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1 Introduction

A study of the matrix displacement method for modeling the vibrations of structures is presented in this

report. The model can analyze both the free and forced vibrations of a structure. Static loading on a structure

is treated as a special case of the forced vibration analysis.

A brief review of the Finite Element Method and its present use is first given. This is followed by a

discussion of the methodology of the matrix displacement approach and a description of the specific model

used. Examples of the use of the model to analyze the frequencies and mode shapes of the free and forced

response of a beam structure and the static deflections of a beam structure are shown and compared with the

closed form solutions. Finally, ways of extending the model to a more complicated structure, a turbine blade,

are discussed- Conclusions are then drawn.

2 The Finite Element Method -- Fundamental Concepts and Applications

There are many methods available today which perform the analysis of structures. For example, in one

method the structure is described by differential equations. The differential equations are then solved by

analytical or numerical methods. Another method of analysis is the finite element method (FEM).

In this method, the structure is idealized into an assembly of discrete structural elements, each having an

assumed form of displacement or stress distribution. The complete solution is then obtained by assembling

these individual, approximate, displacement or stress distributions in a way satisfying the force equilibrium

equations, the constitutive relationships of the material, the displacement compatibility between and within

the elements and the boundary conditions of the structure.

Methods based on discrete element idealization have been used extensively in structural analysis/The early

pioneering works of Turner, et al., in 1956 [1], and Argyris in 1960 [2] led to the application of this method to

static and dynamic analysis of aircraft structures. Other fields of structural engineering, such as nuclear

reactor design and ship construction have since employed this method.

Nor is the idea of discrete elements limited in use to structural analysis only. The fundamental concept of

the finite element method is that any continuous quantity, such as displacements, temperature, or pressure,

can be approximated by a finite number of elements. Thus, this, approach can be used to solve problems in

heat flow, fluid dynamics, electro-magnetics* fracture mechanics and seepage flow to name just a few "other

areas of usage.



The representation of a continuous structure by structural elements of finite size results in large systems of

algebraic equations. A convenient way of handling these sets of equations is by the use of matrix algebra,

which also has the advantage of being ideally suited for computations on high-speed digital computers. For

this reason, expressions such as "matrix methods of structural analysis" are sometimes used to describe the

method. More common though is the term "finite element method", which emphasizes the discretisation of

the structure.

The finite element method actually encompasses three classes of matrix methods of structural analysis. The

first is the displacement (or stiffness method), where the displacements of the nodes are considered the

unknowns. The correct set of displacements results from satisfying the equations of force equilibrium. The

second method is the force (or flexibility) method. Here the nodal forces are the unknowns and are found by

satisfying the conditions of compatible of deformations of the members. The third class of matrix method is

the mixed method, which is a combined force-displacement method.

One last comment on the finite element method in general is necessary. An error is introduced into the

solution of the original problem as soon as the continuous structure is replaced by discrete elements. This

error remains, even when the discrete element analysis is performed exactly. In general this error is reduced

by increasing the number of discrete elements, thereby decreasing the element size and thus giving a better

idealization of the continuous structure. Zienkiewicz, Brotton and Morton [3] suggest that the user may

determine the limits of his error by: "(a) comparison of finite element calculations with exact solutions for

cases similar to his specific problem; (b) a 'convergence study* in which two or more solutions are obtained

using progessively finer subdivisions and the results plotted to establish their trend or (c) using experience of

previous calculations as a guide to the treatment of the specific problem." Further information on matrix

structural analysis and the finite element method may be found in many sources. [4-11]

3 Explanation of the Model

The following discussion is divided into three sections. Firstly die equations of motion will be stated.

Secondly, the matrix displacement method for solving such equations will be described. Fmally some specific

aspects of the particular model being used will be discussed

3.1 Equations of Motion

The motion of a vibrating system, consisting of mass and stiffness, of n degrees of freedom can be

represented by n differentia! equations of motion. These equations of motion may be obtained by Newton's

second law of motion, by Lag3range*s equation or by the Influence Coefficients method. Since the equations



of motion, in general, are not independent of each other, a simultaneous solution of these equations is

required to calculate the frequencies of the system.

The matrix equation for the free vibration case is:

[ K - < J 2 M ] [ X ] = [0] (1)

where

[K] represents the stiffness matrix of the structure,
[M] represents the inertial (mass) matrix of the structure,
id represents the set of eigenvalues of the equations

corresponding to the set of natural frequencies,
PC] represents the set of eigenfunctions of the equations

corresponding to the set of displacements

For the free vibration case the set of forces is just zero.

The matrix [K-<o2M] is called the impedance matrix.

The matrix equation for the forced vibration case is:.

[K-iaJ MJM = DPI . (2)

where PPJ represents the set of forces on the structure, and
» f is the driving or forcing frequency.

The other terms are as previously defined.

Inspection of equations (1) and (2) reveals that neither contain damping terms. This is because structures

of immediate concern have very low damping (~1 x 10"4 critical damping).

An excellent treatment on toe dynamics of structures is Clough and Penzien [14].



3.2 The Matrix Displacement Method

An outline of the application of the matrix displacement method in finite element analysis for the solution

of dynamic problems follows. A similar outline is given by Zienkiewicz, et al. [3] for static analysis.

1. Input

a. Idealization of the problem

The continuous structure is divided into a number of elements. These elements are
connected at common nodal points or nodes. It is at these nodes that the value of the
continuous quantity (displacement) is to be determined.

b. Preparation of the data for the structure

The geometry of the structure is defined by assigning coordinates to the nodal points. The "
physical properties of the elements (dimensions, material parameters) are inputted.

c. Preparation of the load data

The loads to be applied to each element or node are defined

d. Preparation of the boundary conditions or constraints

The prescribed constraints on the degrees of freedom and boundary conditions are stated. •

2 Processing

a. Element Formulation

The stiffness and inertial matrices for each element are determined by the approximate
relationships and the corresponding loads are calculated.

b. Assembly of the structure

The summation of the elemental matrices to form structural stiffness, inertial and load
matrices is performed.

c. Reduction of equations

The boundary conditions and constraints in terms of certain specified displacements are
introduced, thereby reducing the number of equations to be solved.

d. Solution of simultanwm equations

The solution of the cigen problem of equation (1) or (2) results in the natural frequencies of
the structure (eigenvalues) and the modal shapes or displacements of the nodes*
(eigcnfiinctions).



e. Calculation of stresses

If required, the elemental stresses could be calculated from the nodal displacements and
elemental stiffness.

3. Output

The results of the solution to the eigenvalue problem and the stress calculation are presented in an easily

interpreted form.

3.3 Specific Aspects of Model

This section is concerned with specific aspects of the model. The element and its formation will be

discussed first Information concerning the computer code and its subroutines will then be given.

1. Element Formulation

The element chosen for the model is the beam element which is given by Przemicmiecki [7]. This element

was chosen so as to allow direct comparison of results with known solutions (see section 4). The beam

element is a two node elemenL The model allows the nodes to have either three degrees of freedom (x and y,

translational and rotation about z, Le. motion confined to a plane) or six degrees of freedom (x,y,z

translational, rotation about x,y,z, Le. the general case).

Fig. 1 shows the beam elemenL The following forces act on the beam:

• axial forces sx and Sy

• shearing forces s^ s^ sg, and s9

• bending moments s5, s6, s u , and s ^

• and twisting moments (torques) s4 an

The location and positive directions of these forces are also given in Fig. 1. The corresponding

displacements Up U^- . - U ^ will be taken to be positive in the positive direction of these forces.

Each element has its own set of physical parameters. For the beam element these parameters are: Young's

modules, crass-sectional area, moment of inertia about the y and z axis, Poison's ratio, mass density, and

length (along x axis). All of these parameters are inputted directly except for the length which is computed

from the inputted coordinates of the nodes. *



Neutral axis

Figure 1: The beam element and its forces, after Przemieniecki [7] 9

The model performs calculations for either the free or forced vibration case. To perform such calculations

requires ihe calculation of the structural-stiffness and inertial matrices, along with information of the loading

and boundary conditions of the structure. The effect of constraining a degree of freedom is to strike out the

corresponding rows and columns of the stiffness, interial and load matrices.

The siiffhcss matrix for a beam element is shown in Fig. 1 The shear deformation parameters 4> and $ z

can be taken as zero. This matrix may be obtained in various ways, two of which are the influence coefficients

method and the variational method, which arc outlined in Appendices I and II.

The inertia! matrix for the beam element is shown in Fig.3. This matrix is obtained by the same methods as

the stiffiiess matrix, as described in Appendices I and II.

Liepe^s [13] gives a third way of calculating the stiffness and inertial matrices.

The structural matrix for both stiffness and inertia is obtained by superposition of the individual elemental

matrices- Actual superposition occurs only when degrees of freedom are common to more than one clement

1 Computer Coding

The computer code itself contains ten subroutines, called by the main program, entitled VIBRAT. A brief

explana&on of the subroutines will now be given.



INPUT - This subroutine asks the user for the necessary information which is needed to assemble the
structure. Information such as: free or forced case, number of elements, coordinates of
nodes, physical parameters, structural loading, and constrained degrees of freedom are
inputted in this section;

CONECT - This subroutine establishes the geometry of the model. It determines the distances between
adjacent nodes of the structure.

KMAT - This subroutine calculates the elemental stiffness matrix for each element and then assembles the
structural stiffness matrix from them.

MM AT - This is similar to KMAT only here the mass or inertial matrices are calculated.

EIGEN - This subroutine is called for the free vibration case. The purpose of it is to calculate the eigenvalues
(natural frequencies) and eigenvectors (mode- shapes) of equation (1). This subroutine calls
two other subroutines; EIGZF, an IMSL routine which actually does the solving, and
CLAMPR, which determines which degrees of freedom are constrained.

SOLVE - This subroutine is called for the forced vibration case. This routine solves equation (2) for the
displacement This subroutine also calls two other subroutines: LEQT1F, an IMSL routine
which does the solving, and CLAMPR, which determines the proper degrees of freedom to
be constrained.

REMARK - is a subroutine whose purpose is to explain the use of the main program VIBRAT and its
subroutines. Information.on the nomenclature and file structure used can be found in
REMARK. The user of the model is recommended to refer to REMARK if he has any
questions on the computer code used in this model.

The code for all of these routines may be found in Appendix III.

4 The Model: Examples and Accuracy

This section presents various examples of use of the model. The examples chosen represent five types of

possible problems. They are:

1. free vibration of a fixed-free uniform beam

2. free vibration of a fixed-fixed uniform beam

3. forced vibration of a fixed-free uniform beam

4 static deflection of a fixed-free uniform beam

5. static deflection of a fixed-free non-uniform beam.

The accuracy of each example is discussed.
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Figure 2: Stiflfhess Matrix of Beam Element of Figure 1 [After Przmieniecki].
[The sheer deformation parameters $ and O can be considered

to be zero.]

Tbe first four examples use the geometric and material values listed in Table 1.

Parameter Value Units

Total Beam Length (L)
Young's Modulus (E)
Cross-Sectional Area (A)
Moment of Inertia about Z-Axis (I)
Moment of Inertia about Y-Axis (I )
Foisson's Ratio (?)
Mass Density (p)

25.0
27.8 xlO6

10
0.2
0.7
0.305
0.283

inches
pounds force/inches2

inches2

inches4

inches4

__.
pounds mass/incfaer

TaMel: Uniform Beam Properties #
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Figure 3: Consistent Mass Matrix for a Beam
(After Przemieniecki [7]) •

4.1 Example 1: Free Vibration of a Fixed-Free Uniform Beam

Figure 4: Example 1: Fixed-Free Uniform Beam*

Table 2 summarizes the results for this problem, using one, two, and five elements. It is clear that
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increasing the number of elements increases the accuracy of the results, and this supports the statements of

Zienkiewicz given earlier.

The natural frequencies calculated by the model are compared with the closed form solution obtained

from the - partial differential equation of the continuous system. For the fixed-free case the closed form

solutions are:

Axial where n = 1, 3,5, (3)

Bending©
/EL"7

to = a2L2-\A—-i-— where 1 +
pAL4

i=YorZ

cosaLcoshaL =0

(4)

Torsk>nal 03 = where n=l, 3,5,.. .G=- (5)
E '

wneren=i, J, D, . . .u=
p 2(1+*)

Thus from Table 2, one can see that by using just five elements, the model gives ten transverse modes, two

axial modes, and two rotational modes, the frequencies of which are all within 5% of the exact solutions.

Again, clearly greater'accuracy of results and more (higher) modes may be accomplished by increasing the

number of elements.

Diagrams of the mode shapes for the first five bending modes (in Y) and the first four axial modes (along

X) are given in Figs. 5 and 6. The model shapes agree with the closed form predictions in every case.

4.2 Example 2: Free Vibration of a Fixed-Fixed Uniform Beam

In this example the beam is held fixed on both ends. See Figure 7 . Table 3 shows the calculated and exact

values for the axial mode natural frequencies* The accuracy is similar to that of example 1.

4.3 Example 3: Forced Vibration of a Fixed-Free Uniform Beam

In this example (Figure 8), the beam is subjected to a harmonically varying load P(t) of amplitude P an!

circular frequency, «f Figure 9 is a plot of the magnitude in the transverse direction of the free end nodfe. As

expected, m «f approaches a natural frequency (those found in example 1), a resonance condition occurs

resulting in very large magnitudes of deflation. The expression for the amplitude of response A is given by



Number of
Elements

1

2

5

Exact

Axial Mode
Frequencies

13,491

12,551
43,847

12,285
38,074
67,455
101,152
130,102

12,235
36,704
61,170
85,645
110,115

(10.3)

( 2.6)
(19.5)

( 0,4) •
( 3.7)
(10.3)
(18.1)
(18.2)

Bending (in y)
Mode Frequencies

348
3,413

347
2,183
7,350
20,959

344
2,166
6,063
11,914
19,644

346
2,171
6,079
11,912
19,693

( 0.6)
(57.2)

( 0.3)
( 0.6)
(20.9)
(75.9)

C 0.6)
( 0.2)
( 0.3)
( 0.0)
( 0.2)

Bending (in z)
Mode Frequencies

650
6,313

647
4,058
13,509
37,022

641
4,027
11,173
21,684
35,225

648
4,061
11,373
22,285
36,843

( 0.3)
(55.5)

( 0.2)
( 0.1)
(18.8)
(66.1)

( LI)
( 0.8)
( 1.8)
( 2.7)
( 4.4)

Torsional
Mode Frequencies

8,350

7,769
27,140

7,604
23,567
41,753
62,611
80,531

7,573
22,719
37,865
53,011
68,157

(10.3)

( 2.6)
(19.5)

( 0.4)
( 3.7)
(10.3)
(18.1)
(18.2)

* Table 2: Natural frequencies (radians/sec) and Percentage Error
(%) as a function of number of elements for Example 1.
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Figure 5: First five bending mode shapes of Example 1
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Axial
Mode

1

2 •

3

4

Calculated Natural
Frequency (rad/sec)

24,874

52,186

83,933

117,570-

Exact Nat
Frequency (r

24,470

48,940

•73,410

97,880

Error

1.7

6.6

14.3

20.1

Table 3: Calculated and Exact Natural Frequencies in Axial Mode.
Calculated value used five element model, for Example 2.

P P
A = G - ^ - = Q_D (6)

K(l0 2) K
where Po/K represents the static deflection,

fi equals the ratio of the forcing frequency to natural frequency,
D dynamic magnification factor equal to 1/(1-fi2)

Analysis of the calculated amplitude in terms of the dynamic magnification factor agrees with equation (6)

in those frequency regions dominated by just one natural frequency.

4.4 Example 4: Static Deflection of a Fixed-Free Uniform Beam

By letting the driving frequency, 6?f be zero in the forced vibration option, the model is able to solve static

deflection problems. Figure 11 shows the deflection of the beam under the static loading of example 4. The

model's calculations, using just five elements are within 2% of the exact beam theory results. The deflection

and slope at the end of the beam are given by the expressions:

A = PL3/3EI
0 = PL2/2EI
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Figura 6: Rrst four axial mode shapes of Example 1.
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Figure 7: Example 2: Fixed-Fixed Uniform Beam m

Figure 8: Example 3: Fixed-Free Uniform Beam With Dynamic Load

Values calculated using these expressions are compared with the model results in Table 4,

4.5 Example 5: Static Deflection of a Fixed-Free Non-Uniform Beam

Until now, all the examples have dealt with uniform beams. Example 5 is an example taken from Laursen

[11]. Laursen solves the problem in three differential ways: by the moment-area method, by the conjugate

beam method* and by NewmarJf s method. The solution for displacement and slope at the free end is given

as:

A = -0.457 inches

9 = -0.0041 radians

The model gives identical results.

A sketch of the deflection is shown in Figure 13.

The purpose of the previous five examples is to illustrate the use and application of the model to a variety
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Figure 10: Example 4: Fixed-Free Uniform Beam With Static Load.

P * -I Ib, .5 ±3

o ..

- 5

-UO

CD
O

o

o
S"
*2

Figure 11; Static Deflection of a Uniform Beam, Example 4 m

of cases. Other cases of a more complicated nature could have been solved as easily, however these examples

give the user some insight into the accuracy of the solution obtained. They also indicate that very accurate

results are obtained by the model with relatively few elements. In general, for a more complicated structure

more elements will be required to obtain an accurate model. Techniques for handling more complex

structures arc discussed in the next section.
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A (inches) 6 (radians)

Exact ' -9.37 x 10"4 -5.62 x 10"5

Calculated -9.50 x 10~4 -5.69 x 10"

% 1.4 1.2

Table 4: Calculated and Exact Values of Deflections for Example 4

M I

Skips

I
-800 in.4

6 ft I 9ft

500 in.4

Figure 12: Example 5: Static Deflection of a Fixed-Free
Non-Uniform Beam %

[After LaursenJ,

5 The Extension of the Model to Model A Turbine Blade

An example of a more complicated structure which might be of vibrational interest to an engineer is a

turbine blade. The equations of motion for a beam in bending vibration is a fourth-order differential

equation, whose solution is easily found. The solution 'for a non-uniform and asymmetrical beam is much

more complicated. A tapered, prc-twistcd turbine blade with airfoil cross-section might be modeled as such a

beam.

The differential equations for combined flapwise bending, chordwise bending and torsion of a twisted

noft-unifonn blade arc derived by Houbolt 'and Brooks [16]. The solutions of these equations for the

continuous system have not been found. Thus the analysis of such structures are limited to special cases
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P = -5 Kips

25

- 2 5

- 5 0 1

o
CD
- ^ >
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o t §

o
CA

Figure 13: Static Deflection of a Non-Unifbnn Beam, Example 5 ,
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which solutions are obtainable, or to approximate solutions. Various techniques of an analytical and iterative

nature such as the Myklestad method, Holzer method, Stodala method, Rayleigh-Ritz method, transmission

matrix method, and the Runge-Kutta method have been studied [14]. A few typical examples are given in the

references [15,17-20],

The application of the model presented in this report to the turbine blade would be a very useful tool to the

engineer and his study of the blade's free and forced vibrations.

The model allows each element to have its own set of geometric and physical parameters, Thus neither the

non-uniformity or tapering of the blade would lead to any modeling problems. However the airfoil shape of

the blade would not have the same torsional stiffness as a beam. Thus fee first adaptation to the model

needed would be to correctly compute the torsional stiffness for an airfoil shape and input this into the model

rather than using that which the model computes.

There is another problem which arises from the twisting and geometry of the turbine blade. The natural

frequencies of such a blade are coupled frequencies with the mode shapes consisting in general of transverse

motion coupled with torsion. The coupling is dependent upon the degree of pre-twist and the ratio of depth

taper to width taper. For a given blade, coupling becomes stronger with increasing pre-twist and with

increasing width to depth taper ratio.

The simulation of this coupling in the model could be accomplished by either mnwiiiring it through the

element itself or through the geometry of fee stricture. The first way implies chanpag the element ftom a

beam element to a new element This new element could be derived from a variational method (see

Appendix II) applied to fee differential equations for the blade equations derived by Houbolt and Brooks

fl6|. The ideal of coupling through the geometry of the structure implies Hie use of additional beam

elements. Part of these elements would be used to form the center of stiffiiess for the blade which would now

be a curve rather than the straight Ine used thus far. Other elements could extend at right angles from this

curve, TTtese elements would act primarily as lumped masses md form the curve representing the center of

mass of the blade.

Modeling a turbine blade with this model would rapine some additional work to implement the ideas

presented in this section. However the matrix displacement method used is a very powerful one and the use

of the model and extensions of it are applicable to a wide range of problems in vibrational analysis of

structures* Building a library of elements would greatly extend the usefulness of the existing -model* and

additionally, the introduction of element rotation would lead to further improvement
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6 Conclusion

This report primarily concerns itself with three topics:

1. the explanation of the matrix displacement method for use in vibrational analysis of structures,

2. specific examples showing the variety and accuracy of the method, and

3. possible extensions of the model to allow for application to an even wider variety of problems.

The model presented here currently allows for only one type of element, the beam element It has been

shown that by using just a few beam elements very accurate results of frequencies and modal shape are

obtained for beam-like structures. Creating a library of element types would allow the user even greater

flexibility. The accuracy of the model using these new elements should be comparable to that presented here.
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I. Appendix 1 influence Coefficient Method

One method of obtaining the stiffness matrix is the influence coefficient method. This method is widely

used in structural analysis with'static loadings [10,11]. There arc both stiffness and flexibility influence

coefficients: only the stiffness influence coefficients will be considered here.

The stiffness coefficients for an element are found by alternatively constraining all degrees of freedom but

one and displacing this one by a unit amounL The resulting forces on the other degrees of freedom are the

stiffness coefficients. That is Ktj is the force or couple corresponding to degree of freedom i due to the unit

displacement of degree of freedom j . In Fig. 14 a prismatic element of length 1, area A, moment of inertia

about the Z axis I, and modulus of elasticity E with three degrees of freedom per node is shown.

(a)

EA
I

EA EA
I

d.o.i #1 EA
m

doi.#4 U-i

d.o.f. #2

Figure 14: Element Stiffness Influence Coefficients (After White, et al [10])#

By performing the stiffness influence method procedure on this clement the stiffness matrix is obtained:
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/*

0
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I9

- 6 £ 7

0

6£7
/ f

2£7
/

0

- 6 £ 7
I2

4£7

Figure 15: Stiffness matrix of prismatic elements of Figure 14 #

Comparison of Fig. 2 and 15 shows that the matrix of Figure 15 is contained within the matrix of Figure 2.

In Fig. 15, each node has three degrees of freedom, in Fig. 2 there are six degrees of freedom per node.'

The inertial (or mass) matrix may be calculated similarly. The mass influence coefficients would represent

the mass inertia force acting at a degree of freedom due to a unit acceleration of another degree of freedom.
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II. Appendix II Variational Method

Another method of computing elemental stiffness matrices is the variational or energy method commonly

used in finite clement programs. The outline presented here largely follows that of Gallagher [8].

The principle of minimum potential energy furnishes a variational basis for the formulation of the element

stiffness matrix. The potential energy (TT J of a structure is given by the strain energy (U) plus the potential of

the external work V (V = - W J . The theorem of potential energy is: of all displacements, satisfying the

boundary conditions, those that satisfy the equilibrium conditions make the potential energy assume a

stationary (extreme) value. Thus

* p = U + V . (7)

Swp = 5U + SV = 0 (8)

And for stable equilibrium, TT is a minimum.

p • (9)

The change in strain energy density due to the change in strain caused by a virtual displacement (Se) is given

by

5 (d l | = a 5 € - . (10)

Where cr is the equilibrium stress state prior to the application of the virtual displacement The stress-strain

lav is "

a = [E]e - [EJc M (11)

where [EJ is called the material stiffness matrix, a matrix of elastic constants. For simplicity, let there;- be no

initial strain. Substitution of (11) into (10) yields

fifttf=e[Eia« ' ^ (12)

Integration between zero and the strain £, corresponding to a, gives
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and integration over the volume of the clement results in

U = ——J e[E]ed(vol) - (14)
2 vol

The variation of U is

e[E]5ed(vol) ' (15)
vol

The potential of the applied loads is

V = - S , F A - / T« lids (16)

where Fi represents point forces, and Tare traction forces on the surface. The variation of V is

5V = "SF^SA^ J f • Sflds (17)

Using the minimum potential energy theorem (equation 8) results in

/ £[E]Se d(vol) + ~2F 8\-J * T • SUds = 0 . (18)
vol s

c * .

In the finite element matrix, the displacements, [A], are written as a polynomial matrix times a vector of

parameters in the assumed displacement field.

(19)

evaluated at the node gives a matrix [B], consisting of constants. Thus

Inverting to find [a] in (20) and substitution into (19) leads to

[A] = [PJ [B"1] [Anodes]

= [N] Anodes (21)

where N is the shape function. The shape function N has the quality that it is equal to I when evaluated at

the geometric coordinates of the point at' which A is defined and is equal to zero at all other degrces-of-

freedom A , j #c
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The matrix [D] is called the dof-to-strain transformation. Then

[e] = P ] [Anodes] • (22)

For example if.

dx

[N'] (23)

Substitution of these ideas into (18) leads to

J \Df [E]P]AnodfisdVol(SAnodest)-2rNt]
tFt(5Anodest)'

•j [N]tlT]ds(5Anodest) =0 ' (24)
s

dividing (24) by 8 Anodes1 results in

IK] Anodes - F e x t = 0 (25)

where

] = /= /

(26)

= Js [N]t[T]dS + 1 ^ ^ ] ^ ( 2 ? )

Thus the stiffness matrix can be found by equation (26).

As an example take the axial element show in Figure 16, with dofAl and A2 only. The procedure to

calculate the stiffness of this element follows. Let
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< 2

Figure 16: Axial clement cross-sectional area A, modulus E.

r /

The result is also contained in the stiffness matrices shown in Figures 2 and 15.

The inertia! (or mass) matrix can also be calculated by use of this method. The variational approach leads

•L[M] = / [NJ[p][NjdVol (28)
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where [p lis the material mass density matrix. Since the shape functions used here are the same as those

used for the stifftiess calculation the result is called the consistent mass matrix. A consistent mass matrix is

more accurate than a lumped mass approach [12],
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III. Appendix III Computer Code of Model

Available from Author.


