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1 Introduction

A study of the matrix displacement method for modeling the vibrations of structures is presented in this

is treated as a special case of the forced vibration analysis.

A brief review of the Finite Element Method and its present use is first given. This.is followed by a
discussion of the methodology of the matrix displacement approach and a description of the'specific model
used. Examples of the use of the model to analyze the frequencies and mode shapes of the free and forced
response of a beam structure and the static deflections of a beam structure are shown and compared wi;[h the
closed form solutions.  Finally, ways of extehding the model to amore complicated structure, aturbine blade,

are discussed- Conclusions are then drawn.

2 The Finite Element Method -- Fundamental Concepts and Appli'cations

There are many methods available today which perform the analysis of structures. For example, in one
method the structure is described by differential equations. The differential equations are then solved by
andytical or numerical methods. Another method of analysis is the finite element method (FEM).

In this method, the structure is idealized into an assembly of discrete structural elements, each havi ng an
assumed form of displacement or stress distribution. The complete solution is then obtained by aésembling
these individual, approximate, displacement or stress distributions in a way satisfying the force equilibrium
equations, the constitutive relationships of the material, the displacemeht compatibility between and within
the elements and the boundary conditions of the structure.

Methods based on discrete element idealization have been used extensively in structural analysigThe early
pioneering works of Turner, et al., in 1956 [1], and Argyrisin 1960 [2] led to the application of this method to
datic and dynamic analysis of aircraft S[I’UC'[I:,II’eS. Other fields of structural engineering, such as nuclear
reactor design and ship construction have sihce employed this method.

Nor is the idea of discrete elements limited in use to structural analysis only. The fundamental -concept of
the finite element method is that any continuous quantity, such as displacements, temperature, or pressure,
can be approximated by a finite number of elements. Thus, this, approach can be used to solve problemsin
heat flow, fluid dynamics, electro-magnetics* fracture mechanics and seepage flow to name just a few "other

areas of usage.



The representauon of a contmuous structure by structural elements of finite size results in large systems of
algebraic equanons A convenient way of handling these scts of equations is by the use of matrix algebra,
which also has the advantage of being ideally suited for computations on high-speed digital computers. For
this reason, expressions such as "matrix methods of structural analysis™ are sometimes used to describe the

method. More common thougti is the term "finite element method"”, which emphasizes the discretisation of

the structure.

The finite element method actually encompasses three classes of matrix methods of structural analysis. The
first is the displacement (or sﬂffnéss method), where the displacements of the nodes are considered the
unknowns. The correct set of displacements results from satisfying the equations of force equilibrium. The
second method is the force (or flexibility) method. Here the nodal forces are the unknowns and are found by
satisfying the conditions of compatible of deformations of the members. The third class of matrix me:thod is

the mixed method, which is a combined force-displacement method.

One last comment on the finite element method in general is necessary. An error is introduced into the
solution of the original problem as soon as the continuous structure is replaced -by discrete elements. This
error remains, even when the discrete elemenf analysis is performed exactly. In general this error is reduced
by increasing the number of discrete elements, thereby decreasing the element size and thus giving a better
idealization of the continuous structure. Zienkiewicz, Brotton and Morton [3] suggest that the user may
determine the limits of his error by: "(a) comparison of finite element calculations with exact solutions for
cases similar to his specific problétﬁ; (b) a "convergence study’ in which two or more solutions are obtained
using progessively finer subdivisions and the results plotted to establish their trend or (c) using experience of
previous calculations as a guide to the treatment of the specific problem.” Further mformaﬂon on matrix
structural analysis and the finite element method may be found in many sources. [4-11] -

3 Explanation of the Model

The following discussion is divided into three sections. Firstly the equations of motion will be stated.
Secondly, the matrix displacement method for solving such equations will be described. Finally some specific
aspects of the particular model being used will be discussed.

3.1 Equations of Motion

The motion of a vibrating system, consisting of mass and stiffness, of n degrees of frcedom can be
represented by n differcntial of motion. These cquations of motion may be obtained by Newton’s
second law of motion, by Lagrange’s cquation or by the Influence Cocfficiénts method. Since the equations




of motion, in general, are not independent of each other, a simultaneous solution of these equations is -

required to calculate the frequencies of the sy;stem.

The matrix equation for the free vibration case is:

K-o™M][X] = [0]
where
K] represents the stiffness matrix of the structure,
Ml represents the inertial (mass) matrix of the structure,
@ represents the set of eigenvalues of the equations
corresponding to the set of natural frequencies,
X1 represents the set of eigenfunctions of the equations

corresponding to the set of displacements
For the free vibration case the set of forces is just zero.
The matrix [K-»”M] is called the impedance matrix.

The matrix equation for the forced vibration case is:.

K-o? MX] = [P]
where [P] represents the set of forces on the structure, and
o is the driving or forcing frequency.

The other terms are as previously defined.

)

@

Inspection of equations (1) and (2) reveals that neither contain damping terms. This is because structures

of immediate concern have very low damping (~1 x 10* critical damping).

An exccllent treatment on the dynamics of structures is Clough and Penzien [14].




3.2 The Matrix Displacement Method

An outline of the application of the matrix displacement method in finite element anaysis for the solution
of dynamic problemsfollows. A smilar oltlineis given by Zienkiewicz, et a. [3] for Satic andyss.
1. Input
a. Idealization of the problem
The continuous structure is divided into a number of elements. These elements are
connected at common nodal points or nodes. It is a these nodes that the value of the
continuous quantity (displacement) is to be determined.

b. Preparation of thedatafor thestructure

The geometry of the structure is defined by assigning coordinates to the nodal points. The "
physica properties of the elements (dimensions, material parameters) are inputted.

c. Preparationof theload data
The loads to be applied to each element or node are defined
d. Preparation of theboundary conditionsor constraints
The prescribed congtrai nts on the degrees of freedom and boundary conditions are stated. *
2 Processing
a. ElementFormulation | )

The siiffness and inertidl matrices for each element are determined by. the approximate
relationships and the corresponding loads are cal culated.

b. Assembly of the structure

The summation of the demental matrices to form structural stiffness, inertial and load
matricesis performed.

¢. Reduction of equations

The boundary conditions and constraints in terms of certain specified displacements are
introduced, thereby reducing the number of equations to be solved.

d. Solution of simultanwm equations
The solution of the cigen probiem of equation (1) or (2) results in the natural frequencies of

the structure (eigenvalues) and the moda shapes or displacements of the nodes* 4
(eigenfiinctions).

T TR




e. Calculation of stresses

If required, the elemental stresses éould be calculated from the nodal displacements ‘and
elemental stiffness. : '

3. Output

The results of the solution to the eigenvalue problem and the stress calculation are presented in an easily -

interprcted form.

3.3 Specific Aspects of Model

This section is concerned with specific aspects of the model. The element and its formation will be

discussed first. Information concerning the computer code and its subroutines will then be given.
1. Element Formulation

The element chosen for the model is the beam element which is given by Przemicmiecki [7]. This element
was chosen so as to allow direct comparisoni of results with known solutions (see section 4). The beam
element is a two node element. The model ;allows the nodes to have either three degrees of freedom (x aﬂd Y,
translational and rotation about z, i.e. motion confined to a plane) or six degrees of freedom (x,y,z
translational, rotation about x,y,z, i.e. the general case).- A V | : ‘

Fig. 1 shows the beam element. The following forces act on the beam:
o axial forces s;ands, |
o shearing forces 52 $3, Sgs and Sy
o bending momentss,, S Sqp0 and 12
e and twisting moments (torques) s, and s, .

The location and positive directions of these forces are also given in Fig. 1. The corresponding
displacements U,, U,,,. .. U, will be taken to be positive in the positive direction of these forces.

Each element has its own set of physical parameters. For the becam element these parameters are: Young's
modules, cross-scctional arca, moment of inertia about the y and z axis, Poisson’s ratio, mass density, and
length (along x axis). All of thesc parameters are inputted directly except for the length which s computed
from the inputted coordinates of the nodes.



Neutral axis

Figure 1: The beam element and its forces, after Przemieniecki [7],

The model performs calculations for either the free or forced vibration case. To perform such calculations
requires the calculation of the structural stiffness and inertial matrices, along with information of the loading
and boundary conditions of the structure. The effect of constraining a degree of freedom is to strike out the

corrcsponding rows and columns of the stiffness, interial and load matrices.

The stiffness matrix for a beam element is shown in Fig. 2. The shear deformation parameters <I>y and <I>z‘
can be taken as zero. This matrix may be obtained in various ways, two of which are the influence coefficients

method and the variational method, which are outlined in Appendices I and 11

The inertial matrix for the beam element is shown in Fig.3. This matrix is obtained by the same methods as
the stiffn.2ss matrix, as described in Appendices I and 1L

Liepens [13] gives a third way of calculating the stiffness and inertial matrices.

The scuctural matrix for both stiffness and inertia is obtained by supcrposition of the individual elemental

matrices. Actual superposition occurs only when degrees of freedom are common to more than one element.
2. Corzputer Coding

The computer code itsclf contains ten subroutines, called by the main program, entitled VIBRAT. A bricf

explanat:on of the subroutines will now be given. : .




INPUT - This subroutine asks the user for the necessary information which is needed to assemble the
structure. Information such as: free or forced case, number of elements, coordinates of
nodes, physical parameters, structural loading, and constrained degrees of freedom are
inputted in this section.-

CONECT - This subroutine establishes the geometry of the model. It determines the distances between
adjacent nodes of the structure. « :

KMAT - This subroutine calculates the elemental suffness matrix for each element and then assembles the
structural stiffness matrix from them.

MMAT - This is similar to KMAT only here the mass or inertial matrices are calculated.

EIGEN - This subroutine is called for the free vibration case. The purpose of it is to calculate the eigenvalues
(natural frequencies) and eigenvectors (mode shapes) of equation (1). This subroutine calls
two other subroutines: EIGZF, an IMSL routine which actudlly does the solving, and
CLAMPR, which determines which degrees of freedom are constrained.

SOLVE - This subroutine is called for the forced vibration case. This routine solves equation (2) for the
displacement. This subroutine also calls two other subroutines: LEQT1F, an IMSL routine
which does the solvmg, and CLAMPR, which determines the proper degrees of freedom to
be constrained.

REMARK - is a subroutine whose purpose is to explain the use of the main program VIBRAT and its
subroutines. Information .on the nomenclature and file structure used can be found in
REMARK. The user of the model is recommended to refer to REMARK if he has any
questions on the computer code used in this model. .

The code for all of these routines may be found in Appendix II1.

4 The Model: Examples and Accuracy

This section presents various examples of use of the ﬁmdel. The examples chosen represent five types of
possible problems. They are:

1. free vibration of a fixed-free uniform beam

2. free vibration of a ﬁxed-ﬁxe& uniform beam
3. forced vibration of a fixed-free uniferm beam
4. static dcﬂectien ofa ﬁxed*free uniform beam

S. static deflection of a fixed-free non-uniform beam.

The accuracy of each example is discussed.
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Figure 2. SiflfhessMatrix of Beam Element of Figure 1 [After Przmieniecki].
- [The sheer deformation parameters $_ and O can be considered

to bezero.]

The firg four examples use the geometrib and materia vaueslistedin Table 1.

Parameter

Total Beam Length (L)
Young'sModulus (E)
Cross-Sectional Area (A)

Moment of Inertia about Z-Axis (L)
Moment of Inertia about Y-Axis (I,)
Foisson'sRatio  (?)

Mass Density  (p)

_Val ue

250

278x10°

10

02
07
0.305
0.283

Symmetric
128/
o 12f/
P+ )
G7
) 0 -
_6E, | @+00E,
N+ ) XN
-6EJ, 0 4+ 0)E,
P + %8 ETIH
Units
inches
_ pounds forcelinches?
inches’
inches®
inches®

pounds mass/i ncfaet

TaMel: Uniform Beam Properties;
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(After Przemieniecki [7]) , .

4.1 Example 1: Free Vibration of a Fixed-Free Uniform Beam

MAANNN

Figure 4 Example 1: Fixed-Free Uniform Beam,

Table 2 summarizes the resuits for this problem, using one, two, and five clements. It is clear that



10
incressing the number of dements incressss the accuracy of the results, and this supports the statements of
Zienkiewicz given earlier. ' ‘

) |
The natura frequencies caculated by the mode are compared with the dosed fom solution obtained
from the - patid differentia eguation of the continuous sysem. For the fixed-free case the dlosad fom
olutionsare:

Axid © = o/ E wheren=1,35,... ~ = 3)

2L p
. JEL"7 B
Bendi n@ to = aZLZ'\A__|_ wheae 1 + cosalcoshaL =0
L4
i=YorZ - . @)
Torde>nd 03 = n'\/—G whesan=i, 3 B,...G= E ©)
oo 2(1+%)

Thusfrom Table 2, one can see that by usingjust five dements the modd gives ten transverse modes, two
axid modes, and two rotational modes, the frequerldes.of which are dl within 5% of the exact solutions
Again, dearly greater'accuracy of results and more (higher) modes may be accomplished by increasing the
number of elements. '

Diagrams of the mode shapes for the firgt five bending modes (in Y) and the first four axid modes (dong
X) aregivenin Figs. 5and 6. Themodd shapes agree with the dosed form predictionsin every case.

4.2 Example 2: Free Vibration of a Fixed-Fixed Uniform Beam

In thisexample the beam isheldfixed on both ends. SeeFigure7. . Table 3 showsthe calculated and exat
vauesfor the axiad mode naturd frequencies* The accuracy issimilar tothat of example 1.

4.3 Example 3: Forced Vibration of a Fixed-Free Uniform Beam
In this example (Figure 8), the beam is subjected to a harmonicaly varying load P(t) of amplitude Pan!
creular frequency, « Figure 9 isaplat of the magnitude in the transverse direction of the free end nodfe As

expected, m « gpproaches a naturd frequency (those found in example 1), a resonance condition coours
resulting in'very large magnitudes of defl ation. The expression far the amplitude of response A isgiven by



Number of Axial Mode Bending (in y) Bending (in z) Torsional

Elements Frequencies Mode Frequencies Mode Frequencies Mode Frequencies
1 13,491 (10.3) 348 ( 0.6) 650 ( 0.3) 8,350 (10.3)
3,413 (57.2) 6,313 (55.5)
2 12,551 ( 2.6) 347 ( 0.3) 647 ( 0.2) 7,769 ( 2.6)
43,847 (19.5) 2,183 ( 0.6) .. 4,058 ( 0.1) 27,140 (19.5)
7,350 (20.9) 13,509 (18.8)
20,959 (75.9) 37,022 (66.1)
5 12,285 ( 0.4) . 344 ( 0.6) 641 (1.1) 7,604 ( 0.4)
38,074 ( 3.7) 2,166 ( 0.2) 4,027 ( 0.8) 23,567 ( 3.7)
67,455 (10.3) 6,063 ( 0.3) 11,173 ( 1.8) 41,753 (10.3)
101,152 (18.1) 11,914 ( 0.0) 21,684 ( 2.7) 62,611 (18.1)
130,102 (18.2) 19,644 ( 0.2) 35,225 ( 4.4) 80,531 (18.2)
Exact 12,235 o 346 . ~ 648 7,573
' 36,704 2,171 . 4,061 22,719
61,170 6,079 11,373 37,865
85,645 11,912 22,285 53,011
110,115 19,693 36,843 68,157

~«Table 2. Natural frequencics (radians'/scc) and Percentage Error
(%) as a function of number of elements for Example 1.

1T
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Figure 5. First five bending mode shapes of Example 1 .




Axi al Cal cul ated Natura
Mbde Frequency (rad/sec)
1 24,874
2 . 52, 186 '
3 83, 933
4 117, 570-

Table 3: Cdculated and Exact Natural Frequenciesin Axiad Mode.
Calculated value used five dement model, for Example 2.

A = PG - A-- :—PQ_D
K(0%) K

Exact Natural
Frequency (r-ad/sec)
24,470
48, 940
* 73,410
97, 880

where Po/K  representsthe static deflection,:

fi equds the ratio of the forcing frequency to natural frequency,

D dynamic magnification factor equal to 1/(1-fi%)

" Error

1.7
6.6
14.3
20.1

(6)

Andyss of the calculated Eamplitude in ferms of the dynamic magnification factor agrees with equation (6)
in those frequency regions dominated by just one natural frequency.

4.4 Example 4: Static Deflection of a Fixed-Free Uniform Beam

By letting the driving frequency, 6% be zero in the forced vibration option, the mode is able to solve static
deflection problems. Figure 11 shows the deflection of the beam under the static loading of example 4. The
mode's calculations, using just five dements are within 2% of the exact beam theory results. The deflection
and dope at the end of thé beam are given by the expressions.

A

0

= PL¥3El
= PL%/2El
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Figure 7: Example2: Fixed-Fixed Uniform Beam .
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Figure 8: Example 3: Fixed-Free Unifor_m Beam With Dynamic Load ,

Values calculated using these expressions are compared with the model results in Table 4.

4.5 Example 5: Static Deflection of a Fixed-Free Non-Uniform Beam

Until now, all the examples have dealt with uniform becams. Example 5 is an example taken from Laursen
[11]. Laursen solves the problem in three differential ways: by the moment-area method, by the conjugate
beam method, and by Newmark’s method. The solution for displacement and slope at the free end is given
as:

A = -0.457 inches

© = -0.0041 radians
The model gives identical results.
A sketch of the deflection is shown in Figure 13.

The purpose of the previous five examples is o illustrate the use and application of the model to a variety
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Figure 10: Example 4 Fixed-Free Uniform Beam With Static Load .
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Figure 11: Static Deflection of a Uniform Beam, Example 4 .

of cases. Other cases of a more complicated nature could have been solved as easily, however these examples
give the user some insight into the accuracy of the solution obtained. They also indicate that very accurate
results arc obtained by the model with relatively few clements. In general, for a more complicated stméture
more clements will be required to obtain an accurate model. Techniques for handling morc complex

structurces arc discussed in the next scction.




il - t

A (inches) 8 (radians)
Exact 0 -9.37 x 10'4 -5.62 x 107°
Calculated 9.50 x 1074 5.69 x 107>
% : 1.4 1.2

Table 4: Calculated and .Exact Values of Deflections for Example 4 ,

5 Kkips
N4 B
\
N I T = 500 in.*
N~ 7 =500in
ft
| 6 ft ! 9 ¢J|

Figure 12: Exampie 5: Static Deflection of a Fixed-Free
Non-Uniform Beam ,
[After . Laursen].

5 The Extension of the Model to Model A Turbine Blade

An example of a more complicated structure which might be of vibrational interest to an engineer is a
turbine blade. The cquations of motion for a beam in bending vibration is a fourth-order differential
equation, whose solution is casily found. The solution for a non-uniform and asymmetrical beam is much
more complicated. A tapered, pre-twisted turbine blade with airfoil cross-section might be modeled as such a :
beam. :

The differential equations for combined flapwisc bending, chordwise bending and torsion of a twisted
non-uniform blade are derived by Houbolt ‘and Brooks [16]. The solutions of these cquations for the
continuous systcm have not been f(mnd_ Thus the analysis of such structurcs are limited to special cases
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P = -5Kips

Figure 13: Static Deflection of a Non-Uniform Bcam, Example 5,
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which solutions are obtainable, or to approximate solutions. "Various techniques of an anaiytical and iterative
nature such as th_e Myklestad metho&, quier method, Stodala meth(.)d, Rayleigh-Ritz method, transmission
matrix method, and the Runge-Kutta method have been studied [14]. A few typical examples are giveﬁ in the
references [15,17-20].

The_application of the model presented in this report to the turbine blade would be a very useful tool to the '

engineer and his study of the blade’s free and forced vibrations.

The model allows each element to have its own set of geometric and physical parameters. Thus neither the
non-uniformity or tapering of the blade would lead to any modeling problems. However the airfoil shape of
the blade would not have the same torsional stiffness as a beam. Thus the first adaptation to the model
needed would be to correctly compute the torsional stiffness for an airfoil shape and input this into the model
rather than using that which the model computes.

There is another problem which arises from the twisting and geometry of the turbine blade. The natural
frequencies of such a blade are coupled frequencies with the mode shapes consisting in general of transverse
motion coupled with torsion. The coupling is dependent upon the degree of pre-twist and the ratio of depth
taper to width taper. For a given blade, coupling becomes stronger with increasing pre-twist and with
increasing width to depth taper ratio. ‘ '

The simulation of this coupling in the model could be accomplished by either introducing it through the
element itself or through the geometry of the structure. The first way implies changing the element from a
beam element to a new element. This-new element could be derived from a variational method (see
Appendix II) applied to the differential equations for the blade equations derived by Houbolt and Brooks
[16]. The ideal of coupling through the geometry of the structure implies the use of additional beam
elements. Part of these elements would be used to form the center of stiffness for the blade which would now
be a curve rather than the straight line used thus far. Other clements could extend at right angles from this
curve. These elements would act primarily as lumped masses and form the curve representing the center of
mass of the blade.

Modeling a turbine blade with this model would requirc some additional work to implement the ideas
presented in this section. However the matrix displacement method used is a very powerful one and the use
of the model and extensions of it are applicable to a wide range of problems in vibrational analysis of
structures. Building a library of clements would greatly extend the uscfulness of the existing -model, and
additionally, the introduction of element rotation would Icad to further improvement.
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6 Conclusion .
This report primarily concerns itsalf with three topics:

1. the explanation of the matrix displacement method for use in vibrational analysis of structures,
2. pecific examples showing the variety and accuracy of the method, and

3. possible extensions of the model to alow for application to an even wider variety of problems.

The model presented here currently allows for only one type of element, the bearﬁ element It has been
shown that by using just a fev beam elements very accurate results of frequencies and moda shape are
obtained for beam-like structures. Creating a library of element types would alow the user-even greater
flexibility. The accuracy of the model using these new elements should be comparable to that presented here.
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. Appendix | Influence Coefficient Method

One method of obtaining the stiffness matrix is the influence coefficient method. This method is widely
used in structural analysis with’static loadings [10,11]. "I‘here arc both stiffness and flexibility influence

coefficients : only the stiffness influence cocfficients will be considered here.

The stiffness coefficients for an element are found by alternatively constraining all degrees of freedom but
one and displacing this one by a unit amount. The resulting forces on the other degrees of frcedom are the
stiffness cocfficients. That is Kij is the force or couple corresponding to degree of freedom ¢ due to the unit
displacement of degree of freedom j. In Fig. 14 a prismatic element of length 1, area A, moment of inertia

about the Z axis I, and modulus of elasticity E, with three degrees of freedom per node is shown.
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Figure 14: Element Stiffness Influence Coefficients (After White, et al [10]),

By performing the stiffness influence method procedurc on this clement. the stiffness matrix is obtained:

-




EA —EA ]
; 0 0 ; 0 0
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e 12 3 Iz
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Figure 15: Stiffness matrix of prismatic elements of Figure 14,

Comparison of Fig. 2 and 15 shows that the matrix of Figure 15 is contained within the matrix of Figure 2.

In Fig. 15, each node has three degrees of freedom, in Fig. 2 there are six degrees of freedom per node.

The inertial (or mass) matrix may be calculated similarly. The mass influence coefficients would represént

the mass inertia force acting at a degree of freedom due to a unit acceleration of another degree of freedom.
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1. Appendix Il Variational Method

Another method of computing eementa tiffness matrices is the variational or energy method'conlwmonly
used in finite clement programs. The outline presented here largely follows that of Gallagher [8].

The principle of minimum potentia energy furnishes a variational basis for the formulation of the element
diffness matrix. The potential energy (TL J of astructure is given by the strain energy (U) plus the potential of
the externa work V (V = -WJ. The theorem of potential energy is: of al displacements, saisfying the
boundary conditions, those that satisfy the equilibrium conditions make the potential energy assume a
stationary (extreme) value. Thus ' '

= U+V o | Y
Sw, = 5U + SV = 0 )
And for stable equilibrium, TI; isaminimum.

8%, = 82U + 82V>0 . ' ©)
The change in strain energy density due to the change in strain caused by avirtual displacement (Se) is given
)Y o

5 (dl| = a5€ - . - (10)

Where cr isthe equilibrium stress state prior to the application of the virtual displacement Thestress-strain
lav is " ' ’

a=[Ee - [Ex " _ (1)

~ where [EJ iscdled the materia diffness matrix, amatrix of elastic constants. For simplicity, let there;- be no 5

initia strain. Substitution of (11) into (10) yidds
fifttf=e[Eia« . ' A 12

Integration between zero and the gtrain £, corresponding to a, gives

1 .
dU = 5 e[Ele ' : - (13)
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and integration over the volume of the clement results in

u= —‘;“/ eFledvo) - | .

vol

The variation of U is

83U = / e[E] e d(vol)  ° | . (15)

vol

The potential of the applied loads is

V=-3 FA- / T Uds (16)

S
[+

where Fu represents point forces, and T are traction forces on the surface. The variation of V is

8V = SF3A - / T- slds an

s
o

Using the minimum potential energy theorem (equation 8) results in

/ ¢[E]de d(vol) + "EF 3A - / " T sUds =0 . as)

vol Sc .

In the finite element matriﬁc, the displacements, [A], are written as a polynomial matrix times a vector of
parameters in the assumed displacement field.

[A] = [PI | | | | )
[P] evaluated at the node gives a matrix [B], consisting of constants. Thus
| A, = Bl @0)
Inverting to find [a] in (20) and subsm'tulion into (19) leads to
[A] = [P} [B] [Anodes] |
= [N] Anodes | @

where N is the shape function. The shape function N‘ has the quality that it is cqual to 1 when cvaluated at

the geometric coordinates of the point at which A, is defined and is equal to zero at all other degrees-of-
freedom A“ J=e
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The matrix [D] is called the dof-to-strain transformation. Then

[e] = [D] [Anodes] ) | : (22)

For example if,
€= @— then
ox
D] = IN” ] , @3

Substitution of these ideas into (18) leads to

' / D [EJDIA, _,_dVol(8Anodest)- Z{N JFe(8Anodes))
vol .

- / [N]'T]ds(8Anodes’) =0 | ‘ ' 9
s
dividing (24) by §Anodes' results in
[K] Anodes - Fext = 0 - )

where

[K] =[ml [DI1t[E] [DIdvol
(26)

Fext = ,/; [N1t[TIds +}:[Ni]tFi . 27

Thus the stiffness matrix can be found by equation (26).

As an cxample take the axial element show in Figure 16, with dofAl and A2 only. The procedure to
calculate the stiffness of this element follows. Let
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| o——>X ¢ 2
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Figure 16: Axial clement, cross-sectional area A, modulus E.

The result is also contained in the stiffness matrices shown in Figures 2 and 15.

The incrtial (or mass) matrix can also be calculated by use of this method. The variational approach leads
w .

[M] =f [N]{p] [NTAVOl (28)
vol
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where [p lis the material mass density matrix. Since the shape functions used here are the same as those -

used for the stiffness calculation the result is called the consistent mass matrix. A consistent mass matrix is

more accurate than a lumped mass approach [12].
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1. Appendix Il Computer Code of Model

Available from Author.



