, execution
times could vary quite a bit

• All processors are used to perform the same algorithm on 1/6 of the data. This is possible
but not without creating overhead since, for some algorithms, partial results would have
to be stored in global memory.

' Due to technological Rmitatiora, airmrt RAPID-bus imptamentfttkra have no tmre than eight masters

30

VERSA-Bus

MC68451

MMU

Hybrid

State

Machine

Drivers

XL I

L
W. Addr.
Com par.

W.Addr.
Register

1

AMD2940

Addr. Gen.

Broadcast
Mode
Synch.

2nd. Latch

Drivers 1st. Latch
Addr. Bus
Compar.

Rapid Bus

Figu re 3-5: Prototype's interface (block diagram)

31

Virtua
bus1

RAPII

Proc.

1 *

i

y

T

V

r

• • • Proc.

i

j

^

r

i

I/O

i

i

I

i

Mem.

*

A

i

i.

L

t

Monitor

TTVJ

*
Display

Memory

it

DMAC

C
Camera

TV

f

Frame
Grabber

DMAC

4

r

L

r

1

1

i

f

V

I

bus L

Figy re 3-6: RAPID-bus configuration for image processing

Low-pass filtering

1024-point FFT

AR coefficients

7,711,403 cycles =* 963.93 ms.

426,667 cycles => 53.33 ms.

59,359 cycles ==> 7.42 ms.

Adaptive segmentation 349,536 cycles => 43.69 ms.

Table 3-3: RAPID-bos system execution times

32

3.3 Array processors

Array processors are special purpose computers designed for "number crunching". They can

perform a number of mathematical functions very fast; they usually have a hardware multiplier unit. In

a typical array processor, the data and address computations are done separately and in parallel. This

makes them a frttle clumsy as far as conditional branching but speeds up the data manipulation. Array

processors may not be well suited for input/output; they usually depend on the host computer to

perform the I/O operations.

Several commercial array processors are available. Honeywell's HAP which has a 16-bit, fixed

point, data processing section and a 12-bit address generator. It runs at 5.6 MHz (177 ns/pcycle) and

can be either microprogrammed (ROM) or used via pre-defined macros such as FFT, threshold,

log/log "1 , magnitude-squared, etc.

Floating Point Systems' AP-120B has a 38-bit, floating point, data processing section and a 16-bit

address generator. Its clock runs at 6 MHz (166.67 ns/jtcycle) and, with the aid of pipelined adder (2-

level) and multiplier (3-level,) it can effectively perform a floating-point addition or multiplication in a

single microcycle. The user may program the AP-120B in assembly language or via Fortran-callable

subroutines. It is very fast in executing pre-defined instructions but special algorithms require several -

instructions.

Somewhere in between is IBM's ASP which has a 16-bit, fixed point, data processing section and a

10-bit address generator. The data processor can have up to four highly pipelined Arithmetic

Elements (AEs) which, in a six-level pipeline, contain a 16 x 16 multiplier, a 32-bit adder and other

circuitry to output a properly-scaled sum-of-products term every 100 ns. A microprogrammed

Arithmetic Elements Controller (AEC) coordinates the AEs. The data-flow control, however, is done by

the Control Processor (CP) which resembles, very strongly, an IBM 360 GP computer. In fact, the user

programs the ASP in a language called Signal Processing Language, which is the 360/370 assembly

language with the addition of two instructions.

The table 3-4 gives rough approximations of the execution times for an ASP with one AE- Note that

even though the array processor is very fast it is hard to program an adaptive segmentation algorithm

that oses the pipeline of the AEs effectively. Also we should stress that the ASP comes with a GP

computer (360-like) as a control processor, and such a system cost at least $500,000 Dlfs*

33

Low-pass filtering 589,824 cycles => 58.98 ms.

1024-point FFT 20,543 cycles => 2.054 ms.

AR coefficients 4999 cycles => 499 /is.

Adaptive segmentation 196,608 cycles => 19.66 ms.

Table 3-4: ASP execution times

3.4 The Robotics Institute Signal Processor (RISP)

With the advent of bit-slice microprocessors, it became possible to design processors with speeds

approaching that of the array processor at a much lower cost. The Robotics Institute Signal

Processor (RISP) is a microprogrammable bit-slice computer specifically designed for digital signal

processing. The RISP is a proposed design and a prototype is under consideration; extensive

simulations are being done using ISPS. [29,30]

Figure 3-7 shows the block diagram of RISP. The image memory is a two-port, very fast (55 ns.

access time,) byte-addressable RAM array with 64 KB. This memory may be read or written by the

CPU or the Bus Interface (Bl) in a single microcycle. Both the CPU and the Bl are microprogrammable

as explained below. RISP may also be programmed in assembly language; instructions include: solve

AR model, compute FFT, filter a data array (FIR or HR), window data, etc.

Figure 3-8 show the programming model when assembly language is used. All the general purpose

registers (RO - R31) may be used as index registers or user stack pointers, by using the pre-

decrement and post-increment addressing modes. The user and supervisor stack pointers are used

by RISP to store return addresses in the stack, only one being active at any given time. The status

register's S bit determines whether RISP is working in the user or supervisor mode. The status

register contains, besides the aforementioned S bit, the usual machine flags (C, V, Z, N) as well as

three user flags (I/O, U1, U2) that may be set, cleared and tested by the user in the supervisor mode.

34

r

High Speed

Digital input

— —

Main
Memory

Bus
Interface

3 2 .

^*

32,

.

a

Image
Memory

CPU

Virtual Bus

Figure 3-7: Block diagram of RISP

35

RO
R1
R2

31 • • •

M l • • • _
M l . . .
I I I . . .

• • • 2 1 0

• • ' I I I I
• • • l i l t

• • •UN

Genera]

Purpose

Registers

R30 i * i » » » * * * ! ! ! !
R 3 1 t *• i * • » » • « i i i i

Program Counter

User Stack Pointer

Supervisor Stack Pointer

Status Register

PC

us
ss

19

I I I

19

I I I
1 t J

SR

• • •
• • •

9 9 • ,

• • •

• • •

15 13

t t i

• • 9 2

. . . | |

« • • 2

• . • 1 1

• • • 11

7 6 5 3 2

M M M 1

1 0

| I

1 0

_LJ
I I

1 0

JJ
U U U N 2 V C
2 1 0

Figure 3-8: RtSP programming model

3*4.1 Central Procts^ing Unit

3.4.1*1 Genera; description

Ftf yre 3-9 shows a block diagram of RtSPs Oniral Processing Unit (CPU). It consists of a high-

performance, 32-brt Pressing Unit (PU) and a nticroprogrammable (horizontal) Control Unrt (CU).

36

Status Constant Data

Processing Unit

Control
Bus

Data
Bus

Address
Bus

Figure 3-9: RISP's Central Processing Unit

The CU decodes the instruction's op-code (out of a possible 256), is in charge of the

microsequencingv including branches ami subroutines, and controls the near-150 control points of

the PU. The PUf in turn, generates addresses and processes data. In the PU there is a 2Q~bit address

generator, capable of addressing 1MB; and a 32-bit, fixed1 point, data processing section that can

operate on bits, 8-bit bytes, 16-blt words and 32-bit long-woids. it has been shown that floating-point

PUs are easier to program for signal processing applications (the user doesn't have to scale up/down

Intermediate results to avoid u«d©f/€W^ctw) however* f xed» point machines are generally faster and

most of the image processing algorithms deal with ixed-point quantities. Nevertheless, RiSP has

37

floating point routines microcoded, available to the user as assembly-language instructions. Also a

barrel shifter, to speed up floating-point normalization, is included.

3.4.1.2 Control Unit

Status

12

12

Instruction

Decode

From
PU

12

Op-code

4 From
MDR

Control Store

(2K ROM
&

256 RAM)

128

Pipeline Register

T T

V
Control

ToCR

To

PU
Control

Figure 3-10: RISP'sControl Unit

The CU of RfSP is besed on AMD's AM291Q microprogram sequencer. This 12-bit sequencer is

capable of addressing 4K words of control store. The design has been kept as horizontal as possible

to improve control of the hardware and enhance speed* Currently the word length is close to 128 bits.

38

The CU operates in a pipeline fashion with the PU, i.e. the CU is fetching the jth word from the

control store while the PU is executing the Q - l)th word. The microprogrammer has to be aware of

this when branching and looping.

The design of the CU is as straight-forward and conventional as it can be, figure 3-10 shows its

block diagram.

3.4.1.3 Processing.Unit

ToCU

A

R

A

B

A

. . 32/

f

Regs.
&

Shifter

A

1

/

r *
* • i

A

2 /
1 /

k

F

Main

ALU

A

Condition
k Bit

i

r

r

Multiplier

Unit

i

y
i
r

ROM

Addr.

w

1 f Ai

f

Aux

ALU

A

r ^ r

20

r

To/From
MDR

To
MAR

Figu re 3 -11 : RISP's Processing Unit

The PU of RISP resembles that of Lincoln Laboratories' LSP 2 [31]. Both are designed with a three-

39

bus architecture where units are in parallel, figure 3-11 shows the block diagram of RISP's processing

unit (PU). Each unit is able to complete an operation within a single /icycie. A big advantage of this

design is its regularity; hence, it is easy to both simulate and expand it. These characteristics imply

that we are able to use hardware design aids available at C-MU (such as ISPS) as well as to bring the

system up slowly. For example, we could build an early prototype without the multiplier unit and with

only one ALU, to be added after this version is fully debugged.

Figures 3-12 through 3-15 show the block diagrams of the PU elements which are described in the

following paragraphs.

Registers and Shifter

This element contains all 32 general purpose registers available to the assembly language

programmer. A barrel shifter is included which is capable of performing any logical or arithmetic shift

in one /icycle which is very useful when normalizing floating-point numbers. Note that the register file

is two-ported; hence, in the same cycle, a register can be shifted by a number of bits determined from

a previous operation while the A bus is being loaded with the contents of another register. It is worth

mentioning that the register file has three-address capabilities where two registers might be read

while yet another one is written.

Main ALU

There are tw.o ALUs in the PU. Both are 32-bit wide and both are designed around AMD's AM2903

bit-slice; figure 3-13 shows the main ALU. The main ALU may be thought as part of the data

processing section of the PU, it keeps both flag registers (RISP's and the microengine's) therefore

being responsible of sending the condition bit to the CU. The main ALU also performs the bit

manipulations (set, clear, test and toggle).

Note that the main ALU has 16 registers used to hold partial results; as a matter of fact, all the

elements of the PU have a register file, this is to avoid excessive contentions for the A, B and R buses.

Both the main and the auxiliary ALU's also operate in a three-address fashion where operations of the

type A.op.B-*C are permitted. For more information about how this is done or about the

AM2903/2910 parts, consult the AM2900 Family Data Book [32] or chapters II, III and IV of the book

Bit-Slice Microprocessor Design [33].

Multiplier Unit

40

B « » »

A » » —

I t --rr—IT •

1
BUFFER BUFFEF

t ''

f

— I •

^ ^ 3 2

Reg. File

32x32

i
- 3 2

Masker

Mask
Register

32 —

4 i i

- - ^
Barrel
Shifter

i A

5

32

MUX

L 41

• I 3 2

•

M
U
X

f

Shift/
Pass

i

Rfliir©3-12: RegfetBrs and Shifter

RISP has a high-speed multiplier unit built around TRW*s TTXMQ1GJ multiplier-accumulator. This

41

B
32

32

Bit

Manipul.

32 32

T O ^ CONDITION

CU BIT

MUX

Register
File

16X32

32/, 32 32

Status Regs,
and

Shift Control

32

BUFFER

MiX

Rags

1 X ALU
Shift Control X

32

Reg

32

- # « •
32

z_

Figure 3-13: Maun ALU

unit is capable of performing a 16 x 16 multiplication and 35-bit addition In a single jxcyde. It also has

a ROM with trigonometric and other important constants which is addressed by the auxiliary ALU.

Figure 3-14 shows the block diagram of this unit

42

B

A

««-•

MUX

16

16

32

32/

16
16

MUX

32

MUX

Register File

16x32

-16
16

16

MUX

16

16- 16

MUX

16
16

Multiplier

^ ,

Addr.

Accumulator
35

•* tf-

From
• Aux.
ALU

32

BUFFER

Figure 3-14: Multiplier Unit

Auxiliary ALU

43

B
32

32

Register
File

16X32

32 32

1*
32

MUX

32

BUFFER

3 2 /

MUX

Reg

To
Mult. <-
Unit

32

Address

32

BUFFER Bit
Reverse

32
z_

To MAR T

FIgu re 3-15: Auxiliary ALU

Finally, the fourth element of the PU is another ^ -b i t ALU, the auxiliary ALU, its block diagram is

shown in Figure 3-15. This ALU keeps RISP's program counter and stack pointers. In general, the

auxiliary -ALU is in charge to generating the address of the next fetch. The Memory Address Register

(MAR) is loaded by this element

44

Two other features about the auxiliary ALL) should be mentioned: First, it generates the addresses

of the constants' ROM of the Multiplier Unit and second, it has a bit-reverse unit before the MAR

register. This unit, implemented via multiplexer chips can reverse any or all of the 16 low-order bits of

the data being sent to the MAR. Hence, an up-to-64K-point FFT may be calculated without

introducing extra cycles for bit-reversing the address.

3.4.2 Bus Interface

3.4.2.1 General description

RISP was conceived with several on-going projects in mind. Research in hierarchically modeling

the EEC signal [19] requires complex computations on tremendous amounts of data; fortunately, this

data comes at a very low speed. Speech analysis and recognition demands high computational speed

in order to be performed in real-time. The robotics image processing problem described in section

1.2 requires simple computation on data with very high bandwidth. A considerable degree of flexibility

is required so RISP can function in a variety of task environments. Part of this flexibility was achieved

by making RISP able to communicate to any machine via a microprogrammable bus interface (Bl).

Figure 3-16 shows the block diagram of the Bl. Data is always stored (or retrieved) by DMA; this

means that the CPU doesrv't waste time moving data to/from global memory, I/O devices, etc. The Bl,

which timing is dependent on the host*s (virtual) bus and not on RISP's timing, can execute up to 64

"macroM instructions like block moves, memory fill, etc. Parameters and flags are passed to/from the

Bl via two uni-directional register files.

3.4.2.2 An example - Interfacing to MULTIBUS

The bus interface makes it possible for RISP to enhance the computing capabilities of machines

like the PDP-11 (Unibus), LSH1/23 (Q-bus), PERQ, etc. As an example let's consider the addition of

RISP to the system depicted in figure 3-1 which is currently being utilized at C-MU's Image Processing

Laboratory and uses MULTIBUS boards.

The MULTIBUS was developed by Intel Corp. for their SBC series of computers; nowadays, rt has

become a de-facto standard for microcomputers and is in the process of standardization by the IEEE.

MULTIBUS has a 16-bit bi-directional date bus and a 2D*bit address bus. Transfers between the

MC88QQQ and RISP would be done in fixed-length Mocks of 16-bit words- The address generators erf

the Bl can increment by one, two or four sos for byte addressable memory, it can transfer bytes, words

or long-words.'

46

RISP

Bus

Latches
Address

Generator

Microengine

Latches

Virtual
Bus

Address
Generator

/
/

Register
File -

16X32

Instruction
Decode

Register
Fie

16X32

32

32

DATA

ADDRESS

CONTROL

DATA
ADDRESS

CONTROL

Ftgnre 3-16: RlSPs Biis lnteiace

The important signals that will be generated by the BI are^:

• MRDC (MWTC). Memory read (write) commands. These signal the memory whether the
operation is a read or a write.

• IORC (10 WC). I/O TBBd (write) commands. Similar to the commands discussed above.

1 Ai signals are negatsve-true, i.e. they are asserted km

46

• BPRO. Bus priority out. Asserted when BPRN is also asserted (see below) and RISP
doesn't need to make a bus transfer.

• BUSY. Bus busy. Asserted by the master that controls the bus.

• BREQ. Bus request. Asserted by RISP when it needs to make a transfer and BPRN is also
asserted. It is synchronized with BCLK (below).

The Bl would be monitoring the following signals to decide when to assume mastership:

• BPRN. Bus priority in. Asserted by the master that has the next higher priority than RISP
if it doesn't need the bus.

• BUSY. Bus busy. See above.

• XACK. Transfer acknowledge. Asserted by the slave when the transfer is completed.
RISP wouldn't initiate another transfer until the previous one is property terminated by a
XACK unless AACK is asserted (see below).

• AACK. Advanced acknowledge The assertion of this line by a slave will cause RISP not
to wait for XACK.

• BLCK. Bus clock. Used to synchronized bus events (like the assertion of BREQ,) it may
be stretched, single-stepped or halted.

3.4.3 RISP's performance

Low-pass filtering 589,824 cycles => 110.592 ms

1024-point FFT 40,960 cycles =* 7.68 ms.

AR coefficients 4,999 cycles => 937.31 j*s.

Adaptive segmentation 131,072 cycles => 24.576 ms

Table 3*5: RISP execution times

Table 3-5 gives RiSP execution times for the same four algorithms we've been using. Note that

these times are tie result of careful malym of the RISP architecture The actual timing of RfSP is

implemented with' AMD's AM2925 clock generator which enables us to have different mferainstonetioct

execution times. For the time® shown in table 3-5 however, a fixed pcycle time of 187.5 ns was

assumed. This seems to be a reasonable value according to the architecture's propagation delays.

47

Hi
Low-
pass
filter

1024
point
FFT

AR

Coeffs.

Adapt.
Segm.

Single

68000

52.300

35.667

46.537

10.667

PERQ

15.408

8.667

11.367

2.000

Six
68000
(RAPID)

8.716

6.944

7.916

1.778

ASP

0.533

0.267

0.532

0.800 ̂

RISP

1.000

1.000

1.000

1.000

Table 3-6: Relative execution times

Finally, table 3-6 shows the relative execution times of the five architectures evaluated. There, a

value of one was arbitrarily assigned to RISP's performance. It should be noted that RISP performs

extremely well for complex calculations. The last measure, the adaptive segmentation algorithm, is a

very good comparison of the "raw" speed of the processor since the algorithm consists of simple

operations (additions and subtractions).

48

4. The proposed multiprocessor system - RIP 1

As was discussed briefly in chapter 1, there are, in the robot problem, four stages of computation:

feature extraction, image modeling, pattern recognition and control (figure 1-1). In this chapter, a

multiprocessor architecture, the RIP 1, is presented. We will show how it can be used to solve all

those tasks and therefore be used as a robot1 s "brain".

View ReL Graph

'1,2

F ={area.;perimetec;...}

T. = {lenght.-slope ^..}

Ftgu re 4 -1 : View and graph of a simple cube

The first two stages (feature extraction awl image modeling) could be performed by using the

adaptive segmentation procedure discussed in section 2.8. This procedure identifies the blobs within

the 'image at the same time it gives statistical properties, or attributes, for each one of them. It has

been shown [113] that when an image is segmented, the blobs tend to be elongated in the direction of

the segmentation. To avoid this problem, we would nm the adaptive segmentation algorithm in both

row ami oolurnn directions simultaneously* This has the added advantage of provkling us with two

independent sets of attributes for each Mob, However, the segmentation becomes a two-step

procedure: In ttie first step the models are obtained for each row (column) independently, white in the

49

second step the models are clustered to define the blobs. Also, it is possible that the blobs have

ragged edges so a relaxation algorithm is included, along with the clustering, in the second step. The

image modeling task is completed by obtaining a relational graph representation of the image where

nodes represent blobs and arcs represent edges. A set of attributes is associated with each node or

arc of the graph (see figure 4-1). it is important to note that such image regions do not necessarily

correspond to physical object boundaries, but may depend on light, shading, texture, etc. The

recognition algorithms are based on training sets of images for a variety of such conditions rather

than detailed physical interpretation of image content

Figure 4-2: World graph for the cube's graph (thicker trace)

The third stage, the pattern recognition, involves classifying the previously obtained graph as a

subgraph of a member of a graph-dictionary stored in memory (figure 4-2.) Each member of the

50

dictionary, called a world graph, represents an object; it defines clearly its structure for every possible

view of the object. Then the aforementioned graph obtained from the image should be a part of the

world graph of that object. Some nodes of the world graph will not appear in the view graph due to the

3-D to 2-D mapping inherent in the image acquisition. Note that the problem becomes more complex

when the image contains several objects since the view graph is not a subgraph of a world graph but,

instead, a subgraph of the view graph is. Obviously, the world graph is a "normalized" version in

terms of node/arc attributes, that way the same graph may represent objects that only vary in color,

size, etc.

The last stage, control, will be done by looking at the attributes of the graph given we know its type.

Then, for example, orientation and remoteness might be inferred by looking at the particular

subgraph and the size attributes (the farther the object, the smaller it seems.) Sanderson and

Weiss [34] have shown that visual servo control can be done by using the graph error signals.

Figure 4-3 shows the logical arrangement of the tasks discussed previously. RIP 1 is a

multiprocessor system designed to perform these tasks in real-time, figure 4-4 shows the block

diagram of RIP 1. A few characteristics are worth mentioning: it has two RISPs whose image

memories are loaded simultaneously by a frame grabber. Each one can perform the adaptive

segmentation algorithm on a 256 x 256 image in less than 33 ms so a RISP is dedicated to the row

modeling while the other works, on the same image, to obtain the column models. The results are

loaded in global memory so an MC68000 processor can perform the clustering/relaxation on them.

Two more MC68QQ0s are utilized for the formation and recognition of the graph; this includes

selection of the appropriate attributes that will be passed to the last MC68000 which is in charge of

the visual servoing. Commands to a robot may be given every tQQ ms approximately.

As a final note, we should emphasize that there are two key features that make RIP 1 so effective for

this task: The RISP processors that can keep up with the extremely high bandwidth of the raw data,

and the RAPID bus which allows us to have the bryte speed of two RISPs and the sophistication of

four MC68GQQ in one system.

51

Feature extraction

TV signal

Robot
commands

Structural

Pattern recognition
and

image interpretation

Figu m 4-3: Comptitattoftaf tasks m t i t robot profatam (expindid vlwr)

52

Monitor Camera

Proc.

*

i

1 '

i

« • • • •

*BBBBB

f

i

f

• • • Proc.

VERSA_<

RAPID

A

1

Ik

f

f

V

t

E

E

tus

Eus

I/O

mm—m

i

i

k

r

p

m m mmmmmm

Mem.

L

i

f

mmmmm *m

—m—^* mm

k

Display

Memory

\

DMAC

• • • •

mmm

•B •

• » •

L

»

r

-

1C , TV

r

Frame

Grabber

r

RISP

amm

• • •

A

v ••

•B an

A

• • • I B B

•BBBBB)

I

r

L

f

•

•BB1

BB1BBB>

\

RISP

i

f

t

Figure 4-4: The RIP 1 multiprocessor system

53

5. Summary

In this report, we have discussed computing hardware for vision-based robot control. We have

concluded that, in order to solve such a problem in near real-time, computing facilities capable of

performing image preprocessing in less than 33 ms are required-

A few traditional image preprocessing algorithms are reviewed; we discuss their computational

complexity and their application to the robotics image processing problem. In particular, we suggest

that work on adaptive image modeling is well-suited for this application. An algorithm that segments

the image by detecting abrupt changes in the mean of the brightness function is discussed. The

inner-loop of this algorithm requires three additions and one comparison per pixel.

A few of the more prominent architectures used for image preprocessing have been surveyed. For

each one of them we presented approximate execution times of four representative algorithms: a low-

pass filtering operation performed by convolving a 256 x 256 image with a 3 x 3 mask; a one-

dimensional 1024-point FFT; the generation of a 10th order AR model from 100 data points via the

Lattice method; and the execution of the adaptive segmentation's inner-loop on a 256 x 256 image.

The Robotics Institute Signal Processor (RISP) is a bit-slice microprogrammable computer

designed as a cost-effective alternative to array processors. It was shown that RISP is 10 to 52 times

faster than the MC68000 and only 2 to 2lA times slower than ASP, IBM's array processor. The

preliminary architecture of RISP was presented; it was shown that its high-performance CPU and its

microprogrammable Bus Interface (Bl), give RISP enough power and flexibility to attack a wide variety

of problems.

A proposed multiprocessor system, RIP 1, consisting of four MC68000 and two RISP processors

joined via a RAPID bus, was discussed. Evaluation of RIP 1 suggests that this system may accomplish

the goal of coordinating a vision-based robot in real-time although the system would be equally

suitable for less-demanding vision problems such as visual inspection problems.

54

References

I. Rafael C. Gonzalez and Paul Wintz, Digital Image Processing, Addison-Wesley Pub. Co.,
Reading, MASS., Applied Mathematics and Computation,,Vol. 13,1977.

Z J. S. Weszka, et al.f "A threshold selection technique," IEEE Transactions in Computers, Vol.
C-23, No. 12, December 1974, pp. 1322-1326.

3. William K. Pratt, Digital Image Processing, John Wiley and sons, New York, N.Y., 1978.

4. John W. Woods and Clark H. Radewan, "Kaiman Filtering in Two Dimensions," IEEE trans, on
inf. theory, Vol. IT-23, No. 4, July 1977, pp. 473-482.

5. John W. Woods, "Correction to: Kaiman Filtering in Two Dimensions," IEEE trans, on inf.
theory, Vol. IT-25, No. 5, September 1979, pp. 628-629.

6. John W. Woods and Vinay K. Ingle, "Kaiman Filtering in Two Dimensions: Further Results,"
IEEE trans, on Acous., Speech and Sign. Proc, Vol. ASSP-29, No. 2, April 1981, pp. 188-197.

7. L. G. Roberts, "Machine perception of three dimensional solids," Optical and Electro-optical
information processing, J. T. Tippett, et ai., eds., MIT press, Cambridge, MASS, 1965, pp.
159-197.

a I.E. Abdou, "Quantitative methods of edge detection/' USCtPt Report 830, University
Southern California, 1978.

9. J. M. S. Prewitt, "Line detection by local methods," in Picture Processing and Psychopictories,
EL S. Lipkin and A. Rosenfeld, eda, Academic Press, New York, N.Y., 1970.

10. A. Rosenfeld and M. Thurskon, "Edge and curve detection for visual scene analysis," IEEE
trans. Computers, Vol. C-20, May 1971, pp. 562-568.

II. A. Rosenfeld and M. Thurston, "Edge and curve detection: Further experiments,1* IEEE trans.
Computers, Vol. C-21, July 1972, pp. 677-715.

12. S. L. Horowitz and T. Pavlldis, "Picture Segmentation by a Tree Traversal Algorithm," J. Ass.
Comp. Mach., Vol. 23, No. 2,1976, pp. 368-388.

13. G. P. Ashkar ami J. W. Modestino, "The contour extraction problem with biomedicai"
applications*" Comput Graph. Image Processing, Vol. 7, Mo, 3* 1978, pp. 331-355.

14w M. Bassevilte, et al.v "Edge detection using sequential meiiods for change in level-Part I,"
IEEE trans, on Acousl, Speech and Sfgn. Proc>, Vol. ASSP»29t No. 1, February 1981, pp-
24-31.

15, 8. R. Hunt and T. M, Cannon, **Non stationary assumptions for Gaussian models of images/*
IEEE trans. SysL, Man and Cyb&r.. Voi SMCS, June 1976, pp. 876-882*

18. A. K. Jain, "Some new techniques in inapt prcx^^wr^," Proc. Image ScL Math., C. O. WiWe
awl E. Barrel, eds.v November 1978, pp..

17. yLBasseviie and A. Benventate, "Changca in Statisieal Mcdete: Varioia Approach^ in

55

Automatic Control and Statistics,'1 Rapport de Recherche de I'INRtA 145, Universite de
Rennes, March 1981.

18. M. Basseville, "Edge detection using sequential methods for change in level-Part II," IEEE
trans, on Acoust, Speech and Sign, Proc, Vol. ASSP-29, No. 1, February 1981, pp. 32-50.

19. A.C. Sanderson, J. Segen and E. Richey, "Hierarchical Modeling of EEG Signals," IEEE trans,
on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 5, September 1980, pp.
405-414.

20. J. Segen and A. C. Sanderson, "Detecting Change in a Time-Series,11 IEEE trans, on inf.
theory, Vol. IT-26, No. 2, March 1980, pp. 249-255.

21. A.C. Sanderson and J.Segen, "A pattern-directed approach to signal processing,"
Proceedings of the 5th. International Conference on Pattern Recognition, Miami, FL,
December 1980, pp. 613-617.

22. Anil K. Jain, "Advances in mathematical models for image processing/' Proceedings of IEEE,
Vol. 69, No. 5, May 1981, pp. 502-528.

23. L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, Prentice-Hal,
Englewood Cliffs, N J. , Signal Processing series, 1978,

24. Peter freeman, Software Systems Principles, SRA, Inc., Chicago, III., Computer Science
Series, 1975.

25. M. P. Zoccoli, "Design of a Synchronous Multi-microprocessor Computer System for Signal*
Processing," Master's thesis, Carnegie-Mellon University, December 1979.

26. M. P. Zoccoli and A. C. Sanderson, "Rapid Bus Multiprocessor System,** Computer Design,
November 1981, pp. 189-200.

27. R. Bracho, J. C. Willis and A. C. Sanderson, "RAPID-bus preliminary specification," Tech.
report In preparation, Carnegie-Mellon University, 1982.

28. Motorola Semiconductor Products, Inc., VERSA bus Specification Manual, Third ed., Phoenix,
AZ,1981.

29. Mario R. Barbacci, "The ISPS Computer Description Language," CSD tech, report, Camegie-
Mellon University, August 1979.

30. Mario R. Barbacci, "An ISPS simulator/' CSD tech. report, Carnegie-Mellon University,
January 1980.

31. L R. Rabiner and B. Gold, Theory and Applications of Digital Signal Processing, Prentice-Hall,
Englewood Cliffs, NJ., Signal Processing series, 1975.

32. Advanced Micro Devices, "The AM2900 Family Data Book/'.

33. J. Mick and J. Brick, Bit-slice Microprocessor Design, McGraw-Hill, New York, NY, 1960.

34 A. C. Sanderson and L. E. Weiss, "Image-based visual servo control osing relational graph
- error signals," Conference on Cybernetics and Society, October 1980, *

