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Abstract

A manufacturing cell is a complex collection of machines and electronics which must be intelligently
supervised It should be flexible enough to readily adapt to different part styles and robust enough to operate
without human assistance for reasonable periods of time. A programming language with a correct choice of
language properties can make meeting these demands and others like them a manageable programming task.

A rule based language in conjunction with a set of grammatical constraints supervises a cell which
manufactures turbine blade pre-forms. The non-procedural nature of the language provides considerable
flexibility in the operation of the cell. The rules are executed in no particular sequence, but rather as the cell
is ready for them. Unfortunately, the non-procedural approach allows for unplanned interactions between
rules. Most of these interactions can be avoided by defining which rules can operate concurrently. The
language is logically linked to the pre-form cell through a simple database management system. The database
system maintains a model of the cell used by the language interpreter to decide which rules to execute. This
database system also protects the cell programmer from the low level programming details
communication protocols).
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1. Introduction
A manufacturing cell is a logical unit of machine tools combined to increase their utility. Justification of

this cellular approach is provided by the speeded flow of parts, inventory control, reduction of labor costs,
and the reduction of change-over time from one part style to another [2], The coordination of the machine
tools within the cell requires a sophisticated supervisory program managing each of the machine tools both
alone and together. This involves , for example, the cold start of each machine tool, externally triggering its
primitive programs, monitoring error states, and scheduling preventive maintenance. A sophisticated
supervisory program will operate the ceil unattended.

Manufacturing cells do not comfortably fit within the traditional classifications of computer controlled
machine tools, eg:, Computer Numerical Control (CNC) and Direct Numerical Control (DNC). The
tendency in industry is to describe CNC as using a dedicated computer to control a machine tool and DNC as
using a computer to distribute pan programs to remote NC tools [5], These definitions do not accurately
describe the functionality of a flexible manufacturing cell, though some researchers extend the definition of a
DNC controller.

A supervisory computer could operate the machine tools in a fixed sequence much as a NC machine tool
operates. However, a multi-million dollar unmanned manufacturing cell must be managed rather than just
operated. A ce]l management system sends its commands to the machine tools as each tool is ready rather
than forcing a fixed and unalterable sequence on the entire cell (Le.s scheduling). It monitors the progress of
the cell and either performs or schedules maintenance operations as they are required It furthermore acts as
an interface between the working machines and the high level factory operations (e.g., part design and
purchasing ). The final supervisory program is written in a rule based language whose run time system takes
on the management responsibilities of the cell.

The evolution of programs designed for cell supervision is benchmarked by work such as that of
Popplestone [8], Week [11], and McDonnell-Douglas [6]1. These approaches to cell supervision have been
based on procedural languages like FORTRAN, Pascal, APT (Automatic Programmed Tool), or a
modification of these. Popplestone and McDonnell-Douglas based their work on a superset of APT (Robot
APT and MCL, respectively). Week's work was done in a combination of FORTRAN and CAMAC
(hardware and software protocols for low level communication).

Procedural languages have been designed around a Von Neumann computer architecture which has a
single processor and a single memory store. This architecture sets up a bottleneck in the flow of instructions
[1], because each instruction is expected to go through the processor in turn. A procedural language design,

and a single processor computer architecture are not appropriate for the tasks of a cell management system.
Each machine tool is equipped with its own controller which manages the machine in real time. These
controllers are in turn linked to a central processor. A non-procedural language describes an algorithm in
such a way as to make the order of program statements unimportant. In fact, the statements are executed as
some goal process needs to invoke them, such as keeping all of the machine tools busy. In the case of a
manufacturing cell, the instructions take a long time to execute because they represent physical actions.
Therefore, a non-procedural interpreter is able to direct a flow of high-level instructions to each controller as
they arc needed. The discrepancy in time, between computational and physical actions, avoids the bottleneck
in the central computer*

The McDoniiell-Dotiglas work is sponsored by the Air Fence Integrated Compute" Aided Manufacturing (1CAM) Project



A rule based language is essentially a set of conditionals which can be treated non-procedurally. The
condition amounts to the pre-conditions for executing a particular cell instruction (e.g., "is the furnace door
open? -> then get part"). This implies that the supervisory program is able to sequence the events within the
cell even though the events do not occur in a rigid order. An interrupt driven system is also non-procedural in
nature, but it obscures the conditions of execution making the final system difficult to understand.

A formal deductive system is the primary example of a non-procedural language. The order in which
theorems are proved has no effect on the set of provable sentences. That is, there are no relevant side effects
in the the course of a proof which impinge on the system as a whole. Unfortunately, systems which have not
been adequately formalized are characterized by many unsuspected side effects. These side effects are
manifested by rules which interact because of their interdependence. Two robots could be put in a collision
course under one ordering and affect useful work under another. A set of grammatical constraints is
proposed which filters out rules that have undesirable side effects in a particular context

Our research is directed at the theoretical aspects of language design as well as the practical matters which
are involved in implementing a cell. The cell is currently being installed at the Westinghouse Electric
Corporation, Turbine Components Plant in Winston-Salem, North Carolina. It will produce steam turbine
blade pre-forms from billets (cylindrical metal stock). The major mechanical process in the cell is open-die
forging which operates on billets that are in excess of 2000° F.The cell contains an industrial rotary furnace,
two materials handling robots, an open-die forge , a vision based loading station for acquisition of the billets
and a vision based gaging station for inspection of the forged pre-fonns. The goal of the language
development is to provide a system capable of autonomously supervising the cell operation for a reasonable
period of time, eg.* a weekend.

There must be a logical connection between physical machines in this pre-form cell and the words in the
language. That is, the terms in the language must be meaningful to the supervisory program. A simple
database management system makes this association between words and salient cell features. The features are
contained in a highly structured database and are used to model the cell at a particular time. Whenever the
language interpreter accesses the database through the management system some of the cell features are
updated.

The rest of this paper is divided into two major parts. The first part defines a language which is based
around a set of formal properties which are useful for cell programming, These properties guide the language
definition through the sub-sections. And the final part of the paper clarifies the connection between the
charai'teristic language properties and OUT particular manufacturing application.

2. Language: Demands and Suggestions

2*1. The Langtiag e Task
A couplet manufacturing cell is composed of many computer controlled took These may include robotic

arms and machining equipment or sophisticated sensors such as vision systems. The best return on capital
investment for this expensive equipment is realized by optimizing the mean throughput time. It Is not
important to save mi!lt-5cconds by optimizing the moves of Ac robots, but It Is critical to maintain the flow of
the parts within the cell and prevent untoward shut-downs of the cell due to equipment failures such as dirty



oil filters. The cell is to be unmanned and should be capable of preventing hardware failures by automatically
scheduling tasks for preventive maintenance. This is achieved by placing sensors on the mechanical
hardware, by providing the means to convert the sensor information into sensible numbers and by having a
priori knowledge of when the hardware is likely to fail.

Another means of optimizing throughput involves the ability to. easily decompose a program into parallel
sections that can execute independently. Each machine tool typically takes several minutes to perform a
single operation making parallel execution of independent operations important

The resulting program is complex and needs to be easy to update. A program is modified when new part
styles are manufactured and when the cell itself is altered as in the addition of new machine tools. One way to
manage the complexity of the program is to structure it in a way that it can be understood at different levels of
detail. And, of course, the final program should be if at all possible error free.

In order to achieve these demands the language must possess a number of formal properties which make
the problems inherently manageable. Our language design is based on such a set of formal properties which
can be justified independently of the particular language. We feel that the point here is not to design a new
language which is meant to be every programmer's panacea, but rather to encapsulate a special set of language
properties under one framework.

2.2. The Program Forms
A manufacturing cell is usually made up of a set of machine tools each of which has many functions and

error states. By establishing the pre-conditions of each machine function, it is possible to execute program
segments as they are needed rather than as they appear in the procedural flow. In addition, most machine
error states are paired with a suggested course of action. Both of these basic requirements call for a non-
procedural rule based language. This programming paradigm has been extensively studied under the guise of
production systems and has been reviewed by Waterman and Hayes-Roth [10].

The general form of a program and its statements is a conditional.

(antecedent) -* {consequent}

The left hand side is evaluated as a boolean expression, and if TRUE then the right hand side is executed as a
set of sequential actions. An example program segment which commands a robot to place a work piece
(Billet) in a furnace could be written in the following way.

(And (Hold Billet) {(Move Robot Door)
(Open Door) -* (Move Robot Furnace)
(Vacant Space)) (Place Billet)

(Mowe Robot Door)
(Close Door) }

The convention used here Is that the first element of a list on the left hand side of a rule is a truth predicate

HThe convention of putting a function fust in a list is ocwipatibie with the USF programming kngtage*



and the first element of a list on the right hand side is a command function.3 For example, the truth predicate
Hold is TRUE if and only if the robot is actually holding a Billet

2.3. Levels of Abstraction
Structuring a program hierarchically has many different advantages. The entire program can be seen and

understood at a glance even though it may be at a coarse level of abstraction. This convenience is available to
everyone who needs to look at the program, including the shop foreman, the programmer, and even the
computer doing the execution. Finer levels of abstraction provide more and more details about particular
aspects of the manufacturing cell. This makes it both easy to find details in an existing programs and to add
new rules without disturbing an existing program's internal structure.

In keeping with the program forms discussed previously each program is made up of a single conditional:
the root of the program.

(Active Cell) -* {consequent}

The consequent in turn can be a set of conditionals or a set of basic actions. This rule makes it possible to
turn the whole cell on or off by making the boolean Active of Cell TRUE or FALSE respectively.

The next level of abstraction naturally falls into the different modes of operation for the cell. These modes
of operation might include: cold starting the cell, scheduling preventive maintenance and the basic execution
cycle of the machines. The final levels make up the actual cell control, and its verificational sequence.

Ceil Status

C,,d Start ) ( Batch Run >

(^Machine Operations^

(^Status Verification

Figure 2-1: Illustrating a cell control hierarchy

The notation for implication (i.e. *-+m) is only used to highlight the difference between the left and right hand sides of a rale.
cwiW just * easily be written is t function found Fiat in the fist (Le*, "(if (antecedent) {consequent})**).



2.4. Language Primitives and the Definition of Truth
The language primitives correspond to primitive cell functions and states. The primitive cell functions are

each a set of non-decomposable machine actions which return TRUE upon successfully completing the task
and FALSE otherwise. The machine states can also be viewed as a function which declares that the machine
is in a particular state. If the machine is already in the correct state then TRUE is returned and FALSE
otherwise. These simple definitions constitute the basic semantics of the language.

The cell primitives are a set of functions from which complex programs can be built Two example
primitives would be a robot move command and a particular machine location. If the machine position
changes,4 then the only change that has to be made to the language is to the semantical definition of the term,
and not to the program itself.

A cell primitive has several important characteristics.

• A primitive is a simple function which never needs to be decomposed further within a particular
manufacturing cell.

• A primitive is useful and therefore used in complex configurations. In other words, a
manufacturing cell for making turbine blades would not have a primitive which returns the
current phase of the moon.

• A minor change in a primitive does not disrupt the portions of the supervisory program which use
i t

• The details of how a primitive accomplishes its task are nol needed by the supervisory piDgram.

• The implementation of the primitive is confined to one machine within the cell. This corresponds
to a practical restriction which forces the real time control of a machine to be contained within its
own controller.

None of these characterizations of a primitive are necessary and in feet are only used as guidelines to the
overall system design. A sample set of primitives is given for the open-die forging cell in Section 3.

2.5. Program Decomposability
Decomposing programs into independent segments is an extraordinarily difficult problem for programs

which are written in an ordinary procedural language. However, programs written in a rule based language
are claimed to be made of independent chunks which can be executed in any context That is, they are
already decomposed into independent pieces. This is a very strong condition, because it is so difficult to
guarantee that a rule's execution has no side effects to the surrounding environment This problem is
especially acute in physical systems such as a manufacturing cell where some side effects may not have been
taken into account within the model of the cell. This incompleteness is generally due to the programmers
ignorance of subtle iteractions between machine tools. The effect of interactions between rules has also been
observed by other researchers [7].

4
Onl> static locations would be made primitive. For example, the position of a furnace door would be primitive, and its position could

be d»nged only after a major construction prefect



2.6. Error Detection: Pragmatics to Semant ics to Syntax
A programming error in a manufacturing cell easily could cause a several hundred thousand dollar

accident A 100-Ib. work piece could be dropped on a laser etching device or a furnace could fail to open its
door before a robot tries to enter it. There are many different kinds of errors that amount to a
miscommunication between the machine and the programmer. That is, the programmer does not always say
what he means. Many of these errors can never be detected, but many of the outlandish errors can be
detected and then avoided using linguistic techniques.

Program errors can be found using a range of different language mechanisms. At one extreme you can sit
back and wait, and watch the machines crash into one another. This is a pragmatic approach. It is an effective
but expensive means of error detection. A more reasonable approach would be to simulate the program using
a computer model (i.e., semantics) of the physical machines in the cell. The program execution would then
cause the model to go through its paces. For example, two polygons intersecting might indicate that if this
program were to run using real robots, then they would collide. Barry Soroka at Stanford has recently used
this approach to help him debug robot programs [9]. Unfortunately, an accurate simulation is
computationally expensive and is only as reliable as the model is accurate. It should be pointed out that a
purely graphic simulation does not offer ANY error detection facilities per sey but rather is only a tool for the
programmer to see his own errors. It is certainly possible to extend the simulation to include geometrical
constraints that prohibit graphical primitives from intersecting, but this is at best a first cut at. the possible '
errors since it says nothing about a robot which needs to instantaneously stop. It would then be possible to i

add deceleration constraints to all the robot movements, but then this list of constraints can be extended ad
infmitum. In fact, the general notion of constraints can be extracted and used to modify the basic syntax of c
the final programming language. This is the final step in the continuum of solutions. More elaborately, <
programs that would cause machine collisions with an unconstrained language would be meaningless and c
would therefore never get to the execution phase. The syntactic approach to error detection has two i
advantages over the more traditional means of simulation. It provides a more streamlined means of encoding
the real world constraints, and it directly prohibits a programmer from writing the programs in the first place.

The real world constraints of a manufacturing cell can be embedded in the grammar of a language. For the
moment, consider a manufacturing cell with a single robot Such a cell has many of the complications that are ^
found in cells containing 15 machine tools. The most obvious commands for a robot include a move
instruction that is constrained by the physical capability of the robot, at least in terms of position and speed.

t

(Move x y z speed)

One sure way to avoid problems is to make the robot movements primitive, so that the robot arm always is
accelerated and decelerated properly. This is in opposition to making both positive and negative acceleration 1
primitive. Unfortunately this is no solution at all since when the rule of making programs primitive is i
applied ubiquitously, it trivializes the idea of having a language. The entire cell program is made into one 1
huge primitive. The alternative is to find rules which allow robot primitives to be combined in complex ways, s
while avoiding the disastrous combinations exemplified by robot collisions. c

f



2.6.1. The Conflict Set
At each level of the hierarchy at a particular time there is a set of satisfiable rules; the set of rules whose

antecedents are TRUE. This set is called the conflict set. The name originated on a sequential machine where
it was necessary to choose which rule could be executed first In this case each rule is sent to a physically
different machine, so the rules can be executed in parallel.

Conflict
Set -&+•

Executable
Rules

. . . . . . . ( Grammatical
Satisfaction ^ Constraints

Figure 2-2: Rule Database and the Conflict Set

2.6.2. Some Constraints
Grammatical constraints are used to restrict some rules in the conflict set from being executed. These

:onstraints examine the right hand sides of the conflict set rules and determine which predicate argument sets
ire incompatible. The rules passing this examination are executed while those rejected are deleted from the
x>nflict set One simple constraint prohibits the host computer from sending more than one set of
nstructions to a particular controller.

A -* {(Robot-1-gripper open)}
B —• {(Robot-1 gripper dosed)}

n this example only one of the rules would send its command to the the Robot-1-gripper controller.

Figures 2-3 and 2-4 show two robots that can reach into each other's range. The next constraint restrains
he two robots from working in the critical region at the same time.

A -* {(Robot-1-move D)}
B -* {(Robot-2-move d)}

fhe grammatical constraint must take several factors into account in order to determine that these rules are
ncompatible. Each of the discrete points {C,c,d} should be marked as being part of the critical region*
fherefore, this constraint prevents both of the robots from going through the critical region in the same
ystem cycle. One approach is to encode the robot movement points in such a way that movements can be
lefmed in terms of intervals. For example, a lettering scheme makes it possible to represent a movement
rom point A to point D as the closed interval [A DJ, which implies that the points B and C are included
within the interval. This suggestion makes it possible to test the constraint relation with a subset operation.



IF Robot-interval-1 D Critical-set and
Robot-interval-2 f] Critical-set
THEN constrain a rale 5

Several interesting problems arise when a robot can take two paths to a particular point. One path could be
short and intersect with the critical region and another path could take the long way around. The system must
then decide whether it is worth waiting for a path through the critical region or whether it should just take the
alternate route. Fortunately, it is still easy to represent the circular nature of a robot movement in an interval
notation by reversing the arguments (e.g., [D A]).

Critical
Region

Figure 2-3: Two robots contending for the same space

The tailed robots in Figure 2-4 represent a difficult class of problems, because they strike at the heart of the
inadequacy of abstract models. Moving the robot from point A to point B seems to be a perfectly reasonable
action for the head of the robot, while the move has disastrous effects on the tail. While the tail can be dealt
with in the same way and in conjunction with the head, sooner or later something will be left out of the
model. A hydraulic hose may extend into the critical region in some robot positions and not in others.
Perhaps a more convincing example of this dilemma is a robot moving different size parts. This actually
changes the size and shape of the critical region and depends on how the robot is holding the piece.

2.6.3. Warnings
The constraints are making up for programs that are incompletely specified. For example, the ordering of

program statements is intentionally left open until run time. This incompleteness is the source of some
trepidation.

If the conflict set ever became too large, it would be time consuming to check all of the combinations that

A son-nil intersection is intended to return TRUE



Critical
Regions

B

Figure 2-4: Robots with tails

would be called for by the constraints. This would only become a problem in an large manufacturing cell,
because the conflict set size is bounded by the number of controllers. This may become a determining factor
in drawing cell boundaries.

A rule may be continually thrown out of contention based on the constraints alone. There are two possible
resolutions to this problem. First, the rule may be naturally executed as the competing rule completes its
activities. And second, this could be directly prohibited by the system forcing the rules to alternate.

Constraints not only have to consider conflicting rules, but they must consider the current state of the cell.
This problem is brought on by the hierarchical rule structure which by changing the cell at one level could
cause undetectable errors at another level. The constraints must be given access to the database in order for
them to make the appropriate checks between the rules and the cell state. The only other option would be to
save an entire list of executed statements and to recalculate the cell state. Since this option is absurd, the
purity of the grammatical constraints must be violated by giving them semantical access.

The system may reach a state of deadlock. That is, where there are no satisfiable rules left to execute
because of resource contention. Consider a robot which is waiting for another robot to get out of its way. The
state of deadlock occurs when the second robot is also waiting for the first robot to get out of its way. This
assumes that they are clever enough not to run into each other in the first place. The problem occurs in
essentially every kind of operating system and has never been solved to anyone's real satisfaction. Two
approaches have been to avoid the problem through the use of semaphores, and to pre-empt one device in
favor of another once the state of deadlock has been detected. Viewing physical space as a resource, it is
possible to assign semaphores to the critical regions. The semaphores represent semantical access for the
grammatical constraints and thus address the robot deadlock problem.

A systematic approach is being developed to detect and resolve each of these problems. However, these
solutions will only emerge after extensive research and an enormous amount of experience has been gained
with an implemented system. The implementation, and its relationship with the rule based language are the
focus of the next section.
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3. The Manufacturing Cell: System Architecture

3 . 1 . Cell Language Function and Structure
This language is implemented for a cell producing turbine blade pre-forms. The production of t

pre-forms is the first step in the production of one family of turbine blades which are used in steam turbi
Pre-forms are produced by open-die forging of cylindrical billets. Additionally, the cell heats the billet, a
the pre-form and stamps the pre-form with appropriate model and batch numbers. Finally, the pre-forms
gauged using a computer based vision system. Both the billets and pre-forms are handled by two large rot
The parts flow from the loading racks to the furnace, through the forging machine, to the cropping/gauj
station and finally to a pre-form bin. Figure 3-1 shows the circular nature of this material flow.

pre-for
bin*

vision gaging station

loading racks

Figure 3-1: Plan view of the Manufacturing Cell

The program structure and its rules are mirrored in the physical construction of the cell. The top levels o
the hierarchy control the management functions of the cell and the lower levels describe the interaction;
between the rules and the equipment Figure 3-2 illustrates this linkage.

The rules interact with the physical cell by determining the truth value of antecedents and executing cd]
primitives. Tills interaction is through a database, as is generally the case with production systems [4J. The
database manager, in part, provides the truth content of any particular antecedent or consequence to the
language Interpreter (including the highest level rule - active cell). The database thus acts as the interface
between the rule based language and the physical cell.



11

Cell Host Rules

Data Base Management

Data Base

cntrl

tool

cntrl

U
tool

cntrl

tool

Logical
Machine

Tool

Figure 3-2: A diagram of the control flow within the cell.

The levels below the database consist of the machine controllers and the machine tools. This language
views the controllers and equipment as logically one. This allows the supervisor to ask a controller to execute
a program, but does not burden the supervisor with the details of controller operation. The fact that the
controller did, or did not, execute the program is all that is relevant to the supervisor. Additional information
is valuable for fault tolerance and maintenance, but supervision is achieved by viewing the controller and
equipment as one logical unit

Inter-machine communication within the cell is handled exclusively through the supervisory host This
includes both the cold-start of the manufacturing cell and the machine tool interaction during cell operation.
During a cold-start the operating systems and the parts programs for each controller originate from the plant
computer and are distributed by the host Communication between operating machine tools frequently
occurs during cell operation. For example, the communication between the robot and the forge is passed
through the host When the robot passes a billet to the forge, it must ask the forge, via the host, to close its
chuck jaws.

Language status and maintenance operations interact with the database to provide cell operating
parameters to the supervisor. The status operations arc classified as providing information about parameters
where the supervisor can have immediate consequence. For example, the robot grippers are equipped with
strain gauges to indicate if a billet has been successfully acquired. Checking those strain gauges indicates to
the supervisor the success of the acquisition and either fires a rule for corrective action or allows continued
normal execution. In the same vein, the supervisor will have access to information concerning the status of
the furnace atmosphere. If the atmosphere goes out of tolerance, a rule will be fired to correct i t

Maintenance operations are rules generally designed to provide information for fault correction and for the
scheduling of preventative maintenance tasks. Typically the supervisor does not have immediate control over
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the information provided by the maintenance rules. The robot servicing the furnace, for instance, should not
shut down due to a filter clog with its end-effecter within the furnace. The supervisor can only prevent this
from happening, however, by indicating that the filter should be replaced. The longer time response for
correction of a problem indicated by a given maintenance rule suggests that they can be separated from the
other rules within the language. In this way the maintenance rules generating a list of equipment needing
service can be fired when the supervisor has time.

3.2. Cell Equipment: Machines and Controllers
The cell is programmed by creating sub-programs in each machine controller. The set of sub-programs

within the controller constitute the possible actions of the machine tool for a given turbine blade batch run.
The sub-programs also constitute many of the primitives of the cell language; the sub-programs are primitives
for the supervisor. The primitives, as discussed above, are executed when a rule fires within the cell program.
Thus the machine controllers must be capable of executing an internal program upon command from the cell
supervisor. The cold start condition of the cell requires the cell host to pass parts programs to the machine
tools, so they must have the capability of receiving previously written programs from the cell host

To maintain an accurate correspondence between the supervisor model and the physical condition of the
cell the supervisor must have access to timely information on the cell operating status. Items such as the
current program any one machine is running and the exit status of the last program a tool ran are important
The progression of supervisor complexity toward autonomous operation for an extended period of time
requires a more encompassing model. This model, in turn, requires more information from the cell. One of
the most interesting uses for this additional input is the detection of faults within the manufacturing process
by visually inspecting the finished pre-form [3], The visual inspection is being done by equipment identical to
that doing the billet location for the initial part acquisition.

The constraints of the controllers have important consequences for the language. The host computer
initiates all communication between a tool and itself. The available controller designs, however, allow them to
acknowledge messages only when they are ready. The robot controllers, for example, are essentially
completely busy during robot translation. Only between the execution of sub-programs do they have time to
correspond with the supervisor. This restricts the supervisor from terminating running sub-programs.

3.3. Language Database
The database system is the interface between the supervisor and the machine controllers. The information

within the database is used to pass and obtain operating parameters to and from the machine took A
software interface driver is implemented to execute this communication. The driver understands the protocol
for the communication between the host and the machine tool while the database supplies the driver with the
appropriate parameters for the task at hand. The database is constructed to provide a consistent format for
those parameters. The cell has a laqje number of inputs to the supervisor, but these tend to be either linear
functions of the physical variable or simple binary inputs. This has allowed us to construct the database
around an element which varies from zero to one. This element represents, in a uniform manner, the value of
any of the inputs from the cell. Previously known minimum and maximum values are included in the
database as parameters to a normalization routine. The fundamental idea here is the ability to represent a
varied and complex set of inputs as a uniform set of values. This internal value can then be easily translated
to numbers appropriate for cither an operator or a machine tool
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The database uses abstract data types which include both the data and the functions needed to model the
equipment. An entry in the database will typically include the following classes of information considering
the furnace as an example:

• The logical name of a software driver which understands the protocol for communication between
the host and the machine controller6 .

• The normalized value of the state. This value will reflect the last sampled value of the state
normalized to a range between zero (0) and one (1). An executing rule will cause a new value to
be sent to the machine tool The values in the database are then updated from the new machine
tool state.

• The maximum and minimum values of the state as viewed by the program rules. These are
numbers representing the values of the state as understood by the programmer, ag., furnace
temperature in degrees Fahrenheit

• The maximum and minimum values of the state as viewed by the machine controller. These
values are related to the hardware on the controller, eg., furnace temperature represented by a
number between 0 and 4095 for a hardware device such as a 12-bit D/A converter.

• The memory location within the remote controller from which the device is controlled,

• A number indicating how quickly the machine state changes. This information is used in deciding
how frequently the state needs to be updated. The furnace temperature changes rather slowly
with respect to the angular position of the furnace hearth. Therefore, the hearth position will be
updated more frequently than the furnace temperature.

To capitalize on the advantages discussed above, this database structure will also be used for the other
controller entries. The number representing the memory location within the remote controller will point to,
for example, an executable robot sub-program. The robot will return a truth value (true for successful
completion of the task and false otherwise) when the sub-program completes. This truth value will be placed
in the state value.

Figure 3-3 shows an example of the interaction which takes place between the language interpreter and the
equipment database. In this example the interpreter operates on a rule which opens the furnace door if the
door is closed. The database manager (called "Get Truth" here) ascertains the truth content of a rule's
antecedent If true, the interpreter sends the consequence to the database manager and it is executed. The
equipment database contains:

• the "name" of the furnace driver

• a normalized value of the door state (in this case, either opened or closed)

• minimum and maximum values (all of which are zero or one for this binary system)

% i e logical name is connected to the address of the driver,
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(furnace-door closed ) —*•{ furnace-door open }

Language
Interpreter

A

f

\ /
(^GetTruth j )

i t
Database

System

A

Equipment
Database

furnace controller 151426 8
door position 1

operator min, max o,c
machine min, max 0,1

remote cntrl address 842816
freq. of change 1

furnace controller 151426 8
turn. temp. 0.872

operator min, max 70,2300
remote cntl address 4462 16

freq. of change 0.4

Figure 3-3: An example of interaction between the
language interpreter and the equipment database.

• the memory location within the furnace controller that controls the furnace door.

The other entry in figure 3-3 is a representative entry for the furnace temperature control.

This portion of the database will also contain two other entries for registers showing the actual state of the
door7 . The combination of these two entries provide the supervisor with three possibilities of ftimace door
positions: open, closed or indeterminate. The indeterminate state is composed of two states, 'door neither
open or closed' and 'door both open and closed' The latter is a serious error, representing a failure in the cell.

The primary non-transportability of the system rests in the entries of the database. This implies that the
movement of the supervisor to a different manufacturing cell would primarily require re-writing the database,
By the same token* the majority of the work involved in adding a new machine tool to an existing eel is
adding new entries to the database.

The door open and door dosed sans trc registered by tail switdies m fee ibrnace,
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3.4. Rule Execution Example
A brief illustration of rule execution should help clarify how a program is written and executed. This

example is concerned with a set of rules supervising a robot moving cold billets from the loading rack to the
furnace. For simplicity, there are two 'staging' areas in this transfer. One is in front of the furnace and one in
front of one of the loading racks. The staging areas are, in a significant sense, safe locations for the robots:
they are not in any of the critical regions of the cell nor do they place any portion of the robot in a critical
region. The robot in this example starts at the furnace staging area which is an endpoint of one of the robot
primitives.

A
(AND (Acquired Billet InRack)

(NOT(Located Billet InRack)) )
{ (Locate Billet InRack) }

(AND (At Robot LoadStage)
(Located Billet InRack)
(NOT(Gripped Billet)))

{ (Pass Rack BilletLocation ToRobot)
(Acquire Billet InRack) }

(AND (At Robot LoadStage)
(Gripped Billet))

{ (Move Robot ToFurnaceStage) }

(AND (Gripped Billet)
(Cold Billet)
(At Robot FumaceStage)
(NOT(Moving FurnaccHearth )))

{ (Open FurnaceDoor)
(Pass Furnace BilletLocaticm ToRctooi)
(Place Billet InFuraaee)
(Close FumaceDoor) }

(AND (At Robot FumaceStage)
(NOT(Gripped Billet))
(NOT(Full Furnace)))

{ (Move Robot ToLoadStage)}

The syntax of the rales is described in Section 22. To fully understand this example, a few comments on
the semantics of the functions are noted.

• Tenses arc used to distinguish between boolean functions and imperative functions. For example,
(Acquired Billet In Ruck) is a boolean function which returns TRUE if and only if a billet has

' already been acquired This is distinguished from (Acquire Billet InRack) which commands die
robot to acquire a billet

• Acquire and Phce implicitly refer to robot sub-programs. Their arguments specify to the DBM
(Data Base Manager) which sub-program should be executed by the robot

• The Locate function in rule A tells the vision system to locate a billet in the loading rack.
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• Pass explicitly 'passes' a value from one machine controller to another. For example, (Pass Rack
BilletLocation ToRobot) passes the billet location which is found by the vision controller to the
robot controller.

• At is a boolean function with two arguments. The first argument is a machine at the position of
the second argument.

A trace of the execution might appear as follows.

• The language interpreter acting with the DBM determines that the rules A and E can be passed to
the conflict set The constraints will not reject these rules, so they are passed to the DBM for
execution. The DBM will tell the vision system to execute its billet location primitive which
returns the billet location. It will also instruct the robot controller to execute a sub-program that
moves the robot to the loading rack staging area. The two separate consequences can execute
simultaneously.

• The next pass of the interpreter discovers that no rules can be passed to the conflict set This will
continue to be the case until the consequences of rules A and E have completed execution. At this
time, the interpreter will discover that rule B can be executed. B instructs the robot to acquire a
billet from the loading rack. The (Acquire Billet InRack) consequence in rule B is a robot
primitive which

o moves the robot from the staging area to a location over the billet

o lowers the gripper to the height of the billet

o closes the gripper

o raises the gripper

o and returns che robot to the staging area following a pre-programmed path such that the
billet does not contact the loading rack.

• After the consequence of rule B has completed, the interpreter passes the rules A and C to the
conflict set Again, the constraints will not reject either of these rales.

• At the completion of C it is possible to execute D. Rule E is rejected by the interpreter because
the gripper does contain a billet If the programmer had forgotten the first consequence in rule D,
the constraints would have rejected D from the conflict set, because execution of D would have
placed both -the fiiraace door and the robot arm m the critical region of the door.

• Finally, E can apto be fired to move the robot to the loading rack staging area.

4. Summary
The manufacturing cell of the future is the basic unit of a flexible factory. If a cell is expected to do a wide

range of tasks, then there must be a straightforward way of reprogrammiiig it This involves a programming
language which encapsulates a set of properties that makes the programming task easy and which helps the
programmer avoid costly errors. The same requirements would be found in a more sophisticated CAD/CAM •
system where the program would be automatically constructed from a part design. .
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A non-procedural language has been chosen as the most likely candidate for cell control. Unfortunately,
the very advantages of this scheme, its non-sequential nature, also are the cause of its biggest problems.
Unwanted interactions between program statements could be translated into actual robot collisions which
must be avoided. Therefore, grammatical constraints have been added to choose which rules in the conflict
set can be simultaneously executed. The implemented manufacturing cell will provide us with a unique
opportunity for developing new and more powerful constraints which in the long term will support a more
basic theory of language development
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