
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



A Representation for
Visual Information

James L. Crowley
November 1981

The Robotics Institute
Carncgie-Mcllon University

Pittsburgh, Pennsylvania 15213

Copyright © 1982 1 L. Crowley, C-MU Robotics Institute

This research was partially supported by:
National Science Foundation Grant No. APR75 - 08154

and by
Naval Electronics System Command (NELC) Grant No. NQ0039 - 79 - Z - 0169



m

6.2 Cascaded Convolution with Expansion and Resampling 71
6.2.1 Cascaded Filtering and the \fl Expansion Operation 72
6.2.2 Cascaded Convolution with Expansion 72
6.2.3 V J Expansion and Resampling 73
6.2.4 Frequency Domain Effects of VT Expansion 74

6.3 The Sampled DOG Transform 77
6.3.1 Construction of a Sampled DOG Transform 79
6.3.2 Computational Complexity and Memory Requirements 82
6.3.3 Comparison of Complexity with Filtering Using FFT 82
6.3.4 The Size of Cascasded Filter Impulse Response 84

6.4 Verification of Scaling Approximation 85
6.4.1 Diagonal Method in Space Domain: 85
6.4.2 Diagonal Method in Frequency Domain: 85
6.4.3 Expansion Method: 86

6.5 The Band-Pass Filters 87 j
6.5.1 Size of Positive Center Radius 87
6.5.2 Relative Size of Filters and Their Transfer Functions 88
6.5.3 Filter at Band-Pass Level 0 88
6.5.4 Filter at Band-Pass Level 1 89
6.5.5 Filter at Band-Pass Level 2 94

7. A Symbolic Representation Based on the Sampled Difference of Gaussian 96
Transform

7.0.1 Information Stored at Each Node 97
7.0.2 Meaning and Purpose of Peaks and Ridges 98

7.1 Phenomena in Each Band-Pass Image 99
7.1.1 ITic SDOG Band-Pass Impulse Response 99
7.1.2 Edges of Large Regions 100
7.1.3 Convex Protrusions: The Corner 101
7.1.4 Across a Long Thin Rectangle 102
7.1.5 At the Ends of the Rectangle 103
7.1.6 A Square Which is Smaller Than the Filter 104

7.2 Peak and Ridge Path Detection at Each Band-Pass Level 105
7.2.1 Detecting Local Peaks 105
7.2.2 Detecting Ridge Paths at a Band-Pass Level 106
7.2.3 Eliminating Small Loops 107
7.2.4 Untcrminated Ridge Paths 110
7.2.5 Repairing Broken Paths * 112
7.2.6 Isolated Pain 112
7.2.7 Deleting Spurs 113

7.3 Phenomena Between Levels in the Transform Space 114
73.1 Connectivity of Peaks: M-Paths 115

7.3.1.1 "Spots" or Non-Elongated Forms 115
7.3.1.2 "Bar-end": The Ends of an Elongated Form 117
73.13 "Comers" and Other Protrusions 118

7.3.2 3-D Ridges: L Paths 119
7.3.2.1 Ridge Paths for a Uniform Bar 120
73.2.2 Bars of Changing Width 120
73.23 Edges of Regions 120



IV

7.3.3 Connectivity of L-Paths and M-Paths 123
7.4 Connecting Peaks Between Levels 123

7.4.1 Linking M's • • 123
7.4.2 Detecting M*'s 124
7.4.3 Example 124

7.5 Detecting Ridge Nodes in (x,y, k) Space 124
7.5.1 Problems and Approach 125
7.5.2 Search Paths 126
7.5.3 The Modified Flag Stealing Process 128
• 7.5.3.1 Modified Flag Stealing 128

7.5.3.2 Resolving the Tl and T2 Flags 129
7.5.3.3 Linking L-nodes 129

7.6 Examples 129

8. Matching the Representation 149

8.0.1 Applications of Correspondence Matching 150
8.1 A Matching Procedure for Descriptions of Similar Grey Scale Forms 151
8.2 Test Data 152

8.2.1 Example of Band-Pass Images of Teapot 153
8.3 Matching M-Paths 164

- 8.3.1 Abstracting M-Paths from the Rcspresentation 164
8.3.1.1 Strongly Connected M-Nodes 164
8.3.1.2 Weakly Connected M-Nodes ' 165
8 .3.1.3 Example of Abstracted M-nodes and P-Paths 165

• 8.4 Examples of M-node Correspondence 167
8.4.1 M-nodes for Teapot Image # 1 168
8.4.2 Initial Alignment to Obtain Size and Position 170
8.4.3 Determining Further Correspondence and Orientation 172
8.4.4 Correspondence of M-nodcs Under Rotation 173
8.4.5 Examples of Size Change Less than V2 175
8.4.6 Summary of Teapot Matching Examples 178
8.4.7 Stereo Matching Example 181

8.5 Matching L-Paths 189
8.5.1 Two stages of Matching . 189
8.5.2 L-Path Alignment 189

8.5.2.1 L-Path Notation and Attributes 189
8.5.2.2 Alignment Parameters: 190
8.5.2.3 Alignment Function: 191

8.5.3 Similarity Measure 191
8.5.4 Examples of L-path Alignment and Matching 193
8.5.5 Summary of L-path Matching Examples 200

9. Discussion 205

9.1 Applications of the DGLP Transform 205
9.1.1 Detecting Ill-defined Pulses 205
9.1.2 Detecting Pulses of Different Durations 206
9.1.3 When Width is not known A-Priori 206
9.1.4 Automatic Focus 206

9.2 Evaluating Claims 206
9.2.1 Claims Concerning the Representation for Shape 207



VI

List of Figures

Test Image of a Cup. Note Shape of Dark Regions,
A Rhomboidal Form and its Representation (Reproduced from Chapter
figure 7-19)
Masks Used in Roberts' Gradient
Masks Used in Sobel Operator
Two Discrete Approximations To the Laplacian from [Prewitt 70]
Example of Sv^j-[p(x,y)] and S2[p(x,y)]
Nyquist Boundaries for Successive Application of \fl Sampling
Transfer Function Constraints for a Low-Pass Filter
The Only Possible Symmetric 1-D Function with Two Alternations
Two Possible Symmetric 1-D functions with 3 Alternations
A Symmetric 1-D Band-Pass Function with 4 Alternations
A Symmetric 1-D Band-Pass Function with 5 Alternations
Monotonic Pass Band with Single Peak
The Set of Naturally Occurring Sample Distances For a Cartesian Plane
Direct Method for Computing a DOLP Transform
Difference Method for Computing a DOLP Transform
Permissable Alternations in Low-pass Filter
Permissable Alternations in Band-pass Filter
Transfer Function G(&>)
Difference of Low-Pass Transfer Functions
Example of S^-[p(x,y)] and S2[p(x,y)] From Figure 3-1 of Chapter 3
Location of Peak Sample as Signal Moves to the Right
Uncertainty of Position of Peaks at Adjacent Levels
Normalized Impulse Response go(x,y) for R=4, a =4.0
Transfer Function G o(u,v) for R = 4 , a = 4
Example of mapping given by E^y^-f]
Effect on Transfer Function of E y j Expansion Operator
Filter Go(utv) for R = 4.0, a = 4.0 Before V2 Expansion
Filter Go(u,v) After v T Expansion
Filter G2(u,v) for R = 4.0, a = 4.0 g ^ y ) = S ^ f e . f a y ) * g.(x,y)]

fefo)!
Figure 6-8: Plot of 20 Logl0[G2(u,v)] Scale (shDwn at left) spans -120 dB.
Figure 6-9: Data Flow Graph for Sampled DOG Transform
Figure 6-10: Transfer Function of Ev^-{go(x,y)} - go(x,y) * go(x,y)
Figure 6-11: Coefficients Along X Axis for Filters from Levels 1 Through 4
Figure 6-12: U Axis Of Transfer Functions for Band-Pass Filters from Levels 1 Through 4.

u = 2^rk/64
Figure 6-13: Filter for High Pass Residue, S 0

20
20
21
33
33
34
41
41
42
42
44
45
49
50
57
57
58
59
60
63
63
70
70
74
75
76
76
77

78
80
87
89
90

90



9.2.1.1 Invariancc to Size and Rotation * 207

10. Summary and Conclusions 209

10.1 Major Results of this Dissertation 209
10.2 Summary of Background Chapters 210
10.3 Measurement, Detection and Mathematical Representation of Non-Periodic Signals 210
10.4 Techniques for Fast Computation of a DOLP Transform: The DOG and Sampled 211

DOG Transforms
10.4.0.1 Conclusions Concerning Signal Detection 213

10.5 Transforming the SDOG Transform of an Image into A Symbolic Description 214
10.6 Examples of Matching 216

Appendix A. Selection of Filter Parameters 218



Vll

Figure 6-14: Impulse Response of Level 1 Band-Pass Filter 91
Figure 6-15: B^i^v), The Transfer Function of the Level 1 band-pass Filter 92
Figure 6-16: 20 LogjJB^uvv)], The Transfer Function of the Level 1 Band-Pass Filter 93

Plotted in dB Scale, shown at left in increments of-10 db, spans -40 dB
Figure 6-17: B2(u,v), The Transfer Function of the Level 2 band-pass Filter 94
Figure 6-18: 20 Log1Q[B2(u,v)], The Transfer Function of the Level 2 band-pass Filter 95

Plotted in dB Scale, shown at left marks increments of-10 dB to -80 dB
Figure 7-1: Impulse Response of Band-Pass Filter 99
Figure 7-2: Response Across Center of a Square 100
Figure 7-3: Response at Corner of a Square 101
Figure 7-4: Response of Filter Across a Rectangle 102
Figure 7-5: Response of Filter Along a Rectangle 103
Figure 7-6: Response of Filter To a Square 104
Figure 7-7: Values at Level 2 of rod.swf 107
Figure 7-8: Pointers From First Stage of Ridge Path Detection Procedure 108
Figure 7-9: Ridge Paths After Stage 2 of Procedure 109
Figure 7-10: Classes of Small Loops 110
Figure 7-11: Ridge Path Containing Small Loop 110
Figure 7-12: Path After Removal of Small Loop 111
Figure 7-13: Example of Broken Ridge Paths Before Extension 113
Figure 7-14: Examp le of Repaired Ridge Paths After Extension 114
Figure 7-15: Response to an 11 x 11 Square Across Diagonal for Levels 1 Through 7 116
Figure 7-16: Examples of Bar-End M-Paths ' 118
Figure 7-17: Two Forms that Cause "Corner" M-Paths 119
Figure 7-18: Response to a 5 by 11 Rectangle 121
Figure 7-19: An Elongated Form That Changes Width 122
Figure 7-20: Possible Set of Indirect 2-Way Pointers for M-Paths 124
Figure 7-21: M Paths For Square of Size 11 Pixels 125
Figure 7-22: Two Configurations of Ridge Paths at Adjacent Levels 126
Figure 7-23: Two Possible Upper Neighborhoods 127
Figure 7-24: Upper Search Neighborhoods for Stage 1 and Stage 2 128
Figure 7-25: Piston Rod Image. Sampled at 256 by 256. 130
Figure 7-26a: Top Of Piston Rod at Level 10 132
Figure 7-26b: Top of Piston Rod at Level 9 - 133
Figure 7-26c: Top of Piston Rod at Level 8 134
Figure 7-26d: Top of Piston Rod at Level 7 135
Figure 7-26e: Top of Piston Rod at Level 6 136
Figure 7-26f: Top of Piston Rod at Level 5 . 137
Figure 7-26g: Top Left Corner of Piston Rod at Level 4 (Note that Sample Rate is 2Vl ) 138
Figure 7-26h: Top Left Comer of Piston Rod at Level 3 (Note that Sample Rate is 2} 139
Figure 7-27a: Middle of Piston Rod at Level 10 141
Figure 7-27b: Middle of Piston Rod at Level 9 . 142
Figure 7-27c: Middle of Piston Rod at Level 8 143
Figure 7-27i: Middle of Piston Rod at Level 7 144
Figure 7-27e: Middle of Piston Rod ai Level 6 145
Figure 7-27f: Middle of Piston Rod at Level 5 146
Figure 7-27g: M iddlc of Piston Rod at Level 4 147
Figure 7-27h: Middle of Piston Rod at Level 3 148
Figure 8-1: Teapot # 1 . Size =1.0, Orientation = 0.0° 154



vm

Figure 8-2: Teapot #2 . Size =1.14, Orientation = 0.0°
Figure 8-3: Teapot # 3 . Size =1.36, Orientation = 0.0°
Figure 8-4: Teapot #4 . Size =1.0, Orientation = -15.0°
Figure 8-5: Teapot # 5 . Size =1.14, Orientation = -15.0°
Figure 8-6: Format for Display of Band-Pass Levels 13 through 0
Figure 8-7: Band-Pass Images for Levels 13 Through 0 of Teapot # 1
Figure 8-8: Format for Display of Zoomed Band-Pass Levels 13 through 5
Figure 8-9: Zoomed Band-Pass Images for Levels 13 Through 5 of Teapot # 1
Figure 8-10: Level 7 from Teapot Image # 1
Figure 8-11: M-nodes and P-Paths for Level 7 of Teapot # 1
Figure 8-12: M-nodes and P-Paths for Levels 12 to 6 of Teapot # 1
Figure 8-13: M-nodcs and P-Paths for Levels 12 to 7 of Teapot # 3
Figure 8-14: M-nodcs and P-Paths for Levels 12 to 6 of Teapot # 4
Figure 8-15: M-nodes and P-Paths for Levels 12 to 6 of Teapot # 2
Figure 8-16: M-nodes and P-Paths for Levels 12 to 6 of Teapot # 5
Figure 8-17: Stereo Correspondence of M-nodes for Paper Wads, Levels 13 through
Figure 8-18: Format for Paper Wad Low-Pass Images
Figure 8-19: Left Paper Wad and Low-Pass Images
Figure 8-20: Band-Pass images for Left Paper Wad
Figure 8-21: Right Paper Wad and Low-Pass Images
Figure 8-22: Band-Pass images for Right Paper Wad
Figure 8-23: L-path from Teapot # 1
Figure 8-24: L-path from Teapot # 3
Figure 8-25: L-path Correspondence:

L-path from Teapot # 1
Figure 8-26: L-path from Teapot # 4
Figure 8-27: L-path Correspondence:

L-path from Teapot # 1
Figure 8-28: L-path from Teapot # 2
Figure 8-29: L-path from Teapot # 5

L-Path from Teapot # 3 Transformed to

L-Path from Teapot # 4 Transformed to

155
156
157
158
160
161
162
163
166
167
169
171
174
177
179
183
184
185
186
187
188
194
195

Match 196

198
Match 199

201
203



IX

List of Tables

Table 6-1: Comparison of Filter Coefficients 85
Table 6-2: Diagonal Comparison Of Transfer Function Samples 86
Table 6-3: Values Along Line u = v in Transfer Function of E^^/jfg} - ( g * g) 87
Table 6-4: Radii of Center Lobes As measured by Distance to Furthest Positive Coefficient 88
Table 7-1: Fields of a 64 Bit Node 97
Table 8-1: Size and Orientation of five Teapot Images 153
Table 8-2: P-Path Links for Levels 7 and 6 of Teapot # 1 170
Table 8-3: P-Path Links for Levels 8 and 7 of Teapot # 3 172
Table 8-4: Comparison of D and 6 attributes for Teapots 1 and 3 173
Table 8-5: P-Path Links for Levels 7 and 6 of Teapot # 4 175
Table 8-6: Comparison of D and 6 attributes for Teapots # 1 and # 4 175
Table 8-7: P-Path Links for Levels 7 and 6 of Teapot # 2 178
Table 8-8: Comparison of D and 0 attributes for Teapots # 1 and # 2 178
Table 8-9: P-Path Links for Levels 7 and 6 of Teapot # 5 180
Table 8-10: Comparison of D and B attributes for Teapots # 1 and # 5 180
Table 8-11: Comparison of D and 0 attributes for Teapots 2 and 5 180
Table 8-12: Correspondence and Distance for Transform of L-path from Teapot # 3 to 197

Match L-path from Teapot # 1
Table 8-13: Correspondence and Distances for Transform of L-path from Teapot # 1 to 197

Match Teapot # 3
Table 8-14: Correspondence of Transformed L-nodes from Teapot # 4 to L-nodes from 200

Teapot # 1
Table 8-15: Correspondence of Transformed L-nodes from Teapot # 1 to L-nodes from 200

Teapot # 4
Table 8-16: Correspondence of L-nodes and Distances for Transform of L-path from 202

Teapot # 2 to Match Teapot # 1
Table 8-17: Transform of L-path from Teapot # 1 to Match Teapot # 5 204



Acknowledgements

This section gives me an opportunity to express rny gratitude to a number of people whose support
and encouragement made this research and dissertation possible.

At the top of this list is my thesis advisor, Dr. Alice Parker. Not only did she get me started and
provide a supportive but critical sounding board for most of these ideas, but she stood behind me
when the going was rough. More then once Dr. Parker fought a tough political battle to keep this
research effort alive. She also carefully critiqued my early drafts of this dissertation and provided
important ideas on style and organization.

Dr. Frank Quick was had a very strong influence on this research in the early years. It was Frank
who turned me on to the psycho-physical theories of visual perception which inspired this
investigation. Many of the principles discussed in chapter 3 were initially developed in reponse to
Frank's probing questions. It was Frank who challenged me to find a family of detection functions
which were reversible, and who first raised the question of whether ridges could be detected without
first measuring local directionality.

Dr. Richard Stern also deserves much credit for helping me to shape the ideas presented here. It
was Rich Stern who found the obvious answer when 1 wrestled with the problem: what function can
be convolved with itself to yield a scaled copy of itself. Rich spent many hours discussing the signal
processing aspects of this dissertation. He also invested much time carefully reading and critiqueing
early drafts of this document

Special credit goes to Dr. Raj Reddy, without whose support on two different occasions this work
would tally not have been possible. Dr. Reddy deserve praise for shaping a research environment in
which it is possible to pursue avant garde research without having to promise a short term practical
application. A special thanks also for tolerating ever slipping deadlines and the drain of effort from
my other Robotics Institute projects while 1 was preparing this manuscript

Dr. Takco Kanadc also deserves some credit for ideas and support. While at C-MU as a visiting
scientist on a one-year appointment Takco took fhe time to hear my ideas and offer his comments. At
an early stage he suggested that I pursue algorithms that could be implemented in parallel. Liter, Dr.
Kanadc returned to direct the vision research at C-MU. In this capacity he provided generous access
to facilities which assisted me in producing the images for this manuscript

Finally, I would like to thank Dr. Howard Wactlar and the staff of the engineering lab who keep
the cycles turning. These guys are a corner stone of the Computer Science l)cpt. and the Robotics
Institute.



Abstract

This dissertation presents a new technique for representing digital pictures. The principal benefit
of tliis representation is that it greatly simplifies the problem of finding the correspondence between
components in the description of two pictures.

Tliis representation technique is based on a new class of reversible transforms (the Difference of
Low Pass or DOLP transform). A DOLP transform separates a signal into a set of band-pass
components. 'ITie set of band-pass filters used in a DOLP transform are defined by subtracting
adjacent members of a sequence of low-pass filters. This sequence of low-pass filters is formed by
scaling a low-pass filter in size by an exponential set of scale factors. The result of these subtractions is
a set of band-pass filters which are all scaled copies of a smallest band-pass filter.

Several techniques are presented for reducing the complexity of computing a DOLP transform. It
is shown that :is the each band-pass image can be resamplcd at a sample rate proportional to the scale
of the band-pass image. This is called a Sampled DOLP transform. Resampling reduces the cost of
computing a DOLP transform from O(N2) multiplies1 to O(;V Log N) multiplies and reduces the
memory requirements from O(A7 Log N) storage elements to ^ 3 N storage elements.

A fast algorithm for computing the DOLP transform is then presented. This algorithm, called
"cascade convolution with expansion" is based on the auto-convolution scaling property of Gaussian
functions. Cascaded convolution with expansion also reduces the cost of computing a DOLP
transform to O(N Log N) multiplies. When combined with resampling, this fast algorithm can
compute a Sampled IX)LP transform in 3 Xo N multiplies.2

Techniques are then described for constructing a structural description of an image from its
Sampled DOLP transform. The symbols in tliis description arc detected by detecting local peaks and
ridges in each band-pass image, and among all of the band-pass image. Tliis description has the form
of a tree of peaks, with the peaks interconnected by chains of symbols from the ridges. The tree of
peaks has a structure which can be matched despite changes in size, orientation, or position of the
gray scale shape that is described.

The tree of peaks permits the global shape of a gray-scale form to be matched independently of the

N is the number of sample points in an image or signal

Jo is the number of coefkicnts in the smallest low-pass filler.



high resolution details of the form. Thus it can be used for rapidly searching through a data base of
prototype descriptions for potential matches. This representation is very efficient for finding the
correspondence of components of forms from two images. In such matching die peaks serves as the
tokens for which correpondence is determined. The correspondence of peaks at each band-pass level
constrain the possible matches at the next, higher resolution image. This representation can also be
used to describe forms which are textured or have blurry boundaries. Examples are presented in
which the descriptions of images of the same object are matched despite changes in tlie size and
image plane orientation of the object.



Chapter 1
Introduction

This dissertation describes a representation for visual information. This representation is not
specific to a particular visual domain; it can be applied to any problem in which a two dimensional
sampled function must be represented with symbols. It is particularly appropriate for images where
the picture elements have many values, where the objects represented in the picture have blurred or
fuzzy boundaries, or have textured surfaces, and where objects occur at unknown sizes and
orientations.

Interpreting an image requires assertions about regions of the image whose sizes may span the
range from a few picture elements to the entire image. The representation developed below provides
visual primitives which span this range of sizes. The position of these primitives are encoded as nodes
in a graph, 'flic result is a data structure which is relatively invariant to the actual size, orientation
and position of the gray scale form in the image.

1.1 The Problem Context: Machine Vision

This Section describes the general vision problem and how this dissertation relates to it

This thesis addresses the problem of representing two dimensional (2-D) visual information. The
visual world in which humans function is a three dimensional (3-D) world. Understanding this 3-D
visual world requires representation of the 3-D form of objects. The representation described in this
thesis does not, by itself, provide diis capability; it is inherently 2-D.

The human visual system receives as raw data a stereo pair of 2-D images. Each of these images
must be represented as a 2-D signal and the pair matched against each other to receive 3-D
information. Hie representation described here is well suited for the analysis of stereo pairs. It is also
well suited for the interpretation of images from some domains which arc inherently two
dimensional such as many classes of bioincdical images, aerial and satellite photography, and also
terrain data (where depth is represented as intensity).

Test data for this research has been acquired from diverse domains. Many of the images were
digitized from photographs of 3-D objects, such as the cup image shown as figure 1-1 below. The cup
image is placed here to illustrate a point about 2-D images of 3-1) objects. Careful viewing of a 2-D
image of a 3-D object will usually show that, the light and dark regions in the image do not directly
correspond to our ideas of the object's shape.
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Figure M : Test Image of a Cup. Note Shape of Dark Regions.

the shape of the dark regions of the cup. There is a dark handle which one might expect
There is also a dark region at the top where the cup is open, and there is a dark region on the right
side* The shape of these regions arc not at all like what an untrained person would draw if asked to
draw a cup. The human visual system takes the shading, highlights, and tcxtural information, from

9sucl an1 image and toes them to reamstruct or recall a model of a 3-D object. This process is
unconscious, and these visual cues arc often not noticed by an untrained observer unless they are
explicitly looked for. Although interpreting shading, highlights and texture is an important and
timely problem in machine vision, it is not the problem addressed by this thesis. Rather, this rescaith
will provide a new foundation for such intciprctattait

Figure 1-1 also provides an opportunity to define an important term. The dark regions in the cup



words^shapc and blob were avoided because they carry connotations of m*m,K<Z* c t ' L i S

1-1.1 Role of Represen ta t ion in 2-D Visual Domains

In a 2-D visual domain, such as aerial photography, many assembly ami mspavMn tr^
some classes of biomedical images, or terrain data, recognition of objects require* \k:i V
components:

1. A representation technique which compresses the information and w^r^s;- .: .*;,, /.,::;.'
and efficient form for recognition;

2. A set of object models (or perhaps in the case of terrain daia a model t\i ihe terrain a( A
very large region). ITicsc models should be expressed in a representation tth#h can be
processed efficiently for recognition, or any rcprcscniaiiun %hich is im% tomened to
such a representation.

3. A matching procedure which compares obser. :-̂  :.,: :
measure of similarity, and, if desired, £. dc^r/ji^T. : .•'..„'; .. :
and docs not match a specific object model

Interpretation is then a matter of encoding ihe cH^r -: L » /... -.*".: . *
between it and the object models (or regions :A ± ^ :er:.//. . . . v
but in fact finding an efficient procedure lor sucn n:^::;rr:; ...- -, .
the matching problem is finding the correct rcpr>:::',;:.
models. ITie main contribution of this ihesis \± *j:^ i ; *\ ; : . ; :*

€Alk4In statistical pattern recognition, a pattern is represented hy a set
The set of features comprise a multi-dimensional space called a mkmm
chosen so that each class of pattern produces a vectors of features thai rc*Mte m A X
feature space. A pattern is assigned to the class *hich ixmpm the ttpM y# tfcc
which its vector of feature measurements falls*

Recently there has been interest in a different approach v> rec^m/irs * - '
"structural pattern recognition". A structural pattern r^-jmrr-r; .i-vMr-re -s .
representation for each paucm class, liiis pnnotype omsm^ ^ ><\^-* r-
elements, such as edges or comers, which an: linked u^ttser mi• .* - r .-.,:•' ?:' ,:- •-
classified by constructing a correspondence between ;;c^cn'^ v? :r.4 --••• rr^ ,•
prototypes. A 2-D pattern is assigned the cl*M l^l w^rt-'* -^ " ; *::t>"
correspond to tlK«c of the pattern. ll»c represent iiu? vicvwr> • ' ^ '* " '^ M'̂
pattern recognition, although this is not :he . ^ * ^>r"-^1-'r' -••* * :f-" "; ' *' ^' "'•''

**%*"*
mm



1.1.2 Representation in 3-D Visual Domains

In a 3-D visual world in which input data consists of stereo pairs of 2-D images, interpretation
requires the following components:

1. A representation for the 2-D images which may be efficiently used for depth detection by
stereo matching.

2. A procedure for obtaining depth Information by detecting corresponding objects in the
two images and observing their relative shift. This procedure should also make use of
information in shading, highlights, texture, and other visual cues.

3. A representation for the 3-D form of objects.

4. A repertoire of models for the 3-D form of objects.

5. A matching procedure to identify which 3-D object model(s) correspond to the observed
3-D input data.

Although tills dissertation is primarily concerned with 2-D representation, some suggestions will be
made as to how this representation may be used for interpretation of stereo pairs. The other
components remain as timely and important research topics.

1.2 Thesis Summary and Background

This Section presents the thesis of this dissertation, describes the methodology for demonstrating
this thesis, and reviews the major results of the research.

1.2.1 The Thesis

This research began as an investigation of the use of a set of band-pass spatial frequency channels
for representing visual information. This topic was inspired by psycho-physical theories of human
visual perception that hypothesize a set of "spatial frequency channels'* in the human visual system
[Campbell 68]. These theories arc summarized in an appendix to [Crowley 76].

Early in this research principles (referred to as postulates) were formed to guide and constrain the
design of band-pass filters for representing images. These principles were refined in the course of
experiments in which fillers- were designed and convolved with lest patterns* Some of the results
from these experiments arc described in fCrowley 78a] and [Crowley 78bJ. A refined version of these
principles is given in Section 4.2 below.

These principles and experiments led to the development of the reversible Difference of Low-Pass
{DQLP) Transform. The DO IJP transform is based on a set of scaled copies of a circularly symmetric
low pass filter, lite sole factors for these filters form an exponential sequence. Bach low-pass filter is
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subtracted from the previous low-pass filter to form an exponential sequence' of band-pass filters.
These band-pass filters may be convolved with die image to form a set of band-pass images. The set
of band-pass images is very similar to die images which would be produced by the set of spatial
frequency channels which have been hypothesized to exist in the human visual system.

The set of band-pass filters and the largest low-pass filter sum to form a single coefficient whose
value is 1. Another way to say this is that the sum of all of the band-pass images and the low-pass
image produced by filtering with die largest low-pass filter can be added together to form the original
image. This property demonstrates that no information is lost by the DOLP transform.

The low-pass filters arc each a scaled (in size) copy of the same function. Thus the band-pass filters
formed from their difference are also scaled (in size) copies of the same function. This gives the
property that scaling a 2-D pattern shifts the pattern in each band-pass image to a new band-pass
image. Thus a representation based on peaks and ridges in the band-pass images is invariant to
changes of scale of the pattern. The scale information is preserved by noting which band-pass image
the peaks and ridges actually exist at. It is the network of symbols which is not changed by scaling
the 2-D image. Note that in fact their are small cyclic distortions that occur during scaling, but these
can be obviated during matching.

A straightforward implementation of a DOLP transform for an N point signal requires O(N2)
multiplies and produces O(N Log(N) ) samples. This can be quite expensive on a general purpose
computer, in an effort to reduce this complexity the concept of re-sampling each band-pass image
was investigated. Re-sampling at a rate proportional to the scale of the band-pass filter provides the
benefits of:

• making the representation size invariant,

• reducing the computational complexity, and

• reducing the storage requirements

for the DOLP transform. Re-sampling creates a class of DOLP transforms referred to as "the
Sampled DOLP transform". The re-sampling operation is described in Section 3.3 and the re-
samplcd DOLP transform is defined in Section 5.5.

Seeking to further reduce the computational complexity of the DOLP transform we investigated
the use of repeatedly convolving an image with a Gaussian low-pass filter and re-sampling. This
algorithm, referred to as cascaded filtering with sampling, produces a set of low-pass images with
impulse responses which are scaled in standard deviation by a factor of \fl for each convolution.
Subtracting each low-pass image from the previous low-pass image gives a set of band-pass images*

Cascaded convolution with Gaussian filters can produce a set of low-pass images whose impulse
responses arc are sealed exponentially in standard deviation. This is a consequence of the Gaussian
Scaling property, discussed in Section 6X l"he Gaussian scaling property shows that convolving a
Gaussian ftinction with itself produces a new Gaussian function which is lazier in standard deviation
by a factor of V2L Cascaded Convolution with sampling using a Gaussian filter may be used to



compute a subclass of the Sampled DOLP transform called the "Sampled Difference of Gaussian"
(SDOG) Transform. Storage efficiency and size invariancc result from rc-sampling, while the
computational efficiency is the result of both re-sampling and an auto-convolution scaling property
of Gaussian functions.

Both the DOLP transform and the SDOG transform expand a 2-D (x,y) image into a 3-D discrete
space (x,y,k). The new dimension of tills space is k, the filter index. For an N point image, the
SDOG transform has 3N* samples and requires 3 N Xo multiplies, where Xo is the number of
coefficients in the smallest low-pass filter. This computational complexity, derived in Section 6.3, is
less than that of an FFT for most signals.

Because the filters implemented by the SDOG transform satisfy the criteria established in Chapter
4 it is possible to constaict a structural representation of an image which has certain desirable
properties for matching object descriptions. This representation is created by detecting peaks and
ridges in the (x,y Jk) space given by die SDOG transform.

Let us elaborate on the terms "peak" and "ridge" and on the role of peaks and ridges in this
structural representation. At each band-pass image, or level, of the SDOG Transform, there are
points where the band-pass impulse response is a "best match" to one of the gray scale forms in the
picture. At these points, the filtered picture has a local positive maximum or negative minimum;
such points are called peaks. Because the filter size at any level, k, is V2 larger than the filter at level
k-1. there is a connectivity between between peaks at adjacent levels. Connecting adjacent peaks
between all of the levels gives a tree (or set of trees under some conditions) in which the path of the
branches describes the location, size, orientation and shape of objects in the picture. In fact, it is
necessary to compare the values along each branch to detect local maxima along the branch. These
points serve as landmarks for determining the size, position, and orientation of gray-scale forms.

When an object has an elongated shape, it will give rise to a path of values which are larger than
any adjacent values, that is, a "ridge". Ridges tend to begin and end at branches in the tree, and
follow a path which can travel both between and along, a level. The paths of the ridges gives further
information about the shape of objects in the image.

Figure 1-2 shows an example of a graph composed of peaks (IvTs)3 and ridges (Us) which
represents a rhomboid form. This figure is taken from Chapter 7 where it illustrates the sequence of
ridge points that represent an elongated form which changes width.

This tree and Its ridges describes a gray scale form with symbols which represent circular regions*
The size of these regions span the range from radius = 4 to the size of the image. The tree and
graphs for a particular gray scale form will have the same structure regardless of the gray scale form's
size, position, or orientation, liccausc this representation spans from global to local it may be used to
align the representations of a pair of forms which arc to be matched, even if they are of different

3
Four npes of $)ir)bofe arc used in the representation. "These symbols arc labeled with Hie letters { M*» M, U P}. These

s\ mboK arc bnufl> defined in section 1.3, and discussed at length in chap!ere 7 and ft.
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sizes. The correct scale, orientation, and position of one form to the other may be determined by
making a correspondence between the few "distinguished nodes" in the tree. Similarity in shape
between two forms is readily apparent from the few symbols at the most global level. Thus if the
identity of a form requires matching to a large set of prototypes, the search may be pruned based on
the few most global symbols in the representation.

The representation produced by linking peaks and ridges in the 3-space function given by a SDOG
Transform of an image:

L is invariant (except for the effects of a discrete space) to changes in the size or position of
a gray scale form (the effects of 2-D orientation can be easily compensated for);

2. provides a structure which may be used to determine the relative size, orientation, and
position of two gray scale forms from two images;

3. permits the global shape of two gray scale forms to be compared without the cost of
comparing details;

4. is not seriously degraded by textured regions, and degrades gracefully with image noise^or
blurry edges.

The invariance to changes in size and position is qualified because there are small cyclic distortions
which occur when an object is moved or scaled in size. These distortions are the result of the discrete
nature of the 3-D space given by the SDOG transform.

1.2.2 Demonstrating the Propert ies of the Representation

The validity of the claims made above should become apparent as the reader absorbs the material
presented in Chapters 3 through 3. These claims have been verified by experiments and are
demonstrated with examples. Test images were taken from local data bases, in particular* from a
copy of test images from GM for the "bin of parts'* problem {Baird 77J, and from a terrain data base
of the Washington EC area. Six test images were digitized from 35 mm Black and white negates by
SRI International. In the last year, the CMU image understanding group has permitted a x e s to the
image digitizer on its Grinncll Display system, This has been used to make stereo pair images of a
paper wail and a paint stirrar. *

The partial invariance to size of the representation is illustrated by lie representations from five
teapot images, These Images were formed from photographs of a teapot taken at three distances with
two orientations at each distoce* The change in size from the smallest teapot to the largest teapot
spans a, factor of approximately \Z5\ Tie distortion of the representation from changes in scale k
cyclic as scale changes by a factor of \/T» The effects of tills distortion arc illustrate with the teapot
images in chapter 8,

The effects of orientation arc cyclic over a rotation of 90 . Routing an object lias nmly minor
effects cm the tree of peaks, l i e major effect of rotation is to change the density of the symbols along



11

a ridge path. liiis effect can also be compensated for in a matching rule. This effect is illustrated by

two teapot orientations that differ in orientation bj approximately 30 .

Tne use of the representation to determine the relative si/.c and orientation of two images of an

object is illustrated with the teapot images ft has also been demonstrated with the stereo pair of

images of the paint stirrcr.

Graceful degradation of the representation with noise, and the ability to represent both surface
texture mi the shape of a textured object have been demonstrated with the stereo pair of images of a
paper wad. A portion of one of the paper wad images was degraded by substantial high frequency
noise during digitization, fhis high frequency noise is almost entirely confined to the most kcal level
of the representation. Tlic paper wads also have surface texture which is represented in the lower
(more local) levels of me representation *hile the shape of the paper mads is represented in the
higher imore global) levels.

A uxnple explanation can obviate concern about blurr> edges. A blur is the result of a convolution
with a low-pass "blurring function" %hich occurs optically in the imaging system, usually from poor
ibeui dirt> lenses, or motion. OR!^ the highest frequency filters used in the representation are
sensitive to such a distortion. Thus binning affects only the m«si local levels of the representation,
I1i2 same can he md for a t e high frequency noise, and for textured surfaces*

1»2»3 Ris$#ac€tt Methodology

THre ::rz* K & :ir^!v:ic j,Tvd a ^ n m c n u l ospezis to this re-search, The nature of image signals and
ihc cz^::cd ^ : i ^ r t : j s *:•: ihe representation ars used to 2$ir*hess/c a set of constraints for ihc Slier
•issjjn. 31::* *.«. ,ir. infrn^:?! i r i ' ; i

r x A mure ngoftius onahsss is -jsed to Jemunsirate that the
+jqw"-LC fKrni'?*s tl!u-r> f ^ n ^ i h: *ubiractir.g a -equencs or ;.ni-p>,s fliers Srated a d a s of
rc'^:^ r; : ^;^t,-rr^ n K : Di!T:re!KJ of SorATa>s UJOM*) JrarAhrm) Mrithcmaiics are also
jn^-K/j^i :*; icn^e a !+f,;>r nr (><*:j ]^m ,;f 1X)LP t r i f o r m u^ng Gjius^ian filters lTl;e sampled

O, the otfccr h^n i th:: icc^r.-.qiics vr d:r.^c:*rg p ^ i and ndje ^otnis, and the rules fcr describing

±:K ?K-V,.;\.<. * ^,:A2 b:%™ «;.^.-pi\i t% tx*u» ind ^rr^r Mt-.: -Trn^anlu expermentai tasks -KVCTC

;vr- '^':,i .;t ^-'n^r^i^t ^u! :"^ r .T -^^ j : i:.on n n:-t ::-^i:pt:i *\ .crLun ;;Mi,i! p^^nr^ieBa such

>^.T*": c : : ;^ -;;r.v;; :.:iu:r: urd :f?;.i5cc-^.^ ^A -i^^:r.-i;.inf?£ me ^ s r e c :.>f tnv^nancc of fce

4t^; -.*' :^-; y ; v j r ^ ^ t. ,:^i::r ii;r; :^ yC^-v|r;;:i- rh.a :h;, SlMi! P ^i;J Sampled

j
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1.3 Results

This Section describes the major innovations developed in this research. New techniques were
developed in three related problem domains:

1. The detection and measurement of gray scale forms in 2-D images;

2. Computational techniques for such measurement; and,

3. The representation of 2-D gray scale information.

The following three Sections summarize die results in each of these problem domains. The first of
these Sections describes die new representation. In particular it describes the set of symbols used in
this representation, the meaning of these symbols, and how they arc interconnected. Some of the
novel and important properties of this representation arc also described. The second Section
describes die measurements on which tills representation is based. The final Subsection describes
new computational techniques which were developed to reduce the time required to compute these
measurements.

1.3.1 The Representation

Tliis research produced a representation for two dimensional gray-scale signals. The
representation' is composed of a tree-like network of symbols which may exist at discrete locations in
the three space (x>;A"). The x and y dimensions of this space represents spatial position, while the k
variable references a spatial frequency band

This representation may be used for 2-D object class prototypes as well as image data. A
representation computed from image data may be matched to a prototype despite changes in size,
orientation or position. This matching may proceed from a few symbols which describe global form
to more detailed local form. In this process, the matching process may be terminated if the global
form is a poor match. Also, when matching stereo pairs, the corrcspoBdencc between points in the
two images may be easily determined by tracking through the repicscntation.

There arc four types of symbols in the representation:

• M*: Peal points (positive maxima and negative minima) in the 3-$pace

• L: Rklgc points in the 3-spac©

• M: Peak points a! a given I (frequency b u d )

• P: Ridge points at a given fc.

BJCII point in the 3~space, (x)*kl contains the inner product of a neighborhood of the image
centered at (xy) and d circularly hymmetnc filter impulse response i€d radius selected by k. Peak and
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Figure 1-2: A Rhomboidal Form and its Representation
(Reproduced from Chapter 7, figure 7-19)

ridge points (M*fs and Us) in the 3-space mark the best fit of the primitive over a range of scales to a
local set of image neighborhoods. Peak and ridge points ( M's and Fs )at a particular level (or
band-pass image), Jt mark the best fit of a particular fixed scale version of the primitive to a local set
of image neighborhoods.

Mm points are particularly significant These mark disdoct visual landmarks or regions. The level,
Jt of an M* symlx>l gives an estimate of the size of the visual landmark. More detailed information
about the shape of the landmark is given by the linked paths of L*$ (L-paths) and NTs (M-paths) that
arc connected to the M*. The filters adhere to smoothness constraints which provide a continuity to
the L\ to the M\ and between the L's and M\ The continuity permits paths in the 3-space to be
formed by connecting adjacent L's and adjacent M\

The shape of a form Is represented by the network of L-paths and M-paths which result from it If
the form increases in si/£, the entire network mcwes in the k direction in the 3-spacc, but maintains its



14

connectivity and structure. Note, however, that since the components of the networks exist at
discrete points in the 3-spacc, the motion occurs as discrete jumps of pieces of the network. Similarly,
if the shape rotates, its network rotates, and if the shape moves, its network moves. The scale,
orientation, and position quasi-in variance that is spoken of in this dissertation refers to the network.
The size, orientation, and position information is available from the position {and orientation) of the
network in the 3-space. The modifier ITquasi-fi is used because the individual symbols may only exist
at discrete points, and make discrete jumps as the form changes smoothly in size, orientation, or
position.

Figure 1-2 shows an example of the use of peaks and ridges for representing the shape of a
gray-scale form. ITiis figure, which appears in Chapter 7, shows a rhomboid shape. Circles over this
form illustrate the position and radii of band-pass filters whose positive center lobes best fit the
rhomboid. Below die rhomboid is part of the graph which is produced by detecting and linking peaks
and ridges in the SDOG transform. The meaning of these symbols is described in Chapter 7.

1.3.2 Measurement Technique

This research produced two results which pertain to the problem of sensing (or measuring) the
presence of gray scale forms in two dimensional data;

h Design criteria for band-pass filters required to describe non-periodic data by means of
peak and ridge detection.

2. A reversible transform (The OOLP Transform) that separates image signals into spatial
frequency channels that meet the criteria for describing non-periodic data with peak and
ridge detection.

The DOLP transform provides an ordered sequence of band-pass filtered versions of the input
image. The impulse response of each band-pass image is a finite circularly symmetric function
formed from the difference of two low-pass filters. The radii of the Impulse responses form an
exponential sequence of the form:

where R# is an Initial radius ( typically 4.0 X S is a scale factor (typically V?)* mi k h an index that
ranges from 0 to K IK Is 16 for a 256 by 256 mage).

One of the principal characteristics of the OOI-P transform is that it k reversible The Impulse
responses may be thought of as a set of primitive functions from which pictures may be constructed
This primitive looks tike a fu/uy disk on an inversely shaded background The two dimensional
convolution of Ihe picture with each impulse response is equivalent to a sequence of inner prodncs
(sec Section 3.1.3), ITiis result facilitates an intuitive understanding of the filtering process* Each
sample from ihe convolution indicates the proportion of signal energy within the neighborhood
overlapped bj the impulse response which is identical to Ihc impulse response* In oilier words It is a
measure of similarity between the impulse response and the image signal centered at that sample
point
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Because these primitive functions arc band-pass, they are sensitive to patterns over a narrow range
of sizes. Thus for a textured region, the shape of the texture elements is described by a configuration
of high frequency (smaller) impulse responses, while the shape of die entire region is described by a
separate configuration of lower frequency (larger) impulse responses.

1.3.3 Computational Techniques

There are two computational techniques which resulted from this research:

L The use of re-sampling in computing the Difference of Low Pass transform, and

2. A fast O(n) implementation of the transform (the Sampled Difference of Gaussian
Transform) that uses a novel technique: "Cascade filtering with re-sampling"

A consequence of the use of band-pass impulse responses is that the the cost of the convolution
can be reduced by computing only at sample points. The distance between re-sample points has a
lower bound which is a proportional to the size of the impulse response. Thus as die impulse
response grows in size, the number of points at which the convolution must be computed decreases.
If the convolution is done in the usual manner the increase in size of the impulse response is exactly
balanced by die decrease (due to sampling) in the number of points at which the convolution is
computed [Crowley 78a]. In addition to reducing the complexity and storage requirements of the
filtering operation, re-sampling also contributes to the size in variance of the representation.

The Sampled DOG Transform, described in Chapter 6, is based on a property of Gaussian
functions. Whereas, with re-sampling, a DOLP transform of an NxN image requires O(N logN)
steps, the Sampled DOG Transform produces the same result in O(N) steps. A step may be a
multiply or an inner product4

1.4 Organization of this Dissertation

This dissertation may be divided into the following sections:

• Background Material (Chapters lf 2 and 3);

• Measurement, detection and mathematical representation of nonperiodie signals (
Chapters 4 and 5);

• Fast computation techniques For the DQLP transform (Chapter 6);

• Converting the mathematical representation to a symbolic representation which describes
gray-scale shape hcirarchically by spatial frequency {Chapter 7);

The symbol TM )H, is pronounced order and used to indicate that the number of steps in the process under discussion k
tea ton or equal lo (bounded b> I a linear function of the argument



16

• Examples of the representation and its use for matching, including demonstrations of the
invariance of the structure of a description to the size and orientation of the pattern
(Chapter 8).

Chapter 2 describes related work by other researchers in sensing and repfesenting forms in 2-D
grey scale images. Chapter three provides a quick review of signal processing techniques and terms
which were appear in this dissertation.

In Chapter 4, a set of criteria for designing band-pass filters for detecting and describing non-
periodic signals is described. The criteria described in this Chapter defines a broad class of filters
which may be used for detecting the presence of non-resonant signals of particular sizes (durations).

In Chapter 5, a reversible transform is defined which separates a signal into a set of short duration
spatial frequency channels. The filters used in this transform satisfy the criteria established in
Chapter 4. This transform employs a sequence of low-pass filters which arc scale copies of a single
function. The subtraction of adjacent low-pass filters gives a sequence of band-pass filters. These
band-pass filters and the lowest frequency low-pass filter define the reversible DOLP transform.
When an image has been convolved with these filters, the band-pass images may be added together to
recover the original signal. rITie DOLP transform is shown to require SN" multiplies and N
Logs(N/X0) -f- N storage cells for an image with N sample points, a base filter of Xo coefficients,
and a scale factor between filters of S. The technique of computing the convolutions at re-sample
points spaced proportionally to the scale of the filters is then introduced. The rc-sampied DOLP
transform is shown to require S X O N Logs(N/X0) -f X a N multiplies and require ^3N storage cells.

In Chapter 6 a fast version of this transform is defined which employs re-sampling and Gaussian
filters to reduce the computational complexity to 3 Xo N multiplies. This fast transform employs
repeated convolution with a small filter* and yet gives measurements which span the range of
neighborhood sizes from a pixel to the size of the image.

In Chapter 7, techniques are described for detecting peaks and ridges within this three-
dimensional transform space, and connecting these to form the representation. The structure of this
tree represents a gray scale shape independent of its size, position or orientation.

Chapter 8 provides examples of the usefulness of the representation for matching as well as
examples of the size, rotation and position quasi-invariance of the representation. This chapter
describes the matching (or correspondence) problem in the domains of structural pattern recognition
and stereo image interpretation. Examples arc then presented in which the tree of peaks from the
teapot Images are matched despite changes of size and image plane orientation. A alignment
procedure and similarity measure is then presented for ridge paths in the 3-space.
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Chapter 2
Background: Related Techniques

This chapter reviews existing techniques for detecting and representing gray-scale forms in 2-D
images. 7Tie first section discusses detecting and representing forms by their boundaries or as
regions. Both region shape and boundaries are encoded in the representation developed in this
research.

The second section covers popular techniques for detecting the presence of uniform regions using
some form of linear detection function followed by a nonlinear decision rule. These techniques
attempt to find edges which are then used to locate the boundaries of a region. The techniques
described in this section range from very local edge detectors, such as Roberts' gradient [Roberts 65],
to detectors which cover large areas, such as David Marr's Laplacian of Gaussians [Man* 79a].

The third section describes representation techniques. The problem here is to develop a
representation for gray-scale forms or uniform regions which permits a fast search, alignment, and
similarity measure. Techniques in this section include representations that are produced by
segmentation programs, Blum's medial axis transform [Blum 67], and Marr's primal sketch.

2.1 Boundaries vs. Regions

At present there are two popular approaches to image representation: boundary representation
and region representation. Pioneering work with the boundary description approach was done by
Roberts" [Roberts 65]. The literature is full of recent work with this approach. Notable examples are
[McKcc 77] and (Perkins 78]. Estimates of the boundary position are usually obtained by convolving
the picturc with one or more small local edge detector followed by a non-linear decision function
such as Roberts" gradient, the Sobel operator [Duda 73], or the Hucckel operator [Hueckel 71],
{Hucckci 731- Sec fCrowiey 78bj for a list of many popular small edge detection functions and their
transfer function. Some farther encoding of boundary points is usually made to yield a
rcprescntaUon which may be matched against stored models. McKee's paper [McKcc 77], is a good
example of this approach.

The primary advantage of most boundary detection schemes is that the description may be
computed by a small, fast operator. However, a small operator can be a disadvantage, since the
boundaries that arc to be delected can be much larger (in width) than the operator. Also, a small
operators tend to be sensitive to image noise, which is small and high frequency. Also, such a

J
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description is expressed as many symbols which stand for very local events. It is can be more efficient
to represent the image as fewer symbols which represent more global (larger) events.

Region description is based on detecting regions of uniform intensity or color. This step is often
referred to as segmentation. The usual approach is to. compute a histogram of image intensities or
histograms of color features which is(are) then scanned for well defined valleys. A threshold is set at
the value in the valley. This technique can separate object from background nicely under proper
lighting conditions. Regions are then represented by a binary bit map, or by measuring a set of
features about the binary shape. ITiis approach was pioneered by Prewitt [Prewitt 66}, and Rosenfeld
[Roscnfcld 69]. A good example of applying this approach to color features is described in
Ohiandcr's Thesis {Ohlandcr 75].

Neither of these approaches are sufficient for an image which contains surface texture or weak and
blurry boundaries. With both approaches there arc problems in how the image structure is measured
and in how the representation presents the information to later recognition processes.

2.1.1 Measurement Problems

Consider an image containing gradual intensity transitions. Such an image could be said to have
blurry edges. If a local edge detector is used it will respond weakly over the entire large transition
regions and the response will be so weak in some places that it will be lost. Increasing the gain will
increase the sensitivity to noise. Similarly a region detection process will ran into problems defining
where such a region stops and starts. In such regions it is difficult to even define what is meant by an
edge or a uniform region.

In images of real-world scenes, some boundaries between genuine objects are very weak. In a
boundary description produced from local edge detectors, this usually results in missing boundaries
and/or a failure of boundaries to form a closed loop.

In a threshold-based region segmented regions which should be distinct turn up joined. Also,
Unless a region has sharp boundaricd and its intensities are distinct from those of the background*
the 2*D shape of a region will be very dependent on the threshold.

One of the biggest trouble areas for bofh of these approaches is Image texture. Texture here refers
in regions of an image containing many small forms which have random gray level shapes. Often in
natural textures these small gray level forms arc not unifonn In intensity. Such tenures may appear as
many small hills anil valleys in a terrain map. If the $kc of these **h!fls*? w approximately unifonn
across the otjjcct, the way in which the size \arics in the image may be used to Infer infbnnatiQn
about the depth of the object surface (K cider 80].

A tenure composed of randomly shaped nonuniform elements will swamp a threshold-based
region segrncntcr with many small randomly shaped regions. The shape of an> gnen clement can
depend on the threshold. 1*hc region segincfttcr will spend a large amount of time and memory

each element when wlut k seeded is the shape of the whole tcitured region. Rosenfcid
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[RosenfcJd 69) has noted that successively blurring such regions until the elements merge can be
used to segment adjacent regions of different textures. This technique is based on the same principle
as the representation developed in this dissertation.

With a natural texture, a local edge detector will respond sporadically over a large area with the
result that there is no clear boundary. However, local edge detectors have been used to detect
textured regions for region segmentcrs [Ohlander 75],

2.1.2 Representation Problems

A boundary description attempts to draw a closed boundary around regions which correspond to
unique objects. Encoding the boundary with a chain code [Freeman 61], [McKee 77], for example,
provides a representation which can be matched to a prototype to identify each closed region. There
is a problem if die boundary does not close. In this case the interpretation program will not know
which set of boundaries to attempt to identify. If there are many adjacent closed boundaries, there
can be a problem knowing which corresponds to a genuine object, and which arc artifacts. Also the
entire boundary must be matched to identify an object. That is, if half of the outline of a region
corresponds roughly to a prototype, but the other half is grossly different, the matching program may
not discover the problem until it has attempted to match most of the boundary. The main problem is
that in many situations edge detectors will report boundaries that do not correspond to an object's
actual shape.

In a similar manner a region segmenter may produce erroneous data because of measurement
problems, particularly when applied to images with weak or blurry boundaries.

Finally, with both techniques the resulting representation is dependent on the specific size of the
objects in the image when what is desired is to recognize a shape independent of its size.
Furthermore, a good representation should make available both the global shape of a form as well as
local details. In this way a 2-D matching procedure can begin by matching die global form, and
proceed to finer detail only if necessaiy.

2.2 Edge Detection Techniques for Boundary Representation

In this section we will review several measurement techniques which are related to the techniques
described in this dissertation. ITie techniques described in this section have in common the goal of
detecting edge segments for use as primitive symbols in a boundary representation of the forms in an
image. As with the representation developed in this dissertation, most of these techniques are based
on some linear measurement of image intensity, and seek to provide a description of the 2-D shapes
in m image.
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2.2.1 Local Edge Detectors

Many local operators have been proposed for detecting edges elements. A survey of such
operators is included in [Crowley 80] along with the formula and plots of their transfer functions.
The earliest such operator is Roberts' Gradient [Roberts 65]. This operator consists of a pair of first
difference masks oriented at ±45°. ITiese masks are shown below in figure 2-1.5 Let the output of
the convolution of the two masks at point (x,y) in the image be defined as c1(x,y) and c9(x,y). The
estimate of the boundary at point x,y, denoted e(x,y), is then formed as the square root of the sum of
the squares, as shown in the following equation.

e(x,y) = Vcjx,y)--+c2(x,yr (21)

Since Roberts" first defined this operator many researchers have observed that equation (2.1) may
be approximated by the maximum of the absolute values or the sum of the absolute values as shown
in equations (2.2) and equation (2.3).

e(x,y) = Max( jc^xjOl + Ic2(x,y)| ) (2.2)

(2.3)
e(x,y) = I c ^ y ) ! + [c2(x,y)|

0 1 -1 0
- 1 0 0 1

Figure 2-1: Masks Used in Roberts' Gradient

Probably the most popular local edge detector has been the Sobel operator [Duda 73]. Like
Roberts' gradient, the Sobel operator consist of two small masks that are 90° orientations from each
other. These masks are shown in figure 2-2.

1 2 1 - 1 0 1
0 0 0 -2 0 2

- 1 -2 - 1 - 1 0 1

Figure 2-2: Masks Used in Sobel Operator

As with Roberts' Gradient, the results of the convolution may be combined by either equation

(2.1), (2.2), or (2.3).

The Laplacian operator, V^p(x,y), has often been suggested as an ideal edge operator. The
Laplacian, and its Fourier transform, arc given in the following equations.

3y2

Figures 2-1 through 2-3 show the masks for local edge detectors. These masks arc shown « an array of coefficients which
arc convolved with an image
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where u and v are the spatial frequency variables and?F{} is
the Fourier Transform Operator.

Prewitt [Prewitt 70] designed two different two-dimensional difference equations which
approximate the Laplacian operator. These masks are shown in figure 2-3 below.

0 -1 0 -1 - 1 - 1
-1 4 - 1 - 1 8 - 1

0 - 1 0 -1 -1 - 1

Figure 2-3: Two Discrete Approximations To the Laplacian from [Prewitt 70]

As with the Roberts" Gradient Edge Detector, these masks are convolved with an image. The result
of the convolutions are then combined using equations 2.1, 2.2, or 2.3 to produce a map of edges in
an image.

2.2.2 The Hueckel Edge and Bar Detector

Hueckcl developed a function for detecting edges and bars that partially compensates for the fact
that edges are not always very local discontinuities in an image. Tkz Hueckcl edge and bar detector
[Hueckel 71] and [Hueckel 73] is based on a model of an edge as a step function, F, within a circular
neighborhood. This step function has a number of parameters as shown in die following equation.

F(xjr,GS,p,b,d) = f b forCx + Sy < p
\ b + d forCx + Sy>p

The parameters C, S. and p describe the direction of an edge or line. The parameters b and d
describe the average grey level on either side of the edge. The Hueckel operator approximates the
pixel values within a circular neighborhood,6 E(x,y), by finding the parameters for which F is a
minimum distance from E as shown in the following equation.

[E(x,y) - F(x,ysCS,p,b,d)]2 dx dx

The Hueckcl operator solves this minimization problem by multiplying the neighborhood, E(xty),
and the ideal step, F, by a set of eight basis functions, H.-fxj) for i = {0,1, 2,3,..., 7}, as shown in the
equations below. These basis functions, which are 'separable into a product of angular and radial
components, are referred to as Hilbert functions. The interested reader should see [Hucekel 71] for a
discussion, definition, and drawings of the zero crossings of these basis functions.

Hix,y)E(x,y)dJcdy

Although Hueckcl defines these functions using integrals they are evaluated as a discrete summation over a drcylar
neighborhood.
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s. = / / H.(x.y) F(x,y,C.S,p,b,d) dx dy

In these equations, the s.'s are variables and the a's are constants. Finding the parameters of F
then becomes a matter of minimizing the following equation.

i=0

This minimization produces the parameters for the closest fit of an edge and an estimate of the
likelihood that an edge is present

All of the techniques described above detect and encode small sharp discontinuities in image
intensity. As we discussed in section 2.L such a representation does not capture all of the information
in an image that is needed for matching to an object model. Such a representation is also inherently
inefficient because it describes only very local detail and does not describe the global shape of
regions.

2.2.3 Kelly's Use of Planning

One of the first researchers who attempted to use information from more than the most local
resolution for finding boundaries was Kelly {Kelly 71J. Kelly called his technique "planning".
Planning is a problem-solving technique for reducing the search space for a possible solution.
Planning is the use of the solution to a simplified version of a problem as a guide to the solution of
the original (more complex) problem [Minsfcy 63]. Planning was first employed by Newell, Shaw and
Simoa in the General Problem Solver [Newell 59J.

Planning was applied 10 boundary ctoection by Kelly as part of his system for classifying Images of
faces [Kelly 71}. In this form of planning, edges arc first detected in a reduced resolution version of
an image* These edges arc then used to guide the detection of edges in the original Image*

Kelly's sysicro operated m images composed of 250 by 330 pictures dements. A 28 hy 40 pkB
prepared by dividing the image into disjoint S hf 8 segments and calculating the average intensify
within each segment. This operation is equivalent to a form of ]ow*pa& filtering followed by re-
sampling. The iovirpass filler fur this application is an 8 by % array of coefficients of value 1/64. The
resamplc distance is S picture clcmcnik Serious aliasing can occur when tic sample rate is the same
%i'ifi as the wimhiw. This can be seen by deriving the transfer function of the unifoim square
window fCiwiej 7Sa| (Tho transfer ftinction K defined in section 33.)
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2.2.4 Cones and Pyramids

In this section we will describe several recent research efforts which employ multiple-resolution
versions of an image.

2.2.4.1 Uhr's Recognition Cones

Uhr has investigated the use of "recognition cones" for the low level processes of a machine vision
system [Uhr 72], [Uhr 78]. A recognition cone is a multilayer array of micro-processors which execute
the same instructions in "lock-step" fashion. Each processor in the lowest layer covers and operates
on a disjoint region of an image. Successive layers of the cone see the output of the processors
directly below. With each layer, the size of the image is reduced by averaging disjoint regions so that
the cone converges to a single processor at the apex. Uhr has investigated the use of averaging and
differencing on such a processor structure. He also suggests that such a structure may be used to
assign symbols to regions of the image.

2.14,2 Hanson and Risemairs Preprocessing Cones

Hanson and Riseman have also investigated segmentation procedures which may be implemented
on a recognition cone [Hanson and Riseman 74] and [Hanson and Riseman 78]. However, they
prefer the term "pre-processing cone" rather than "recognition cone" because the processes
performed are pre-recognition. In their system, the pre-processing cone serves as the front end of a
general purpose color vision system. The system builds a structural description of a scene using
multiple knowledge sources and threshold based segmentation.

Hanson and Riseman have categorized the operations which may be computed on a pre-processing
cone into the following classes:

• Data Reduction: Operations such as averaging which pass information up to the next
higher level

• Data Projection: Operations in which image data and interpretations are passed down to
lower levels.

• Iterative (or Lateral): Operations which are based solely on the neighboring processors at
the same leveL

114.3 Pyramid Data S t u d i m

A recognition or pre-processing come is a form of parallel Single Instruction-Multiple Data
(SIMO) Processor. The cbta structure which it contains is sometimes referred to as a "pyramid data
structure". The low-pass images on which the DOLP transform is based can be considered as a foim
of pyramid data structure. While some researches lump together the characteristics of the processor
and the data structure it builds, others have made a distinction in order to study the properties of the
data structure.
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Tanimoto has defined a pyramid data structure as "a series of digitizations of the same image at
increasingly higher degrees of spatial resolution*1 [Tanimoto 78]. A standard relationship between a
given level of a pyramid and the level under it is that a local property (such as edge intensity, color, or
intensity) at the given level is obtained by averaging the local property over some neighborhood in
the level under it In virtually even' system these averages arc formed over disjoint regions, which
can cause a randomness due to aliasing [Crowley 78a] as noted above in the description of Kelly's
planning technique.

Tanimoto has suggested that the sequence of reduced resolution images need not be obtained by
averaging nor even based on powers of 2, but can be obtained by a specially designed digitizer and
computer controlled optics capable of providing magnification of the image over a continuous range.

Lcvine [Levine and Lecmet 76] has investigated a system in which a a pyramid data structure is
used for bottom-up and top-down segmentation. His algorithm constructs Five pyramids from the
original image; one for each of the following local properties: intensity, a texture measure, hue,
saturation, and edges. These pyramids contain outlines of segmented regions which are then passed
to an intermediate level process for interpretation.

2.2.5 Other Work with Multiple Resolution Representations

Kelly is most frequently cited in Ihe image processing literature for pioneering the use of multiple
resolution versions of an image. However, similar ideas appeared in other literature at about Ihe
same time.

The use of a reduced resolution "plan" for spare planning (i.e. arranging 2-D shapes in an area) is
discussed in a 1970 paper by Eastman [Eastman 70}- Eastman credits work conducted at SRI on
trajectory planning and on reconnaissance for the idca[Nifassan 69] andfRascn md Nlteson 69J.
Eastman referred to this data structure as a "Hierarchical Data Structure"' bui It has since come to be
known as a quad tree [Klinger and Dyer 76], (Horowitz 76| Quad trees represent binary shapes la aa
image by recursively dividing, Ihc picture into a 2 x 2 set of sub pictures, if any subpktuit is
completely filled or completely empty, it i$ marked as such and not divided further. If a swbpkttsne is
only partially filled it is further divided. This process continues until cither all the subpktures are
uniform or ihc individual pixels arc readied The result is a tree which cm be traced to determine if
any point in the picture Is filled or empty. This algorithm can be very efficient in terms of the storage
required for pictures that have lai^c uniform regions, However* the ckseriptioa of a region which
this reprcseniatiiiii gives can vary drastically in its structure if the region is translated in position or
rotated.

Warnock [Waniock S7J devised a similar algorithm for computing the hidden surfaces In two-
dimensional views of ttircc^dtmcnsionai pc%hed»« in Waraioeifs algorithm, a two dimensional
pkttsre iv subpicturc is recursively divided into four squares if it amtatns a boundary between two
faces of polyhedra or a boundary between a face and ihc background.

A pyramid data structure has been used by :o speed up correijiuw template matching of aerial
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imagery using hierarchical search [Hall et. al. 76]. Two-stage hierarchical template matching has also
been reported for image feature detection [Rosenfcld and Vandcrbrug 77].

2.2.6 Marr's Laplacian of Gaussians

Probably the work most similar to that described in this dissertation is that of David Marr. Marr
sought to understand the information processing problems inherent in vision. He was interested in
both the mechanisms to visual stimuli in the human visual system and in the computational problems
of implementing such processes in machines.

[Marr 79a] presents a theory of edge detection which recognizes that the information in visual
stimuli occurs at many scales (or resolutions). To detect these stimuli at different scales he employs
band-pass filters which are formed from a Laplacian of Gaussian low-pass filters (V~g(x,y)). Marr
forms these filters using a difference of Gaussian low-pass filters whose standard deviations have a
ratio of 1.6. He uses an informal argument to show that such a ratio gives an optimum narrow band
width. (The implementation described in this dissertation employs a ratio of V2* arrived at by a very
different line of reasoning.)

A set of such filters (4 in [Marr 79a] ) arc convolved with an image. The results are encoded by
detecting the presence of zero crossing segments and the directional derivative perpendicular to the
zero crossing at each segment (called the amplitude of the segment). This set of zero crossing images
is referred to as the "raw primal sketch". Marr speculated that if filters were used at a sufficient
number of scales, the raw primal sketch would be reversible. That is, the original image could be
recovered from the raw primal sketch.

Zero crossing elements from several scales are collapsed into a single boundary estimate called the
"primal sketch". This is done by comparing zero crossing segments from adjacent spatial frequency
levels, to test for similar directions and amplitudes. The zero crossing segment from the highest
resolution raw primal sketch is encoded in the primal sketch. Closed boundaries are labeled as blobs
and assigned attributes of length, orientation, and average contrast. Terminations arc assigned a
position and orientation. We shall have more to says about Marr's work in the section on
representation below.

2.3 Representation Techniques

2.3.1 Blum's Medial Axis Transform

Blom developed a representation for binary shapes called the "Medial Axis Transform" (MAT)
[Blum 67J* l*his representation is interesting because it is object centered; that is, components of a
shape arc defined relative to a central (or medial) axis. This region representation bears some
similarity to the representation developed in this dissertation.
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The medial axis transform produces a form of skeleton for a binary shape defined on a continuous
medium. The MAT may be defined by the following process, l̂ ach point on the boundary of a
binary region transmits a circular wavefront on both sides of the boundary. These wavefronts
propagate until they reach another boundary point or until they meet a wavefront traveling in exactly
the opposite direction. When two wave fronts meet traveling in opposite directions, they cancel each
other, and the point where they meet is marked as belonging to the medial axis. Such points
correspond to the center of circles which are fit tangent to two or more points on the boundary of the
shape.

The collection of medial axis points defines a set of connected spines (or center axes) describing
the form of the shape. Where a shape contains a concavity, spines occur outside the binary shape as
well. Similarly, spines occur for the space between shapes. (This is the negative shape which occurs
between two positive shapes.) Spine points can be encoded with the distance to the boundary from
which they propagated. This gives a reversible representation of the binary shape as these distances
correspond to the radii of discs that must be placed overlapping on the spine to reconstruct the binary
shape.

Unfortunately there are several problems with the medial axis transform. For one thing, the
transform operates only on binary shapes which introduces all of the problems attendant to
thresholding techniques. Also the transform is only defined for a continuous medium. Propagating
circular wavefronts on a discrete grid is a difficult and costly process. Perhaps most troublesome is
that the structure of the medial axes are altered drastically by minor nicks and protrusions on the
boundary of the shape.

There is some similarity between the MAT and the representation described in this dissertation.
The path of the spines for a simple object resemble the paths of peaks and ridges from our
representation projected onto the original picture. Our representation also produces a description of
the negative shapes outside a gray scale form when there is a concavity and when two shapes are
nearby. However, nicks or protrusions narrower than half the width of the gray scale form do not
affect the overall path of ridges and peaks, The biggest difference is tot our representation is
computed for discrete gray scale forms, while the MAT is defined for continuous binary forms.

2,3.2 Marr 's Three

David Marr has developed a framework for visual iaformatioa processing that includes
representations at three levels (Marr 78J, The first such representative is the primal sketch which is
described above. "Flic primal sketch encodes infornidtion about the boundaries of forms in an image
from different

lite second representation is referred to as the 2 1/2-D sketch {Marr 79aJa This is a form of depth
map of surfaces m seen by lie viewer. Various processes that interpret depth cues from such
phenomena as texture* shading, and sterai perception contribute mfinrmjtum to form the 2 1/2 D
sketch.
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Marr asserts that an object centered representation is also required for general purpose vision and
that this 3-D representation should include shape primitives from many resolutions. Furthermore he
asserts that this representation should take advantage of axes of symmetry which are intrinsic to the
object. He cites the generalized cylinder representation [Agin and Binford 73], [Nevatia and Binford
74] and the Medial Axis Transform [Blum 67] as examples of representations that have these
properties.
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Chapter 3
Signal Processing Background

Digital signal processing is an engineering discipline which, like image understanding, has been
made possible by the widespread use of digital computers since the early 1960's. It's theoretical
foundation is linear systems theory, a body of continuous mathematics which is fundamental to
electrical engineering.

Since many persons interested in image understanding lack training in digital signal processing,
this chapter provides some definitions and intuitive explanations for techniques from digital signal
processing which are necessary in later chapters. Most of the material in sections 3X 3.2 and 3.4 is
available in widely used references. The text [Oppcnhcim 751 is particularly relevant A very readable
introduction to digital signal processing for non-electrical engineers is [Hamming 77]. The transfer
function derivation given In section 3.2 is from this book.

3.1 Convolution* Correlation, and Inner Products

This section provides, the formulae for the 2~D convolution and 2-D cnw-corrclaiion of a Unite
2-D filter with a 2-0 signal. These fonnulae are shown to be identical for filters which arc symmetric
about both axes, as is the case with the circular symmetric filters, discussed in chapters 5 and 6, The
2-D crDSS-conelation is then shown to be equivalent to a 2-D sequence (or array) of inner products.
This equivalence gives a heuristic for Interpreting the results of the cross-comclationu This heuristic
leads to the use of peak and ridge detection for converting the filtered signals into symbols, as
described in chapter 7.

Thit research has concentrated on the use of non-vtcunsivc finite impulse response (FIR) filters;
we have avoided the design problems involved in 2-D recursive filters, It h impossible for a causal
reclusive filler to have zero or linear phase* Furthermore, tlicre is no known design procedure for
gencati »g a stable 2-D recursive filter which would satisfy the constraints developed below.

3.1,1 Convolution

A 2-D finite impulse response digital filler ma> be defined h\ specifying its impulse response. For
discussion, let \ts define a 24) discrete impulse response:

gtx,>)fi)r.U|<\\ jndjy} < ¥,.

The idiuiMcs \ and y are, of uoursr, integers.
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The filtering operation is usually expressed as a convolution, denoted M *". Let us also define a 2-D
discrete input signal:

p(x,y)for |x |<Xpand|y |<Yp

The convolution of g(x,y) with p(x,y) is given by the formula:

g(x,y) * p(x,y) = 2^ 2-a p(x-k, y-I) g(k,Q
k=-Xg /=-Yg

3.1.2 Correlation

In this work we have preferred to express the filtering operation as a cross-correlation. The reason
will be explained below. We shall denote cross correlation with the symbol "*" for lack of a better
symbol. The formula for a 2-D cross-correlation is:

Ys

g(x,y) * p{x,y) =

The difference between correlation and convolution is the presence of the minus sign in the term
p(x-k, y-i). These minus signs have the effect of rotating the impulse response about both axes. This
rotation describes the behavior of a continuous linear filter, as implemented, for example, in a circuit.
If the impulse response is symmetric about both axes, as in the case of the circularly symmetric filters
described below, there is no difference.

3.1.3 Inner Products

In this foetid* we aro interested in expressing an image as a configu,ra,tioii of primitive signals.
These primitives were referral to as a family of "detection functions" in pur early work, [Crowlcy
78a}. We have since developed a class of families of detection functions such that an image signal can
be expressed uniquely as a weighted, displaced sum of detection functions. A method for computing
the weights* which is revcrable, has come to be known as the DOLP transform, and is defined in
chapters.

The weight tells how strongly the primitive matches the image signal at a particular point This
weight may be determined by computing an inner product of the primitive (which is an impulse
response) and Che signal within a finite neighborhood ccntcrcd at the sample point The size of the
neighborhood is the same as the size of the primitive.

An inner product at some sample point xOf yo is given by the formula:

<S.p(x0,y,)> =

ITiis formula is identical with the formula for each point in the cross-correlation*
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The point here is that the filtering operation, or cross-correlation is a sequence of inner products.

This notion of the filtering operation as a sequence of inner-products leads to an important
heuristic for converting the filtered signal into a network of symbols. Those points at which the
correlation of a particular filter and the input signal are at a 2-D local positive maximum or negative
minimum are the points at which that filter most strongly resembles the input signal. If the inner-
product at that point is also larger than inner-products from filters which are similar in size, then that
filter at that point is the best approximation of the image signal centered at that point Such points
form an important class of symbols in our representation. They are labeled M* and serve as
landmarks in the representation, as well as the root for subgraphs.

In summary, the view of the filtering operation as a sequence of inner-products leads to the use of
peaks (and ridges) in the filtered signals to construct the representation of the image. This is in
contrast to the more popular approach of using zero-crossings as pursued by Man* in his related work
[Marr78].

3.1.4 Boundary Values

The DOLP transform employs circularly symmetric low pass filters whose radii range from 4 pixels
to the size of the image. In each correlation there is a strip along the border of the filtered image
whose width is the same as the filter's, along which the filtered signal is corrupted because the filter
only partially overlapped the image. These points could be discarded, but this would lead to an
inability to detect any object closer than its own width to the border of the image. Our solution was
to provide a default border value, given by the mean of the image pixel values. This has the desirable
effects of allowing description of objects near the border of the image, and keeping the filtered image
sizes as powers of 2. It has the undesirable affect of causing a ripple along the border whenever the
pixels at the border are not close in value to the mean.

3-2 The Transfer Fynetion

The transfer function is an important tool for the design and analysis of discrete linear functions.
In this section we will define the transfer function for the case of a two dimensional discrete linear
function. We will then show that any discrete 2-D function has a transfer function which is
continuous and periodic in two dimensions. The boundary of the region over which the transfer
function is unique is called the Nyquist Boundary. The shape and size of this boundary is determined
by the pattern of sample points used in filtering. The Nyquist Boundary is the primary tool for
selecting the density of sample points for a filter or designing a filter for a given sampling density.
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3.2.1 Eigenf unctions

One of the properties which make linear systems so mathematically tractable is the existence of a
class of well behaved eigenfunctions (also known as characteristic functions). The eigenfunctions of a
discrete 2-D linear system are the set of sampled 2-D exponentials given in equation (3.1)

e±j(xu+yv) = Cos(xu + yv) ± jSin(xu+yv) (3.1)

The variables u and v arc continuous and often referred to as spatial frequencies. The eigenfunctions
for a given discrete 2-D linear system are those complex exponentials for which u and v fall within a
bounded region in the center of the u,v plane. The boundary of this region is known as the Nyquist
Boundary. Its shape is determined by the pattern of sample points used in the filter operation. We
shall return to the Nyquist boundary in the next section.

3.2.2 Derivation of the Transfer Function

When a linear function is convolved with an eigenfunction the result is the same eigenfunction
shifted in space (or phase) and scaled in amplitude. The phase shift, 4>(u,v), and the amplitude
attenuation, A(u,v), are position invariant. They are a function of only the spatial frequencies of the
eigenfunction.

We can express this phase shift and amplitude attenuation as a complex function, H(u,v), known as
the transfer function. Its relation to <I>(u,v) and A(u,v) is given by the following equations:

A(u,v) = | H(u,v) |

= ArcTan[Im{H(u,v)}]/Re{H(u,v)}]

H(u,v) = A(u,v)

Where Im{.} gives the imaginary part of a complex function and Re{.} gives the real part

The effect of convolving a discrete 2-D finite impulse response filter, -

W x j ) f c r M < X h a n d | y | < Y h

with an eigenfunction may be expressed as a multiplication with the transfer function in the spatial

frequency plane as shown in equation (3.2).

H{u^
k=-Xh/=-Yh

We can easily derive the formula for computing the transfer function from the impulse response by
factoring out the eigenfunction from both sides of equation (3.2). This formula is given in equation
(33).

X h Yh

(3.3)

m
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3.3 Two Dimensional Re-Sampling

In this section we examine in more detail what the Nyquist Boundary tells us about the pattern of
sample points. In this discussion it is assumed that the input image and the impulse response are
given as discrete 2-D sequences. We are concerned with reducing the number of sample points. We
use the term "re-sampling" to distinguish this from the related problem of sampling a continuous
function to produce a discrete sequence. Sampling a continuous function is amply treated in many
digital signal processing texts. We recommend [Oppenheim 75] which has come to be recognized as
the classic text book for digital signal processing. Re-sampling a 1-D sequence will be discussed first
and then the results extended to 2-D.

3.3.1 Re-Sampling a One Dimensional Filtered Sequence

For a one dimensional linear function, the eigen-functions are the complex exponentials, Qr^x for
which the continuous frequency variable, to, is within the bounded region | co \ < TT/SR, where SR is
the distance between samples, and must be an integer. Complex exponentials for which o> is outside
this ranged are aliased by the sampling. That is, they appear in the sampled sequence as one of the
complex exponentials from within the interval. Complex exponentials from outside the Nyquist
boundary are, in effect, rotated about die interval boundary.

3.3.2 Two-Dimensional Nyquist Boundary

The extension to two dimensions is straight-forward if the samples are taken at points along axes
which arc aligned with the original sample axes. That is, if every Sxth point in the x direction on every
S th row in the y direction are chosen as sample points, then the transfer function of the sampled
sequence will be defined within the rectangular boundary:

| u | < TT/SX and | v | < 7r/Sy.

Tn the techniques developed in chapter 5 we employ a type of sampling in which the samples are
along the diagonals, ±45°. We refer to this form of sampling as vT resampling, because this is the
minimum distance between sample points. The \fl resampling operation, S - ^ O niay be defined
as:

Sy^"[p(x,y)J = f p{x,y) for x mod 2 = y mod 2
I undefined otherwise

When applied to a cartesian grid with axes at 0° and 90° it yields a new grid where the unit
sampling distance axes are at ±45 as shown by the circles in the Figure 3-1 beiow. When applied to a
grid where the axes arc at ±45 k produces a new sampling grid with a unit distance of 2 and unit
distance axes at 0° and 90° as shown by the squares in figure 3~L
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Figure 3-1: Example of Sy^-fplx.v i] and S2[p(x,y)]

In ihc frequency dumatn. each application of VT dimpling introduces a new Nyquist boundary
vthich is skewed by 45° from the previous Nyquist boundary, and just fits inside it, as shown in figure
3-2.
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3.4 Design Parameters for Digital Filters

In this section we will define some of the terms that are commonly used in the design of finite
impulse response digital filters. There is nothing original in this section. It is included so that when
these terms are used in later sections and chapters the reader will know what they mean.

Digital filter design is an optimization problem. Digital filters are generally designed by specifying
a set of constraints on the transfer function and then allowing a linear optimization program, such as
the Parks-McClellan algorithm [Parks 72] to find the coefficients for the best solution. The
constraints that arc commonly used for designing a low pass filter are illustrated below in figure 3-3.

Figure 3-3: Transfer Function Constraints for a Low-Pass Filter

The symbols for the constraints are:

5, : The pass band ripple peak amplitude

Sj' The stop band ripple peak amplitude

a) : The pass-band cut-off frequency where response falls below 1-5,.

& : The stop-band frequency edge where response falls below 8~
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AF: The transition width, or width of the transition region, given by co -<o

0>3dB: ^ hc frec3uency where response falls below 1/2 (-3dB).

The usual goal is to find the shortest filter which has a sufficiently flat pass and stop band and a
sufficiently narrow transition width. 81 and §2 can be traded off against each other. Their product
can be traded off against AF. The product of all three can be traded off against the number of
coefficients.
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Chapter 4
Criteria for the Design of

Band-Pass Filters for Detecting
Non-periodic Signals

In this capter we develop several ideas which are fundamental to the results described in later
chapters. Section 4.1 describes the concept of a family of detection functions which are scaled copies
of a single prototype function. This concept leads to a reversible transform based on the difference of
size scaled copies of a low-pass filter, which is described in the next chapter. Such a family of
detection functions are convolved with a signal or image to separate the information into spatial
frequency channels. This provides an ability to discriminate the size of a gray-scale form by detecting
the frequency at which the maximum response occurs. This transform also provides the basis for the
representation described in chapters 7.

Section 4.2 establishes a set of design criteria for band pass filters that are to be used with peak
(and ridge) detection to construct a scale invariant representation of non-periodic signals. These
criteria arc general; there are many methods by which a band-pass filter may be designed to meet
them. Our early work with this criteria used filters which were designed by a quite different
technique than the difference of low-pass filters that is described in chapters 5 and 6[Crowley 78al,
[Crowley 78b].

In section 43 we consider the problem of selecting die set of scale factors for a family of detection
functions. We show that the criteria of size in variance constrains the filter radii to be members of an
exponential sequence. Size in variance also dictates re-sampling at a rate proportional to the radius of
each filter. Unless we interpolate and then decimate, the resampling distances must be members of
the set of distances that occur between points on the sample grid on which the picture (or signal) has
been digitized. The smallest base for such a sequence which occurs on the 2-D cartesian sample grid
is VI.

4.1 Family of Detection Functions

In this section we define the term "detection function" and then introduce the concept of a
parameterized family of detection functions. Some of the possible approaches for designing a family
of detection functions arc then examined.
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4.1.1 Detection Functions

The term "detection function" was coined early in this research. A detection function is a linear
function (impulse response) followed by some non-linear decision rule. Most of the edge detectors
described in section 3.2 are examples of detection functions.

The techniques developed below extend the concept of a detection function beyond the detection
of local sharp transitions in gray level.

The linear function part of a detection function is typically designed as a matched filter for the
pattern which it is to detect Sec [Wo/,cncraft 65] for a discussion of matched filter design. The
obvious example are the plethora of edge detectors in the literature, but there arc other examples
such as the GM system for IC chip alignment in which comers are detected. In some systems, such as
ihe GM system the image domain can be sufficiently constrained and the problem structured so that
a specialized detection function is quite reliable. However for general purpose vision, where there
are few constraints on image quality or content there are serious problems. For example, what
pattern should be detected? We have already discussed in section 2.1 some of the problems with
detecting edges and interpreting them as boundaries* Another problem is that patterns can occur over
a range uf neighborhood sizes. If ihe pattern Is blurred or noisy or the contrast Is low, a larger
neighborhood must be examined. But then it becomes easy u> miss lie edges of small patterns.
Textured regions are particularly troublesome because it may be desirable to detect information at
many ncsgiiborhood sizes. In the folk wing sections me shall describe a solution that employs a set of
functions whose sizes range from very teal to global*

4.1.2 A Family of Detection Functions Which Provide Spatial 'Frequency Channels

This research began as an effort to demonstrate the following idci [Crowlcy 78b]:

\ mhvM im the sense nf able 10 handle blurn **r textured linages! ̂ nd efficient (in the
sense of representing ginhal ihaps of an object m a few symbols) structural description of
an mugc z:m be formed bv filtering the m a p into a s£t of spatial frequency channels and
then representing pejk puiois and ntfse points v>:th symbols.

A pnrxipk: on nhich math uf this *ork s> based is that a class of band pass fillers can be defined
u^h 'Jw: zx+h filter 'h sensu^;? to 9pa>> of i p.inicular rdmz uf vuaths» Ftsrthcrmorc the width of a
M?r«.O i^n he iciarmincd, %'inw, ^~m% tukrance. h\ iieicrniming nhsuh filter gncs flic largest peak
response. In ^no r , 4 2 **c dc\*:U:-p a ^ l \:f ci>nitiamis f̂ r designing d:tc:Uun functions for this

ihc dcii^ ^f ihe ^uL^I fr«iuc:u:y i^rn-eis leJ it* the concept of a par«imctcrizcd
:::!:-n u:rtH:uris'\ \ \ I ^ N , of Jj^d^jn f«ni-t^^ > defined m a clewed form

;\,? ^^1;?*^ *crc ihe frequency



38

Ideally we would like to convolve the image with a continuum of filters such that if a test pattern
(say a solid disc) of a particular size is the input signal, one filter from the continuum will have a peak
response which is larger than all of the others. Furthermore, it should be possible to determine the
size of the test pattern (within some tolerance) from the identity of the filter with the largest peak
response.

A number of experiments were reported in the proposal for this dissertation in which band-pass
detection functions were convolved with uniform intensity circles and squares of different sizes and
with uniform intensity bars of different widths and orientations. These experiments demonstrated
that the size of the circles and squares, and the width and orientation of the bars could be determined
by observing which detection function produced the largest peak in the convolution. We also
observed that certain structural elements such as edges and corners resulted in easily detected
patterns of peaks and/or ridges when convolved with each of the detection functions smaller than the
object. Thus it is possible to detect these structural elements at many neighborhood sizes and
sampling densities. Also it was noted that a configuration of test patterns forms a shape which is
independent of the test patterns (a textured shape). The size and structural features of this textured
shape are apparent in the convolution with detection functions which are larger then the individual
test patterns.

4.1.3 The Goaf of Size In variance

The three dimensional shape of an object is intrinsic to the object. The two dimensional image of
an object should depend only on the objects 3-D shape, the viewing angle, and the lighting
conditions. A description of the 2-D gray scale shape of an object should not depend on the size at
which the object is imaged.

Early in this research we decided to pursue a representation for 2-D form that has the property of
being independent of the scale at which the object is imaged. That is, suppose an object is in the field
of view of a television camera, and a representation is constantly being constructed of how the object
appears in a sampled, digitized image from the camera. If the object is moved toward the camera, the
representation should shift in size but retain its structure. Also, as additional information about the
object's surface texture and edges becomes available it should be appended to the representation, but
this should not alter the part of the representation that denotes the global shape of the object In this
research we pursued the goal of producing a size invariant representation using detection functions
that are size scaled copies of the same function.
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4.2 Linear Functions for Describing Non-Periodic Signals with Peak
and Ridge Detection

In this section we develop a set of constraints for the space domain coefficients and the frequency
domain (transfer function) for the design of a set of 2-D linear functions. These functions are to be
used with peak and ridge detection to construct a representation for die non-periodic signals which
occur in images. We are not able to provide a rigorous proof that all of these constraints are
necessary. We only make the claim that these constraints are sufficient

The following subsection will develop the reason why the detection functions are constrained to
be:

1. Zero Phase

2. Finite Impulse Response,

3. Circularly Symmetric, and

4. Band Pass Filters,

We will then develop the more complex criteria that the functions:

1. Must have 3 peaks (5 alternations) in the coefficients, and

2. Must have a pass band which rises monotonically to a single peak.

4.2.1 Zero Phase

The transfer function of the linear function must be zero or linear phase. A non-zero phase will
shift the position of the response. If the phase is linear the shift is the same for all frequencies. If the
phase is non-linear, the shift will vary with spatial frequency. The position of the signal is important
to the structure of the representation. We cannot permit unpredictable shifts in the reported position
of a signal because of a slight uncertainty in its width (frequency content).

4.2.2 Finite Impulse Response

The impulse response must be finite. The reason is that infinite impulse response filters can only
be implemented by recursive filters. There is no design process for a 2-D recursive filter that will
guarantee a zero or linear phase. There are also problems with designing 2-D recursive filters which
are stable. We have limited our inquiry to finite impulse response filters to avoid these problems.



40

4.2.3 Circular Symmetric

The impulse response must be circularly symmetric. This is because the representation should be
as invariant to orientation as possible. We cannot allow the detected size and position of a peak to be
affected by the orientation of a signal.

4.2.4 Band Pass

The impulse response coefficients must sum to zero. This will assure that if the function is
convolved with a uniform signal the response will be zero. Another way to say this is that the DC
response must be zero.

The transfer function must also have a high frequency stop band. This will allow the convolution
to be computed at rc-sample points without aliasing. The net effect of these two constraints is that
the function will be a band pass filter,

4.2.5 Constraining Alternation (Peaks) in the Space Domain Coefficients

In this section we will show that the linear function must have 3 peaks (5 alternations) in its
coefficients. This constraint is necessary when the detection functions are to be used with peak and
ridge detection (detecting local positive maxima aad negative minima). Without this constraint, other
constraints such as die need for a narrow pass-band and sharp transition band would drive the design
to a function which had many ripples (alternations) in its impulse response. To see why this is a
problem, consider the case where a detection ftinction is convolved with a bar which is smaller than
half Ihe width of Ihe detection ftinaion. Each peak in the detection function coefficients will result m
a peak in the convolution output Since the presence and shape of the bar is to be encoded from the
peaks aod ridges in the convolution, the result will appear to be many bars.

We can determine the smallest number of peals which the detection functions can have by
enumerating the possibilities and examining the function which results from each. For convenience
this discussion will consider 1-1) functions* The results must apply to 2*13 circularly symmetric
functions* The results will only apply 10 a circularly symmetric function if the 1-D Ainction is
symmetric, ic, if g(x) = $(«z% liins the 1-D functions discussed below arc constrained to be
symmetric* Also, we am only Interested In finite zero-phase functions for the reasons explained
above*

I jet us define the term "alternation" to refer 10 a change in sign m the first difference, dfe(x)J of the
ftinctkm* where first difference of a discrete function $x) is defined by;

I jrt us male the arbitrary definition that when the first difference is mm, its sign n the same as the
point in the right With this tfefmiiktn functions which have 1 constant interval can be considered in
this dtacusskm. Aim), to keep things tidy, Jci us define the boundaries of the support for a finite
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discrete function to be alternations. Thus all finite 1-D functions automatically have at least two
alternations.

© ( > ( > ( > ( > ( > (

/ \

) ( > ( > ( > ( > ( > ( ) ©

Figure 4-1: The Only Possible Symmetric 1-D Function with Two Alternations

Two Alternations: (see figure 4-1 above.) In order to be symmetric such a function must be
constant. It is thus a low pass function.
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Figure 4-2: Two Possible Symmetric 1-D functions with 3 Alternations

Three Altcmatioiis: The third alternation must be in the center for the function to be symmetric.
There are two cases (sec figure 4-2): ITic coefficients can be all of the same sign, or of different signs.
If the coefficients are all of the same sign, then the filter will have a non-zero-DC response (sum of
the coefficients) and will not be band-pass. If the coefficients are of both signs and sum to zero, then
the function can be band pass. However, if it is band-pass, the negative side-lobes will be
monoccmically decreasing. This results in sharp discontinuities at the boundaries. These
discontinuities cause large ripples in the high-frequency response which makes the function
unsuitable for use with re-sampling.
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Figure 4-3: A Symmetric 1-D Band-Pass Function with 4 Alternations

Four Alternations: If the function is finite, then two alternations are at the support boundaries.
The remaining two alternations must be placed symmetrically for the function to be symmetric. Since
there can be no alternation at the origin, in order to be symmetric the function must be constant
between the two inner alternations. In order for our function to be band-pass, its coefficients must
sum to zero. The function shown in Figure 4-3 is such a function. This particular function is the
difference of two constant windows. For 2-D images, convolution with this function can be
implemented as a difference of square uniform windows, for which there is a fast convolution
algorithm [Price 76]. However, the sharp transitions cause large ripples in the stop band which can
cause aliasing when used with re-sampling.
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Figure 44: A Symmetric 1-D BandhPast Function with S Alternations

Five Alternation*: fSee figure 4-4) f he alternation!; is the minimum which a symmetric band pass
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function with a well behaved stop-band can have. This is one of the constraints which is used in the
detection function design. Note that the coefficients must sum to zero in order for the function to
have a zero DC response. Note also that the coefficients must taper to zero at the boundaries in order
for the stop-band ripples to be small.

4.2.6 Monotonic Pass Band with a Single Peak in the Transfer Function

The constraint of five alternations in the detection function coefficients severely limits the form of
the transfer function. In particular, it limits the flatness of the pass band and the width of the
transition region.

The ideal situation would be to have a family of filters in which the peak frequencies give a
continuum. However, this would require an infinite set of convolutions, and so we are forced to
choose a finite set of filters, with the peaks staggered throughout die frequency domain. This is, in
effect, sampling in frequency. For detection functions which are size scaled copies of a closed form
expression, the peak frequency for a given family of detection functions may be determined by the
radius of the function. For reasons explained below, we end up constraining the filter radii to be
members of an exponential sequence:

R€{RO,ROS,ROS2,...ROSK}

This gives an a sequence of pass bands whose center frequencies are an exponential sequence of the
form «oS~k.

Let us define a 3 space, (x,y,k), such that each point contains the value of the inner product of the
filter of radius RoSk with the image neighborhood centered at x,y. Furthermore, let us specify that
for each increment in k, the points in the image are rcsampled so that the minimum distance between
samples will increase by a scale factor, S. A representation can be constructed by detecting peak and
ridge points in this three space and linking them together to form a graph. In order for the structure
of this graph to be invariant to the size of a grey-scale form we must constrain the transfer function of
the filters to rise monotonically to a peak and then fall monotonically as spatial frequency increases.
To see why this is so, consider the following situation.

Suppose we have a test pattern which is a uniform intensity square. It will result in a distinct
interconnection of peak and ridge points. An example of such a graph is shown as figure 7-21 in
chapter 7. A uniform intensity rectangle with an aspect ratio between 2 and 1/2 will result in a peak
at the top of this graph whose value is significantly larger than any other peak in the graph. This peak
is labeled as an M* and forms the root of the graph which describes the square. It should be possible
to determine the size of the square from the level, k, at which this root peak occurs.

If the test pattern is gradually increased in size the graph which represents it must move upward (in
the k dimension). This movement must be monotonic with size in order for the size invariance of the
description to hold. As a sufficient condition for this movement in the k direction to be monotonic
we make the following constraint on the transfer function of the detection functions.
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Transfer Function Constraint

The transfer function must rise monotonically from a response of zero at DC to a peak response at
some frequency. It must then fall monotonically until it has entered the stop band. Within the stop
band it is permitted to ripple with a magnitude less than or equal to some value 8.

This constraint is illustrated by figure 4-5.

-ir 0 ^

Figure 4^5: MOEOIODIC Pass Band with Single Peak

4.3 Selecting the Sequence of Radii and Re-Sample Distances

In this section we will address the problem of choosing the sequence of radii which Ihc family of
detections functions should have. We also address the problem of choosing the set of re-sampling
distances, lite two problems arc intimately rotated because the representation can only be
invariant if the rc-samplc distance is the same fraction of the filler radius for all of the filters.

4*3*1 Filter Radius

Scaling the size of a gray scale foim k a multiplicative operation. That is if a Cunts is seated In size
by some factor. F* all of its dimensions arc multiplied by F. ITie ideal situation would be to have a
sequence of radii and re-sampling distances which includes all possible scaling factors. ITiIs is
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impossible, because the set of such factors that can occur is infinite. It is the set of real numbers,
which even over a closed interval is infinite. Thus we must choose a sequence which gives a
reasonable approximation.

Suppose there are two instances of a form such that the second is a copy of the first scaled in size
by F. For size in variance, we require that the representation of both forms be composed of the same
interconnection of symbols, albeit from different size detection functions. Each structural component
of the form must be shifted in the size dimension (k in our earlier discussion) by the same amount
Also the sampling distance (measured in terms of pixels in the original image) must be scaled by the
same amount as the filter radius. That is, a configuration of peak and ridge points from the filters of
radius 8 must correspond to a configuration of peak and ridge points at radius 8F in the second
image. Similarly, a configuration from radius 4 in the first image must match a configuration at 4F in
the second.

if we employed a non-exponential sequence such as the fibonacci sequence, s i + 1 = s.4-si_19 or the
set of integers, the number of detection functions between radius 8 and radius 8F would be different
from the number of functions between radius 4 and radius 4F. As a consequence, die representation
of the scaled form would not contain the same configuration of symbols as the original. An
exponential sequence allows us to approximate the scale change, F4 by some factor of the form Sk,
where S is the base scale factor, and k is an index. Scaling by Sk then shifts all configurations of peak
and ridges by k levels in the representation, thus preserving the interconnection of the symbols in the
representation. It is also neces;
density of symbols is the same.
representation. It is also necessary to have re-sampled the image by the same factor, Sk, so that the

4,3,2 Re-Sampling Distances

The accuracy of the size invariance is determined by how closely the change in scale, F, can be
approximated by Sk. If not constrained by sampling, the value of S would provide a trade off
between the accuracy of the size invariance and the cost in terms of computation and storage.
However, S is constrained by the requirement that the sample distance be a fixed proportion of the
filter radius. There is only a small finite set of re-sampling distances that can be used without
interpolating the image sample points. If we are to avoid the great increase in processing cost which
would come from interpolation we must use one of the naturally occuring sample distances as the
scale factor, S. The set of distances to neighboring points for a cartesian grid is shown in figure 4-6.
Each number in this figure is the cartesian distance to the point on the lower left of the figure.
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Figure 4-6: The Set of Naturally Occurring Sample Distances
For a Cartesian Plane
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Let us define the set of distances between points on any grid as the set of "natural re-sample
distances". Within this set we can choose subsets which are members of exponential sequences, i.e.
have the form Sk. In fact, each natural re-sample distance provides the base, S, for such a subset

In the following chapters we will define a process in which the image is repeatedly filtered and
then re-sampled at some base distance, S. The smallest such S which naturally occurs on a cartesian
grid (greater than 1, of course) is the value VT. This is tlie base value which is used for scaling both
the re-sampling distance and the filter size.

In summary for reasons of size invariance a family of detection functions whose radii are an
exponential sequence must be used to filter the image. The set of rc-sample distances must also be
from the same exponential sequence, although smaller by a constant fraction. A great savings in
computational cost is possible if tlie base number of the exponential sequence is a natural re-sample
distance. Thus the experimental implementation is constructed using the smallest such resample
distance for a cartesian grid,
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Chapter 5
A Reversible DOLP Transform

Which Resolves Non-Periodic Data
into Short-term Frequency Components

This chapter introduces the Difference of Low Pass (DOLP) transform which is designed to
separate a signal into short-term frequency components. This transform was devised to be used with
peak detection to represent non-periodic 2-D signals as a first step in stereo matching or determining
abject identity. The DOLP transform is reversible and thus preserves the information in a signal.

The DOLP transform is defined in the first section of this chapter so that the reader is aware of the
motivation for the problems addressed in later sections. After the transform has been defined and Its
reversibility demonstrated* the form of the hand-pass impulse response that results at many sizes will
be described. The computational requirements of the DOLP transform will then be examined. The
DOLP transform is shown to require Of NT) multiplies for an N point signal of one or two dimensions
md produces O( N Log(N) ) result data points. It is then shown that the DOLP transform can be
computed using resampling with a reduction to CKN LogfN)) multiplies and O(N) result data points.
This is followed by a discussion of the degradations in frequency and position resolution that result
from such resampling* Chapter 6 will pre&eiu the sampled Difference of Gaussian (DOG) transform,
a two dimensional implementation of the DOLP transform that exploits a property of Gaussian
ftinetitms to produce a form of sampled DOLP transform in O|n| computations.

Nutation:

The set of symbols which arc defined below me used extensively in the next two chapters* Filters
have an index variable, L The fitter's radius is determined by the product of the smallest radius* Rm

multiplied by a scafc factor, S, raised to the k^ power. Thus the radius of the fft filler Rfc is givca by

Rk s R, S1

I Mwjus* <md Kmu/pa^s *tp:S* Si+A) lu%c ihis vuhs;npt tn which d e n u c s the filter with which the

^m:i mh hcen :a ? y«^Hi i fci>: kf* }a**pas» signal and hj?id-pa% signal arc ^^meismes referred to as

I "he !X^I P jrjr.*f..?rn; dcutvx^ri ,<vp:^\ to ^vgiu'A -inJ ullQts cf jn> dimziv^imMly* Flic space

viriJrrtev $i,}j y'ijT vgn*i:\ IT^U \\u?\ &t ^vfivzima ;n ^,m£ ^:IH??2S IO ^mphf> notation. This
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Let us start with the definitions:

p(xy): The input signal defined for 0 < x < N, 0 < y < M. In all the examples below N = ML

gk(x,y): A finite low-pass filter of radius Rk, which has been normalized so that the sum of its
coefficients is 1.0. For a 1-D filter, radius is the half width.

RQ: The radius of the smallest filter with a useful frequency reponse, go(x,y).

S: A Scaling Factor; typically V ? or 2.

LAx,y)\ low-pass signal at level ft.

^k(x,y): band-pass signal at level ft.

bk(x,y)\ The band-pass impulse response (filter) of radius Rk.

X' The number of coefficients in the ft* band-pass filter.

K\ rfhe level at which the size of b^(x9y) exceeds the size of p(x,y), {XK > N2 for two dimensions)

Size Scaling:

The DOLP transform is based on a set of filters which are size scaled copies of a discrete function.
For purposes of the following discussion, assume that the low-pass filter is defined by a continuous
function that has infinite duration and approaches zero asymptotically. Furthur-more, assume that
this function is sampled over a fixed interval of its range. Thus the radius of each scaled copy, Rk,
actually defines the number of discrete samples which are obtained over the finite interval. This
permits us to discuss the scale of a filter in terms of the filters' radius.

5.1 The DOLP Transform

This section defines the DOLP transform. The DOLP transform separates a signal into a set of
band-pass components with exponentially spaced center frequencies. rDicsc band-pass components
may be formed by convolving the signal with a set of band-pass filters which are size scaled copies of
a single prototype filter. These filters are all formed by subtracting a low-pass filter from a copy of
itself which is smaller in size by a factor of S.

The operations of convolution and subtraction are commutative. Because each band-pass filter is a
difference of two low-pass filters, there arc two obvious equvalent methods for computing a DOLP
transform:

1. (The Direct Method) Form the set of band-pass filters by subtracting each pair of low-
pass filters, and then convolve each of these band-pass filters with the signal. This method
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is illustrated in figure 5-1 below. If reversibility is desired the signal must also be
convolved with the largest low-pass filter.

2. (The Difference Method) Convolve the signal with each low-pass filter, and then subtract
each low-pass filtered signal from the low-pass signal formed from the next larger low-
pass filter. ITiis technique is illustrated in figure 5-2.

bo(x,y)

•*bt(x,y)

Ba(x,y)

B,(x,y)

• > BJxfy)

'*b3(x,y) - > B3(x,y)

• > Bv(x,y)

Figure 5*1: Direct Method for Computing a DOLP Transform

The direct method is the simplest to describe. For the DOLP transform as described in this section
it is also the most efficient to compute, as it avoids the subtraction step required by the difference
method With the difference method, however, it is easier to illustrate the reversibility of'the DOLP
transform Furthermore, in the next section we describe a fast algorithm for computing the
convolution with the sequence of low-pass signals. The following is a definition "by construction" of
the IX)LP transform. For each level, we define the band-pass filler, describe the direct method, and
then define the difference method. Reversibility is shown at each level using the low-pass signals.
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*9o(x,y)

*9,(x,y)

BJx,y)

B, (x,y)

B-(x,y)

B3(x,y)

V

Figure 5-2: Difference Method for Computing a DOLP Transform

Level 0

The impulse response (coefficient array) for the level 0 low pass filter is go by definition. The level
0 band pass filter, b o , has an impulse response of

The level 0 band-pass signal, ?bo, also known as the high-pass residue, is computed by the
convolution7

With the difference method, the level 0 low-pass signal, JL o, is computed by

In this and all subsequent convolutions we assume that some boundary value is supplied so that every JL. and S , will
have the same duration as p.
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The level 0 band-pass signal, S o , is then formed by the subtraction

a 0 A p - J L 0 = p - ( p * g o ) = ( l - g D ) * p

Note that p may be recovered from ̂  and i*0 by

/> = 3 0 + £ 0 = / > - ( * * & ) + (/>*&>)

Some readers may note that for two dimensional signals, the operation producing the high pass
residue is known as unsharp masking, and is sometimes used for edge detection.

Level 1

The level 1 low-pass signal, JL, is obtained by convolving low-pass filter g. with p . The low-pass
filter g1 is defined as a copy of filter go scaled larger in size by a factor of S.

The impulse response for the level 1 band-pass filter, b p is

b2 = g* - gj

In the direct method, the level 1 band pass signal, 3^, is formed by the convolution

The difference method requires computing the level 1 low-pass signal, Ly

The level 1 band-pass signal may then be formed by subtracting the level 1 low-pass signal from
the level 0 low-pass signal.

Note that the original signal may still be recovered by

Levels 2 Through K

The low-pass filter at any level k, is a copy of the level 0 low pass filter, go% scaled larger by a fetor
of y/l\ As with level 1, the band-pass filter for level k is the difference of two tow-pass filters

Thus for aay level, k, the band-pass signal, %r may be computed by
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With the difference method, low-pass and band-pass signals at level k may be formed by

and

As with level 1, for any Kthe original signal may be recovered by
K

^ % (5.3)
k=0

At some level (value of k) the size of the low-pass filter will exceed the size of the finite signal.
Beyond this value of k the band-pass signals contain no new information about the signal. This level,
K, is thus chosen as the level at which the transform is halted. Thus the DOLP transform produces:

%0: The high pass residue.

35. for 1 < k < K: The band-pass signals

and

LjA A low-pass residue.

Reversibility proves that no information is lost by the DOLP transform.

5.2 The DOLP Transform Parameters

Implementation of this transform requires choosing:

g(x,y): The low-pass filter and its parameters

Ro: The radius for the smallest filter, go(x,y)\ and

S: The scale factor.

The low-pass filter g(x,y) and its initial radius Ro must be chosen with regard to how well the
band-pass filters, bk = gkJ - gk meet the requirements for describing non-periodic signals, described
in chapter 4. If rc-sampling is used in the DOLP transform, the low pass filter and its parameters
must also be chosen so that a minimum of aliasing results from the resampling. This generally
involves trading off transition widtli (AF) and stop band ripple (S) against processing time.

The scale factor, Sf governs the bandwidth of bk(x*y) and the frequency resolution of the
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transform. Since maximizing the frequency resolution also minimizes the degradations to the size
invariance (see section 4.3), the choice of S governs the trade-off between degradations to size
in variance and the cost in terms of processing steps and memory. However, if re-sampling is used, S
must be one of the naturally occuring re-sample distances on the original sample grid, as was
described in section 4.3.

5.3 Complexity of the DOLP Transform

In this section we examine the computational complexity of computing a DOLP transform with
the direct method. This analysis shows that the direct method requires 2 N~ multiplies and adds to
produce the N Logs(N/X0) + N samples in the DOLP transform.

The DOLP transform is based on a set of size scaled copies of a low-pass filter, gk(x) (or in the 2-D
case gk(x,y)). The scaling relationship between the filters is defined by an exponential relationship
for the radii, R^.

Rk = Ro Sk (5.4)

where Ro is the radius of the smallest low-pass filter. This relationship may also be expressed
recursively as:

Rk = R H S (5.5)

The band-pass filters, bjx) orbk(x,y), are defined by the difference of two low pass filters.

b^x) = g ^ x ) - g^x) for k £ {0,1, 2,..., K}
where g.i(x) = 1

Thus the radius for each band-pass filter"is given by equation (5.4) or equation {55).

5.3.1 Number of Coefficients for Each Filter

As the first step of complexity analysis, let us examine the number of coefficients in the band-pass
filters used in a 1-D DOLP transform and in a 2-D DOLP transform.

53.1.1 One Dimensional DOLP Transform

Let S1 be the scale factor used in a 1-D DOLP transform. A typical value for S1 would be 2. The
number of coefficients, Xk, for the Ith bandpass filter is given by:

Xk = 2Rk + I (5.6)

By substituting equation (5.4) into equation (5.6) we get the exponential relationship:

Xk = 2 R 0 S j + l m (5.7)

This sequence can be solved to arrive at the relationship:
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(5.8)

For all k such that S* > Xo we can simplify the mathematics by replacing equation (5.8) with the
approximation:

(5.9)

5,3.1.2 Two Dimensional DOLP Transform

Let us denote the scale factor for a two dimensional DOLP transform by S2- When resampling is
used a typical value is S2 = V2 (See section 4.3).

As with the 1-D filters, the 2-D filters are defined to have the relationship between radii given by
equations (5.4) and (5.5).

The 2-D band-pass filter, bk(x,y), is defined to have non-zero coefficients over the disc:

x2 + y2 < R2

This disc is bounded by a square of sides 2 Rk + 1. The number of non-zero coefficients, Xk, may be
approximated by

Xk = * R k

Plugging equation (5.4) into equation (5.10) gives:

This can be solved to yield:

(5.10)

(5.11)

(5.12)

Thus for each increment in k, the number of coefficients of the filter increases by a factor of S1 for
a one dimensional filter or a factor of S2 for a two dimensional filter.

5.3.2 Computational Complexity

This analysis of computational complexity and memory requirements applies to both the 1-D and
2-D DOLP transforms. In the 1-d case, let:

S = Sx and Xo = 2 Ro + 1

For the 2-D case let:

S = S2 and Xo = w R^

Assume that we have a signal with N samples, (1-D or 2-D) and that one convolution inner-
prcxluct step is to be computed for the filter centered over each of the N samples. This assumes thai a
default boundary value is supplied when the filter coefficients fall over the edge of the signal. Thus
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each convolution produces N sample values as its result. Also, assume that the smallest low pass filter
with a reasonable stop band has Xo coefficients.

The first filter, which produces the level 0 or high pass residue has Xo coefficients. Thus there are
N inner product steps, with each requiring Xo multiplies, fora total of X0N multiplies.

For each level, k, from 0 through K, the filter has: XoSk coefficients. Thus the total number of
multiplies, denoted C (for cost), is given by:

C = XON(1 + S + S2 + . . + SK)

= X0N(I]sk)

= X O N ( S K + 1 - 1 ) / ( S - 1 )

For the typical values of S1 = 2 and S2 = x/T, S will have a value of 2.

For S=2, we can make the approximation:

S - l

Thus our cost becomes:

C ^ X 0 N S K + 1 (5.13)

The largest filter in this sequence has an index, K, chosen such that it is the smallest integer for
which:

X O S K >N

Plugging this into our cost formula for S=2 gives:

C ^ S N 2

Since there arc K+l filters and each filter produces N sample values, the total memory
requirement, M, is:

Since X0 S
k s N then the number of levels, K, is:

Thus our total memory cost is:

M ~ N Log^M/XJ + N (5.14)
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5.4 The Form of the Band-Pass Filters

Section 5.1.1 described forming band-pass signals by subtraction of two low-pass signals. Because
convolution and subtraction are both linear operations, they are associative. Thus in the case of the
band-pass images:

Thus the DOLP transform may be computed as either a difference of low pass images as described
above, or by precomputing the coefficients of each band-pass filter and then convolving each band-
pass filter with the signal. In fact, the latter process saves the subtraction step, and so is less
expensive. However in chapter 6 we describe a fast version of the DOLP transform in which the
computational complexity is reduced by using each low pass signal L^ to produce the next low pass
signal JLk+1.

In chapter 7 a description technique which uses peak detection will be described. The use of peak
detection for describing band-pass signals requires a constraint on the smoothness of the band-pass
impulse response (as described in section 4.2) as well as on its transfer function. In this section we
show how the low-pass filter employed by the DOLP transform must be constrained to produce a
band-pass filter which meets the constraints described in section 4.2.

This discussion is illustrated with one dimensional filters: b(x) and g(x). For two dimensions, the
filters should be circularly symmetric, so that response is not dependent on orientation. The variable
x may then be replaced by a radial distance to the center, r, at any orientation. The transfer functions
of the filters are denoted as:

and

5.4.1 Space Domain Constraints

The smoothness of the band-pass impulse response is obtained by constraining the low-pass
impulse response to three alternations, or changes in sign of its first difference* The reasons for this
constraint are described in section 4.2.5. These alternations should occur only at the boundaries of
the low-pass impulse response and at its center as shown in the following figure.

The band-pass impulse response*

which has a radius of Rk , = R^S = ROS^+ *, will then have 5 alternations as shown below. Two
of these arc at the outer edges* x ~ R^ labeled A* and Ay Two alternations, A2 and A., will be at
approximately x = J?, t where the first difference
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, T 1 LLLI
Figure 5-3: Pcrmissable Alternations in Low-pass Filter
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and of course, one at the center, A,, where x=0.
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5.4,2 Transfer function Constraints

a)) increases its
ic !cw:s ^mmMy, H i s rcquirw
!icr h;?^ a ^ndc peal, and be



58

Both low-pass filters are normalized so that they have a gain of 1.0 at DC (<o = 0).
subtraction and the transfer function are both linear operations, they are associative. That is:

Since

Thus the difference of such normalized filters will have a DC response of 0. This will guarantee
that there is no reponse by a filter when it covers a region which is entirely uniform. Both low-pass
filters should have a single peak at DC and monotonically falling pass and transition regions, as
shown below in figure 5-5.

Single Peak

TT

Figure 5-5: Transfer Function G(«)

This will guarantee that the low-frequency side of the band-pass filter transfer-function pass band
is monotonically increasing. The peak frequency of the pass band, <o0, will occur somewhere before
the negative minimum of the first ripple of the larger low-pass filter's transfer function. It occurs at
this minimum for large values of S ( S > 2 ) and at lower frequencies for smaller S. Since this should
be the first alternation in cither low-pass transfer function (after the DC alternation) there should be
no problem maintaining monotonically increasing response on the low frequency side of the peak
frequency.

A local peak will occur in *) for each interval in which

da do)

This is the source of the peak response of Bk+1(w) at <o0. However such a peak must not be
permitted any where else in the pass or transition regions of Bfe + jfco). Otherwise, the size invariance
of the description will be corrupted as a result of the filter having more than one peak response as the
size of an object increases. The regions where this could happen arc where the ripples in G. + 1 (» ) go
through a zero crossing from positive to negative. Thus we must guarcntee cither:
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(JL)

Figure 5-6: Difference of Low-Pass Transfer Functions

- That the second zero crossing from positive to negative at O^ ^co) occurs outside the
transition region of Bk + 3(0)) or,

That the derivative 3 G
the same co.

. J u near this zero crossing is smaller than 3 Gk(o))/ 3co at

For S < 2, the first criterion is met for most low-pass filters that meet die space domain criteria.
For larger values of S, if the first criterion is not met, the second may be achieved by adjusting the
stop band ripple magnitude, 5.

5.5 The Re-Sampled DOLP Transform

In this section we describe the re-sampled DOLP transform. In this version of the DOLP
transform the convolution *lnner product steps** are computed at a set of re-sample points.8 The
distance between these re-sample points is a fixed fraction of the filter impulse response.

In this section we show that such re-sampling cancels the growth in computational cost that occurs
in the DOLP transform as a rcsult of the exponential growth of the number of filter coefficients as k
increases. This occurs because the distance between samples grows by the same scale factor as the
impulse response size The result is a form of DOLP transform which may be computed in 0 ( N

) multiplies. We also show that the storage cost is rcdiced by rc-sarapling to 0(N) (For

Fhis B equivalent to raoinpllfif the filtered image thai results from cadi convolution.
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5.5.1 Re-Sampling

The family of band-pass functions employed in the DOLP transform have a high frequency stop
band. For each increment in the filter index, k, the low frequency edge of the stop band moves lower
in frequency by a factor S1 for a 1-D signal or S2 for a 2-D signal.

Because each filter has a high-frequency stop band it is possible to save a significant amount of
storage and processing cost by computing each convolution at a set of resample points. That is, when
computing the convolution

&2(n,m) = b/x,y) * pfti^m)

the inner product step of the convolution need only be computed for the filter centered over the
points along every other diagonal as shown by the boxes in figure 5-7 which is a reproduction of
figure 3-1 of chapter 3. A two dimensional form of the Nyquist sampling thereom can be used to
show that virtually no information is lost; The value of the convolution at the omitted sample points
can be recovered by interpolation.

© • © • © • ©
© • © ©

©
© • ©j_© • ©

©
© • © • © • ©

• © • © • © • ©

Figure 5-7: Example of Sy/^lpfcy)] and S2[p(x,y)I
From Figure 3-1 of Chapter 3

In addition to the savings in computational cost and storage, the re-sampling used in the DOLP
transform is fundamental to the quasi-sizc invariance of the representation for images based on the
Sampled DOLP transform described in chapter 7.

5.5.2 Complexity of the Sampled DOLP Transform

In this subsection we describe the re-sampling in the sampled DOLP transform, and derive its
computational cost and memory requirements.

As before, assume that we have a one or two dimensional signal composed of N samples, and that
default boundary value is provided for the case when the filter coefficients fall over the edge of the
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signal Also, assume that the smallest band-pass filter has Xo coefficients and that the filter sizes are

related by a scaling factor, S, by:

As in section 5.4, this analysis of computational complexity and memory requirements applies to

both the 1-D and 2-D DOLP transforms. In the 1-d case, let:

S = S1 and XO = 2RO + 1

For the 2-D case let

S = S; and Xo = w R £

The filter for k = 0, bo(x) or bo<x,y), ts a high-pass filter. Convolution with this filter can not be
resumpled. This filter has Xo coefficients and so requires XON multiplies and produces N result

sample points,

The filter for k = I is a band-pass filter, its pass band is contained in the original Nyquist boundary
of the signal and so its convolution with the image also cannot be rcsamplcd without causing
distortion due to aliasing. This filter has SX0 coefficients so its convolution requires SX0N multiplies
and produces N result sample points

The filler for 1 = 2 is a scaled copy of the filter for k = l . Its pass-band h within a new Nyquist
boundary «alcd lower ie frequency by a factor of S, or Sv The convolution of this filter with the
image can be rcsamplcd at points separated by a distance of Sj or $2» ^ o l c ^ a t "m ^ i e 2-D case,
re-sampling at a distance of S^ reduces the number of samples by a factor of S = S^ There arc thus
N/S points at uhich the convolution inner product mp% must be computed. Since this filter has
SAX» cKflktcnts, ihc convolution recjplrcs SX0N m«!tiplic$ a id produces N/S sample values.

h% described in section 43 , the smallest naiurali} occunng rcsamplc disiaecc for a 2-D cartesian

grid is V 2 . Unless the signal t% interpolated before the convolution. S^ is constrained to be one of

Ihc naturally occunng rcsaropie distances, lints in the ab^nce of interpolation, the smallest poslble

S^ for a 2-1) Samp!ci IXX.H m V2» For Sn « v T , this itsampling consists of computing the

cun^olumm tnmt products with the filler centered at puimu along every other iiagon^ as shown by

the spares in figure 5*5.

S;nriSaji>, $12 fuut far k = 3 h#» S:'XS coefficients ard is a cop> r»f the filter for k = 1 scaled lower

m frcquciv:) hv ,:i factor vf Si v-t S: Ifus she ovru^ijtum unh lliss filler mav ne cornpyf^d at

r^^mp]2 ^niifs tttacr* aiz ^rpura?c*i h> a distance us" Ŝ : or S\ This \idds resjsnpkd comolution

reau^csSA^N-S -• S v \ 0 ^ jn^iliphtr^ i i>.̂ result jcuuiresN/V Muragee

Ht the 24) can^*1:^ ^?d. **ft S* = \ 2 thi% rj^arnp!?^?: ^mouRis U) compudng an inner

k, r; -r;^:«c ^ :!u *iurr^*r :̂ ' c-viAw^nts !rr*n: -<Jlmz :s e i^ i ly offset

vr^cvn ^rft ?•':'->'£->-**£> ~*.<\. I 1 ^ ;T^^puL;u*Ta5 U-M is thus the
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same for every band-pass filter for k e {1,2,3 K}. Given that there are K = Logs(N/Xo) band-pass
filters that require SX0 multiplies, and one high pass level, k = 0, that requires XON multiplies, the
total cost C of the Sampled UOLP transform is:

C = S Xo N Logs (N/Xo) + XON

The number of sample points produced by each convolution decreases by a factor of S for each
increment of k from k = l to k = K. Thus the storage requirement, M, for the Sampled DOLP
transform is:

M = N ( 1 + 1 + 1/S + 1/S2 + 1/S3 + ... + 1/SK)

(1 S~K1)
q—) Storage elements.

Note that

^ N
ss31

for

-> r

(1
M

(i-s-1)
S = 2,

-N 1 " °
1-1/2

+ 2)
storage elements.

S.5.3 The Effects of Re-sampling on the Representation

As described in section 3.3, the distortion from re-sampling (and subsequent loss of information in
the description) may be minimized by minimizing the signal energy outside of the nyquist boundary
defined by u, v | < ^r/SR, where u and v are the spatial frequency variables and SR is the distance in
pixels between the new sample points. This analysis tells what information could be recovered by
interpolation. However, a peak detection algorithm will be employed to describe the transform.
Re-sampling introduces an uncertainty in the location of peak. That is, when a peak is detected in a
re-samplcd signal it may actually have occurred anywhere in the interval bounded by ( x±SR, y±SR).
If the sample interval is a constant fraction of the size of the impulse response at each level then die
unccrainty of a signal's position will always be the same fraction of its size. More accurate position
information may be obtained from the description of the object's boundaries, which is at lower levels
in the transform.

Ideally we would like the configuration of peaks that describes a signal to be invariant to the
signal's position. However, as a peak moves from one sample to the next, there is a point at which
two adjacent samples will have the same peak value as shown here in 5-8.

The frequency of occurcncc of such double peaks is dependent on the number of bits used to
represent each sample and on the signal amplitude. Double peaks occur most frequently when the
signal amplitude is small.

This randomness is also present in the relative position of peaks at adjacent levels as shown in
figure 5-9,

1
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Peak

T

Double Peak

Peak Makes Discrete Jumps as Object Moves to Right

Figure 5-8: Location of Peak Sample as Signal Moves to the Right

Level k

Level k-1

Figure 5-9: Uncertainty of Position of Peaks at Adjacent Levels

A peak could occur with equal likelihood at any of the positions directly under the higher level
peak. Thus any matching rule for graphs of peaks from this transform must accept a peak at any of
the three positions as a match.

5.5.4 Sampling in Frequency

Each level of the DOLP transform represents an ensemble of samples at a particular spatial
frequency range. The center frequencies of the band-pass levels are at discrete, exponentially spaced
intervals. ITie problem of choosing the step size for the center frequencies is discussed in section 4.3.

As with spatial sampling, this frequency sampling defines the resolution in frequency of the DOLP
transform. H i s translates into the changes in 'the size of signals that the transform can resolve. The
interval between center frequencies is given by the scale parameter, S. lliis parameter also defines the
band width of the individual filters. It ie smaller S is, the better the resolution in size (frequency).

A roughly uniform rcgion with a background of a different intensity results in a local maximum in
the three space, (x,y,£), defined by the transform. The level at which this peal occurs gives an
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estimate of the size of the region. Peak detection between levels produces an uncertainty in a signal's
size which is analgous to the uncertainty in the signal's position. That is, as a signal's size increases,
the level at which the largest peak occurs will make discrete jumps. In this case, the size uncertainly is
bounded by the scale factor, S. That is, a peak at level k places the signal duration somewhere
between

:?*-l/2

< Signal Duration <

The result may be compensated for in a matching rule by permitting a stretching or contraction of
one of the signals by a factor limited by S i / 2 and S 3 / \ The particular stretching may be determined
for a given signal by observing the distance betweeen landmarks in the description such as two peaks
at some level. Such landmarks for two dimensional patterns are discussed in chapters 7 and 8.
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Chapter 6
The Sampled

Difference of Gaussian Transform

An Efficient DOLP Transform
Based on Gaussian Filters and Resampling

This chapter develops an algorithm for computing the two dimensional form of the DOLP
transform in O(N) steps (where n is the number of picture points). This algorithm employs a property
of Gaussian low-pass filters to obtain a drastic reduction in the number of computations needed to
compute the sequence of low-pass images. This property is: when a Gaussian is convolved with itself
the result is the same Gaussian scaled larger in standard deviation by a factor of Vl.

The previous chapter defined a class of reversible transforms referred to as the DOLP transform.
It described how the 2-ID DOLP transform could be speeded up from O(N2) multiplies to O(N Log
N) multiplies, and its memory requirements reduced from O( N Log N ) cells to 3N cells by using
VT resampling. This subclass of the DOLP transform is referred to as the Sampled DOLP
transform.

It is also possible to speed up the DOLP transform by using an algorithm referred to as "Cascade
Convolution with Expansion" ITiis algorithm exploits the Gaussian auto-convolution scaling
property and an operation referred to as VT expansion. The "Vl expansion" operator is a mapping
of a function from a Cartesian sample grid to a V ? sample grid. Cascaded convolution with
expansion reduces the computational cost of a DOLP transform from O(N~) multiplies to O(N log N)
multiplies. Because this algorithm is based on properties of the Gaussian function the DOLP
transform which it produces is referred to as the Difference of Gaussian (DOG) transform.
Combining resampling and cascaded convolution with expansion gives a form of DOLP transform
which may be computed in CXN) multiplies. TTiis transform is referred to as the Sampled Difference
of Gaussian (SDOG) transform.

Chapter 7 shows how to construct a structural description of the contents of a grey-scale image by
detecting and Jinking peals and ridges in the SDOG transform of the image.

The Sampled Difference of Gaussian (SDOG) Transform is defined in this chapter. The Gaussian
function and its use as a finite impulse response1 low-pass filter arc examined. The computational
complexity of the SDOG transform is analyzed and shown to be 'CXN). Two approximations for
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scaling die standard deviation of a finite Gaussian filter by \Jl in standard deviation arc introduced:
The use of the auto-convolution of a finite Gaussian, and the use of an "expanded" Gaussian.

Section 6.1 describes Gaussian functions and filters and proves the the scaling property. Section 6.2
describes cascaded convolution with expansion. It then examines the effects of the expansion
operation on a low-pass filter. Section 6.3 defines the Sampled DOG transform by construction, and
shows that this transform requires 3X0N multiplies and produces 3N samples for an N sample
picture. Section 6.4 describes an experiment that gives the accuracy of the scaling obtained by
multiple convolution with a Gaussian kernel. Section 6.5 presents the impulse responses for the level
0 and 1 band-pass filters, and the transfer functions of the level 1 and 2 band-pass filters.

6.1 Gaussian Functions

Even with re-sampling, the DOLP transform of an image is a very costly process in terms of the
number of computations that are required. It is possible to reduce the computational complexity by
several orders of magnitude by exploiting the properties of Gaussian filters. In this section, the
Gaussian function and its properties are reviewed and the construction of 1-D and 2-D low-pass and
band-pass filters using Gaussian functions is described.

The Gaussian function is most commonly known in its one dimensional form

where: /i = The mean and
a = The standard deviation

The term 1/CT\/2TT scales the infinite Gaussian so that it has unit area.

For the discussion that follows, the mean will always occur at the origin (t=0), and so will be
omitted from the notation. In some of the discusion values such as or, which determine the specific
function, arc used as variables. In these cases these values arc included within the parenthesis to
simplify the notation. They are separated from the independent parameters of the function, such as x
and <o, by a semicolon.

The standard deviation, a, is the square root of the second central moment of the Gaussian
function, and thus defines its width. The zero mean Gaussian

•

has a Fourier transform
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6.1.1 Scaling by Auto-Convolution

The scaling property is easily deduced from the formula of a Gaussian fimction. It has been
observed by statisticians, and is used in Communications theory and Linear Systems theory to
describe the effect of repeated convolution. In this section it is employed to describe the effects of a
finite impulse response Gaussian filter as a kernel for cascaded filtering. This scaling property is only
strictly true for the infinite Gaussian function. For a finite Gaussian low-pass filter this scaling
property is only an approximation. The accuracy of this approximation is examined in section 6J.4
and 6.4.

The fast algorithm described in this chapter is based on the following property of Gaussian
functions:

Gaussian Scaling Property:

A Gaussian function convolved with itself yields a Gaussian function whose standard
deviation (width) is \fl larger than the original function.

Proof:

The convolution:

1 P - t 2 / 2g 2 ^ * p- t 2 /^

may also be expressed as the product of Fourier transforms

whose inverse Fourier transform is

To get back to standard form then requires the substitution

a^ = 2a2

Thus the standard deviation, and hence the function width, have been expanded by a factor of
T. D

Note also feat the amplitude has been multiplied by a factor of 1/VT. Auto-convolution.
preserves the unit area normalization.
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6.1.2 Discrete Gaussian Filter

The Gaussian function may be used as a low-pass digital filter. When used as a filter the variance
<j2 is replaced by the ratio of a shape parameter, a, to the support radius squared, R2. This gives a
family of finite functions with different standard deviations for a particular radius. Adjusting the
parameter a permits a trade-off between stop-band ripple, 5, an transition width, AF, for the filter.
An experiment to determine the effect of a on this trade-off is described in appendix A.

The Gaussian is converted to discrete form by

R2

1. Making the substitution a = — , and
2 a

2. Sampling die continuous function at 2R + 1 points given by the discrete variable x, |x| <
R.

Implicit in this form is a multiplication by a 2R+1 point uniform window (or aperture or support)

1(x)^= f l f o r | x | < R
\ 0 otherwise.

This gives a space domain formula.

g(x;a,R) = Rcct2R+1(x) Q^2/R2

whose transfer function is

( ; , >
Sin(«/2)

Where the first term in the convolution is the Fourier transform of the support

M*L Sin(a>/2)

6.1.3 Two Dimensional Digital Gaussian Filter

Generalizing the Gaussian low-pass digital filter to two dimensions can be accomplished by
substituting the radial formula, x2+y2, for the distance variable x2. In addition, the finite support
must also be generalized to two dimensions, which presents a choice. The two dimensional support
may be the square

s(x,y;R) A f 1 for |xf < R, (y) < R
\ 0 otherwise

which is separable and has a transfer function [Oppenheim 75]

Sin(ii(2R+1)/2) Sin(v(2R +1)/2)

Sin(u/2) Sin(v/2)

Or it noay be the disc
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c(x,y;R) = f 1 for x2+y2<R2

\ 0 Otherwise

which is circularly symmetric and has a transfer function [Papoulis 68]

where JL(*) is the first order Bcssel function.

The Gaussian is the only two-dimensional function which is both circularly symmetric and
separable into one-dimensional components. This property can be used to speed up two-dimensional
filtering with a Gaussian by replacing convolution with a (2R-+l)x(2R + l) filter by two convolutions
with 2R + 1 point one-dimensional filters ( one for each dimension). This requires 4R + 2
multiplications for each picture point instead of 4R2+4R + 1 multiplications. However, this savings
can only be obtained by defining the Gaussian over a separable support, such as s(x,y;R).9

Unfortunately, the square support focuses the stop-band ripple of die filter along the u and v axes,
lliis gives a non-circularly symmetric transfer function and a larger worst case stop-band ripple than
for the circular support. The stop-band ripple must be minimized if the filter is to be used with
re-sampling in order to minimize the maximum aliasing error.

For the experiments described in this dissertation, circular symmetry and the best possible stop-
band performance were judged to be more important than the computational savings. However, in a
real system, it may be worthwhile to accept some degradation in order to gain a significant savings in
processing speed.

The implementation described in this chapter and used for experiments in constructing a
representation is based on the Gaussian filter with circular support:

Whose Transfer function is

G.(u,v) =

In the examples given in this dissertation, the parameters R=4.0 and a = 4.0 were used for the
Gaussian filter. These values were obtained by an experimental procedure described below in
Appendix A.

To control the filler gain, the filter coefficients are normalized so that they sum to 1.0. This is done
by summing the coefficients and then dividing each coefficient by the sum.

9
Although any uniform rectangle is a separable support, the uniform square has the least effect on the circular symmetry of

the filter, Section 4,2 clembes the need for circular symmetry in the fillers used in a DOLP transform
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The following figures show the impulse response, go(x,y) for R=4, a=4.0 and a plot of its transfer
function.

,

.001488
.003150 .006669 .008564 .006669 .003150

.003150 .010996 .023278 .029890 .023278 .010996 .003150

.006669 .023478 .049280 .063276 .049280 .023478 .006669
.001488 .008564 .029890 .063276 .081248 .063276 .029890 .008564 .001488

.006669 .023478 .049280 .063276 .049280 .023478 .006669

.003150 .010996 .023278 .029890 .023278 .010996 .003150
.003150 .006669 .008564 .006669 .003150

.001488

Figure 6-1: Normalized Impulse Response go(x,y) for R=4, a=4.0

Figure 6-2: Transfer Function Go(u,v) for R=4, a = 4

In figure 6-2 and all other transfer function plots, the transfer fiinction was evaluated over a 64x64
floating point array representing the Nyquist region -w < u,v < m. Because the filters have zero
phase, the imaginary part of the function is identically zero. Thus only the real part is plotted. The
values were scaled so that the maximum would extend full scale on the plot. Linear interpolation was
used to obtain the value between sample points. The range from 0 to maximum response (1.0 for
low-pass filters, =0.25 for band-pass filters) is represented by 40% increments at 2045 dots/inch.

J
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6.2 Cascaded Convolution with Expansion and Resampling

In this section we introduce a fast algorithm for computing the 2-D Sampled DOLP transform
with Gaussian low-pass filters. This algorithm, referred to as "Cascaded Convolution with
Sampling", is based on the convolution scaling property of Gaussian filters, die Vl expansion
operation and resampling. In this algorithm, the image is filtered, re-sampled at VT, and then
filtered again with a filter that has been expanded out to the sample grid of the re-sampled image.

In chapter 5 it was shown that a DOLP transform could be computed by 2 methods:

I. Convolution of the image signal with a sequence of size-scaled low-pass filters followed
by a subtraction of each low-pass signal from the next. L e.

2. Convolution with an exponentially size-scaled set of band-pass filters which are formed
by subtracting size scaled low-pass filters, i. e.

This fast algorithm is based on the first of these two approaches. That is the computation cost is
reduced by computing each JL from JL ,. As is shown below tills computation may be done by
convolving the filter g0 with JL 1 k times, or by a single convolution with a version of the filter g<>
which has been expanded by Vz k-1 times. That is,

Although this expanded filter covers an area which is VT k larger than go, it has Xo cocficicnts just as
g0 does. Thus a set of low-pass signals with an exponential scries of impulse response sizes can be
formed with cost which is the same for each low-pass signal.

This section is mainly concerned with the effects of the y/l expansion operator. A form of DOLP
transform based on cascaded convolution with expansion is first introduced to isolate the effects of
cascaded convolution and expansion from those of resampling. The effects of the expansion
operation are then examined.

The impulse response of the level 0 low-pas signal, £ o , is go(x,y) by definition. At level 1 the
desired impute response is gjfoy) as described "in section 5.1. The Gaussian soling property,
described in scrtion 6.1, shows that if gl0(x,y) is a Gaussian filter, the level 1 low-pass filter impulse
rcponse can be approximated by

In a Sampled DOLP transform, for each level above level 1, both the impulse response and the
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unit sample distance, SR, are to be scaled in size by an additional factor of \fl. This section
describes how this sequence of low-pass signals can be formed by repeatedly re-sampling and then
convolving with the same filter expanded out to the proper sample grid. The motivation for this
algorithm is a great reduction in computational complexity in acquiring the sequence of sampled
low-pass signals needed to form a Sampled DOLP transform and its description.

6.2.1 Cascaded Filtering and the VlF Expansion Operation

The cost of computing the DOLP transform without resampling can be reduced from O(N2)
multiplications to O(N log N) by using the Gaussian scaling property and the \fl expansion
operation (defined below).

Let us consider the use of the Gaussian scaling property for forming a DOLP transform without
the use of V2 expansion or resampling, in this version of the DOLP transform the low pass image at
level k is formed by 2*k"1* convolutions of the low pass image at level k-1 with the kernel low pass
filter go. Thus the level 1 low-pass filter impulse response, g,, is approximated by

% - go * So

and the level 2 low-pass filter, gr is approximated by

g2 ss go * g o * go * go

For each additional level, the number of convolutions with go doubles.

6.2.2 Cascaded Convolution with Expansion

The exponential growth that results from cascaded filtering can be averted by expanding each
low-pass filter onto a sample grid which is a V? larger before the convolution to produce the next
low-pass level. This expansion operation scales the low-pass filter impulse response larger in
standard deviation by \ / 2 \ but it also introduces reflections of the low-pass transfer function in the
corners of the Nyquist plane, -w < u, v < *r. The kernel filter can be formed so that these
reflections fall over the stop region of the kernel filter and are thus greatly attenuated, as shown in
section 62.4 below.

Cascaded convolution with expansion can be used to compute a DOLP transform that is not
resamplcd in O(N log N) multiplies. 'ITiis complexity may be arrived at by the following reasoning.
The VT expansion operation does not change the number of coefficients in the filter. Thus each
low-pass image may be formed from the previous low pass image with the same cost in multiplies.
The cost of each convolution is Xo N multiplies where Xo is the number of coefficients in the kernel
filter and N is the number of samples in the image. Since the impulse response scale grows
exponentially, there arc O(Log N) low-pass images. Hence the cost of cascaded convolution with
expansion is O( N Log N ) multiplies. This expansion operation and its effect on the transfer
function of a Gaussian low-pass filter is examined in the following Subsections*
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6.2.3 \/2f Expansion and Resampling

In this section we consider the expansion operation in the context of the use of cascaded
convolution and resampling. The VT expansion operator is a convenient way of scaling a Gaussian
low-pass filter by a factor of V5\ When images are resamplcd, expanding the filter onto the same
sample grid automatically gives the expansion operation.

The \fl expansion operation maps each row from a filter on a cartesian sample grid into every
other diagonal. This mapping takes each coefficient from point (x,y) of a filter g(x,y) and places it at
point (x-yjc+y) of a filter g2(x2,y2). Points of g2(x2»y2) which receive no coefficient under this
mapping are declared to be undefined.

Let us define this mapping as the function E^/r-f]. Since

= x - y
= x + y

we get

and

y = _£_:

So that this function may be defined by

2) = f g((-v
\ Undcfi

E^[g(x,y) | A g ^ x ^ ) = [ g((-x2+y2)/2, (x2+y2)/2) For ^ Mod 2 = y2 Mod 2
Undefined otherwise

Where A Mod B Is the remainder of A/B. This mapping is illustrated by figure 6-3. This figure
shows the correpondencc between points in the mapping. The dashes ("-") illustrate the points which
are not defined in the new filter.

The algorithm for cascaded filtering with sampling involves repeatedly re-sampling. Each re-
sampling enlarges 'the actual smallest distance between samples by V5" and alternates the direction of
that smallest distance between ±45° and 0°,90*. For each convolution the distance between filter
coefficients must be expanded by VT as many times as the image has been re-sampled. For this, a
more general expansion operator is needed: E*/g7{.}. This more general operator expands 'the filter
to the same grid as an image which has been yl sampled / times.

When I is odd, the filter is mapped onto a grid whose axes arc ±45 , and whose smallest distance
between samples is 2in. The points on this grid are those at which

x2 Mod 2<l+ m = y j Mod 2f+ !>/2 = 0.

For even /, the expanded filter will be mapped onto a grid whose axes arc at 0° and 90*. The distance
between samples along these axes will also be 2i/2> The mapping HL/j/may be defined as:
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.(0,1).(2,2) .(2,D

.(0,0) .(1,0) .(2,0)

maps into

•(2,1)
.(1,1) - .(2,0)

.(0,1) - .(1,0) - .(2,-1)
.(0,0) - .(1,-1)

.(0,-D

Figure 6-3: Example of mapping given

For even /:

g,(x,y) = ( g ( - ^ k ) Forx1Mod2=0andy1Mod2 =0

Undefined otherwise

Forodd/:

Undefined Otherwise

For a circularly symmetric filter this mapping is equivalent to applying the following procedure
recursively / times:

E^yjt{.} Procedure:

For each point (x,y) at which the filter gM(x,y) is defined, define a new point in gfx,y)
at (x-y, x+y) and copy the value from g^(x,y) into the point

This is the procedure which was used for the experimental implementation.

6.2 .4 Frequency Domain Effects of \Pl Expansion

ITic V T expansion operator has a well defined effect on the transfer ftinction of its argument As
with Vl sampling a new Nyquist boundary is created which is a 45° rotation and a VT shrinking of
the old boundary. Inside this new Nyquist boundary is a copy of the old transfer function scaled
down in size by a factor of Vl. Outside this new Nyquist boundary is a reflection of the scaled
transfer function. ITiis is illustrated by figure 6-4 below, which shows the 3dB contour of a tow-pass
filter before and after the expansion operation. Figures 6-5 and 6-6 show actual plots of a Gaussian

d
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low-pass filter (R=4, a=4), before and after the expansion operation. Note the 4 lobes in the
corners of figure 6-6. These arc the reflections of the pass region. If these were to show up in the
composite filter they could cause a large stop-band response, which would add aliasing to the
transform because of re-sampling.

3dB Contour

E-

Figure 6-4: Effect on Transfer Function of E w j Expansion
Operator

{"} scales the size of the transfer function by VT so that it fits into the new smaller Nyquist
boundiry. That is

within w < | u+v j < w (The new Nyquist boundary)

Because the expamion opcratioii introduces a reflection about the new Nyquist boundary, there is
reason to be concerned about the stop-band error introduced by this technique. The stop-band error
is not a serious problem for the parameter values. R=4, a = 4 . The reflected energy from expansion
falls into the stop-band of the previous filter. That is, outside of the new Nyquist boundary,

will be very small (i.e. < -60 dB10 tor R =4, a=4) and thus the product

10, < 95 d i in the am of tie comer where ihc reflected nocks are present
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Figure 6-5: Filter Go(u,v) for R = 4.0, a = 4.0 Before V7 Expansion

Figure 6-6: Filter G o(u,v) After VT Expansion

will be very very small outside the new Nyquist boundary. Thus the impulse response at low-pass
level 2, JL2, which is desired to be g(x,y; a 2 = 2 a o ) that is, go(x,y) with its standard deviation scaled
larger by a factor of 2, is actually approximated by
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g(x,y; a2=2<r0)« S^feofay) * go(x,y)J •

Where S y ^ O is the %/f resampling operation which was defined in section 3.3 as

= f p(x,y) for x mod 2 = y mod 2
I undefined otherwise

Figure 6-7 is a plot of the transfer function of the level 2 low-pass filter. As can be seen the
response in the corners is so small that it does not register in this plot

Figure 6-7: Filter G,(u,v) for R = 40, a = 4 J

A logarithmic plot of the amplitude of G.,(u.v) « shown in figure 6-8. This plot spaas -120 db in
amplitude. The rate on the let marts off drops of -10 db. Noie that the response la the corner
region is well below -100 dB»

6*3 The Sampled DOG Transform

In this section me define the Sampled DOG transform by construction and examine fee
computational complexity and memory requirements. L'nlikc the similar sections in chapter 5 on the
I3OIP trcrafonn *md il?c Sampled DOI.P transfonn, in this section we arc concerned with only the

iivsnaJ vcj«Km of ihss aunsfnrm. Ms<>, because we use the Gaussian scaling property and
we are concerned only with a scale factor of, Ŝ  =

\s in *e ii!T*i!ar Aliens m riuplc? 5, the number d fWict coefficients for the 1e%eS 0 band-pas
fiher. Xo, s rented UJ Ac radius fcy:

\rx f:*::?: *::itzKd \ •* ,:r;. jift ^mp
li? ha1-*: \ swr

u.!:^ supplied as needed
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Figure 6-8: Plot of 20 Log10[G2(u,v)]
Scale (shown at left) spans -120 dB.
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6.3.1 Construction of a Sampled DOG Transform

The sampled DOG transform may be expressed by the data flow graph shown below as figure 6-9.
The number of points ( for an N point image) produced by each step are given in square brackets to
the right of each band-pass level.

As with the DOLP and Sampled DOLP transforms, the high-pass residue, S o , is formed by
convolving go with the image, p, to form Lo and then subtracting the convolution output at each
point from die sample under the center of the filter as it is computed. That is, the low-pass level 0
signal is given by:

K = go * P

and the level 0 band-pass signal is given by:

*o = P - A o

The level 0 impulse response is:

bD = l - g o

Note that when filters of different sizes are subtracted, it is implied that their centers are aligned,
and that undefined coefieients are treated as having the value zero. The filter, b0> defined above is
the same as that given in figure 6.12 below.

Computing S o requires Xo N multiplies and produces N sample points.

The low-pass level 1 signal is then formed by convolving go with the low-pass level 0 signal. Thus

I j = go * JLO

and

% = g» * go

During the convolution, the level 1 band-pass signal %l is formed by subtracting each sample

point of JLJ[ from the corresponding point of Jto.

and

This operation also requires Xo N multiplies and produces N sample points.

Since the level 1 low-pass filter transfer function has a pass and transition band that has been
designed to be inside a \/2* shrinking of the Nyquist boundary, it can be re-saniplcd at y/l. Thus,
only the samples along every other diagonal arc stored. The result is a low-pass signal,
which has N/2 sample points.
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Y

* g (x,y)

Y

* g (x,y)

Y

Y
Efg(x,y)}

Y

Y

l

E|g(x,y)}

A

(N)

b,(x,y) (N)

X
> ^(x.y)

(N/2)

(N/4)

(N/8)

Figure 6-9: Data Flow Graph for Sampled DOG Transform
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This sampled low-pass level 1 signal is then convolved with an expanded version of go to produce
JL2. Thus:

and

h = EVI^<>> * sVTte* * s°>

During this convolution, the level 2 band-pass filter is formed by subtracting each low-pass sample,
Jt2 from the sampled version of Ly

Thus the level 2 band-pass filter is given by:

Since SA/T {£]} has N/2 samples, this operation requires XoN/2 multiplies and produces N/2
samples.

The Sampled DOG process continues in this manner until the Xth level Thus the level 2 low-pass
signal, Lj is again sampled at a distance of VT, corresponding to a sample for every other column of
every other row of the original picture, p. This is a total of N/4 sample points. This resampled
low-pass signal is convolved with a twice expanded low-pass filter:

E2{gJ = E^j2{go} = E ^ I F y j {g0}}

to form the level 3 low-pass signal,

*3 = j ygo ) * s v r { i . 2 >

and

g3 = Ejfeo) * S^j{ EyjfeJ * Syjfeo * g J }

Thus band-pass level 3 is formed by:

and the level 3 band-pass impulse response is:

b3 = S VI * «2 > " < ¥«•> * S Vf * % »

Since S^/jflj} has N/4 samples, producing the level 3 band-pass signal requires XoN/4
multiplies and produces N/4 sample points.

In summary, for levels 2 through K we can state the following recursive formulae:

• StfiL^} (6.1)

j} (6.2)
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(6.3)

\ = «k-i - ( E VT* - " fe o } * Sfc-i) (6-4)

6.3.2 Computational Complexity and Memory Requirements

Producing each band-pass level, k, for the k-1* low-pass level requires Xo N/2k"1 multiplies, and
produces N/2k"1 samples. Thus the cost, C S D 0 G , of computing a Sampled DOG transform of an
image signal with N samples is:

CSDOG = X o (N + N + N/2 + N/4 + N/8 + ...)
» 3 Xo N multiplies

The total number of band-pass samples produced, M, is:

M = N + N + N/2 + N/4 + N/8 + ...
sr 3N samples

6.3.3 Comparison of Complexity with Filtering Using FFT

The Sampled DOG Transform is based on a filtering algorithm which we have named "Cascade
Convolution with Sampling". Any sampled DOLP transform could alternatively be computed using
the Fast Fourier Transform (FFT) algorithm. A Sampled DOLP Transform of an N point signal
(1-D or 2-D) could be computed using the FFT algorithm by the following steps:

L Prccompute the coefficients of the level 0 band-pass filter (high-pass residue) and the
level 1 band-pass filter. Evaluate the transfer functions of these two filters over N equally
spaced points in the nyquist interval. Since the level 2 through K band-pass filters are
size scaled copies of the level 1 filter, their transfer functions can be obtained from the
level 1 band-pass transfer-function by resampling, as described below. The cost of
computing these transfer functions will not be included in this complexity analysis.

2. Compute the Discrete Fourier Transform (DFT) of the signal using the FFT algorithm.
This requires N Log2 N multiplies for an N point 1-D signal or [M Log2 M]2 multiplies
for an N = M x M 2-D signal. Note that for this step alone is more expensive for:

L o g 2 N > 3 X 0 in the 1-D case, and

[ L o g 2 M ] 2 > 3 X 0 inthe2-Dcase .

3. For band-pass levels 0 and 1, multiply the DFT of the signal by the transfer function of
each filter. Each product costs N multiplies. For band-pass levels k=2 through k=K*
bolh the transfer functions and the DFT of the signal must be rc-samplcd to N/2
evenly spaced points. Kach re-samplcd transfer function is then multiplied by the
corresponding rc-samplcd DFl\ for a cost of N/2k" ! multiplies at each level The total
cost of these multiplies is then:
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N + N + N[l/2 + 1/4 + 1/8 + ...] = 3N multiplies

4. Compute the inverse FFT of each array. This requires

tN Log, N + 2_, (N / 2k'1) Log2(N / 2k'1) multiplies
k = l

= 2N Log2(N) + N/2 Log2(N/2) + N/4 Log2(N/4) + ...

= 2N Log,(N) + N/2[Log2(N) - 1] + N/4 [Log2(N) - 2]
+ N/8 [Log2(N) - 3] 4- ...

.,-£= 2N Log2(N) 4- Log2( N/2 + N/4 + N/8 + ...) - 2^ k N/2k

k = l

Tlie final scries term at the end converges to approximately 2N. The middle series, as we
have seen before converges to N, so that the cost of the inverse FFTs is approximately:

3N Log2(N) - 2N multiplies

Thus the total cost of using the FFT algorithm is:

Cpp,. ~ N Log2(N) + 3N + 3N Log2(N) - 2N :

ss 4N Log2(N) + N Multiplies

Recall that the Sampled DOG transform requires approximately:

C $ D 0 G a: 3 Xo N multiplies

Thus the Sampled DOG algorithm costs less whenever:

3 X 0 < 4 L o g 2 ( N ) - h l

For the 1-D case, XQ has a typical value of 9. Thus the Sampled DOG Transform is cheaper
whenever:

N > 2 6 5 = 90.5

For Circularly Symmetric filters in the 2-D case, Xo is typically 49. Also the cost of a FFT for an N
= M x M signal is [ M Log2 MJ2 multiplies, so chat the Sampled DOG Transform is cheaper in terms
of multiplies whenever:

4tLog2(M)f+l>3(49)
or

or
Log^M) > 6.04
or

fM- 65.86
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6.3.4 The Size of Cascasded Filter Impulse Response

As discussed above, the sampled DOG transform employs cascaded convolution with sampling to
produce a set of low-pass images whose Gaussian impulse responses are scaled larger in standard
deviation by a factor of VT from each level to die next. In chapter 5 this scaling was discussed in
terms of the filter radius. Cascaded filtering produces a set of impulse responses whose radii grow
faster than a factor of Vl.

The level 0 low-pass filter is defined over a disc of radius R o =4. When convolved with itself to
produce the level 1 low-pass filter it produces an impulse response which is non-zero over a disc of
radius 2RO. This is a property of the convoultion operation. At the same time, the standard
deviation of this impulse response has only grown by \ / T .

The convolution of two functions which are normalized to sum to one produces a function whose
values also sum to one. Thus the autocon volution of the Gaussian preserves its normalization to unit
sum. Since the auto-convolution has its unit sum spread out over a larger area, the coefficient values
are slightly smaller than the same coefficients for a unit-sum Gaussian filter which is computed by
scaling the R parameter by VT.1 1 The auto-convolved Gaussian filter has a larger tail and is thus a
closer approximation to the infinite 2-D Gaussian function.

The level 1 low-pass image is sampled at \ /T and so the low-pass filter must be expanded to the
same sample grid by the E ^ { } operator defined above. From a filter defined over a disc of radius
Ro, the expansion operator R w j {} produces a filter whose furthest coefficient from the origin is at
V T R O . That is, for a radius 4 filter, the coefficient from (4.0) is mapped into the point at (4,4).
When this filter is convolved with the level 1 low-pass filter, the result is a filter whose radius is Ro +
R0V2.

Each additional expansion of the filter will enlarge it in radius by a factor of VT and will add its
size to that of the cumulative impulse response. Thus the radius of the cumulative impulse response,
Rk, for the level k low-pass filter is given by the following formula:

= R,
n=0

This support radius grows much fester than the support radius

Rk = R

for a simple scaling of the function. This faster growth in support radius is advantageous; it provides
a low-pass impulse response at each level which is a closer approximation to the infinite Gaussian
function. Thus at each level the error in the auio-convoludon scaling that results from the finite
duration of the Gaussian filter is- reduced.

Il Note thai the two functions do have the same standard deviation.
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6.4 Verification of Scaling Approximation

Because the discrete two dimensional Gaussian filter defined in section 6.1 is defined over a finite
window, the scaling relation described in section 6.1.1 is only approximate for go(x,y). Described
below are three measures for the accuracy of this scaling for the approximation:

= 4\/2,a=4.0) ~g(R=4,a=4) * g(R=4,a=4)

6.4.1 Diagonal Method in Space Domain:

The easiest measure of the accuracy of scaling by auto-convolution is to compare the coefficients of
go(x,y) along the axis x = y to the coefficients of go(x,y) * go(x,y) along the x axis. These sample
points have the same ratio of distance from the center to total radius, and thus will have the same
value if the filter is exactly expanded by VT and is circularly symmetric. These data are shown in
table 6-1 below. The coefficients of go(x,y) are generated normalized to a dc response of 1.0. Their
auto-convolution also has a dc response of 1.0. The effects of this normalization were removed by
dividing each coeficicnt by the coefficient at 0,0, and this could be a source of small inaccuracy.

1 2 3

g
g*g
%error

0.7788
0.7768

025%

0.3678
0.3607
1.9%

0.1054
0.0952
9.6%

Table 6-1: Comparison of Filter Coefficients

It should be noted that the auto-convolution, go(x,y) * go(x,yX has a finite support that is a disc
with a radius of =r2R, as opposed to gx(x,y) which is defined over a disc of radius X/TR. Yet both
filters are normalized so that their sum is 1.0. For this reason the autoconvolution should be expected
to taper slightly faster than the scaled filter. The auto-convolvcd filter will actually be a closer
approximation to a Gaussian function.

6.4.2 Diagonal Method in Frequency Domain:

This method involves comparing values in the real part of the transfer function G(u, v; R=4,
ct=4) along the diagonal axis u=v to values of f{ g(R=4,a=4) * g(R=4,a=4)} along the axis
v=0. rITic distance to the origin is uVT for the points, from the first transfer function and u for the
second. The values arc shown for distances of u = nn/32 where n ranges from 1 to 16.

The maximum error shown by this method is 0*011 and it occurs at n = 9 and 10 or frequencies of
u = 9w/32 and u = 10v/32. As with the diagonal method in the space domain this comparison may
be sensitive to any circular son-symmetry in the filter. A larger source of error would be the
difference in nonnalization that occurs because of the larger support for the auto-con volvcd filter.
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G(u,v)
G(u,v) * G(u,v)

error
% error

0.982
0.982
0.000
0.00

0.931
0.932
0.001
0.10

0.852
0.852
0.000
0.00

0.750
0.752
0.002
0.26

0.636
0.639
0.003
0.46

0.518
0.523
0.005
0.95

0.414
0.412
0.008
1.94

0.302
0.312
0.010
3.20

10 11 12 13 14 15 16
G(u,v)

G(u,v) * G(u,v)
error
% error

0.215
0.226
0.011
4.86

0.146
0.157
0.011
7.00

0.095
0.104
0.009
8.65

0.060
0.066
0.006
9.09

0.037
0.040
0.003
7.50

0.024
0.023
0.001
4.34

0.016
0.013
0.003
23.07

0.012
0.007
0.005
71.42

Table 6-2: Diagonal Comparison Of Transfer Function Samples

6.4.3 Expansion Method:

The third technique for measuring the accuracy of the approximation was to form the two filters
go(x,y) * go(x,y) and E^/j{go(x,y)}, subtract the expanded filter from the auto-convolved filter, and
then compute the transfer function of this difference. A plot of this difference is shown below as
figure 6-10. This plot is dominated by the reflection of the center lobe from the expanded filter,
which is not present in the auto convolved filter. The idea behind this method is that within the
diamond shaped region, | u 4- v | < TT the expanded filter should be identical to a v T scaling in size of
the original filter.12 The transfer function to the third decimal place shows a number of circular
ripples within the region where the two filters should be the same. The largest ripple has a peak of
-0.012 which occurs over an arc of constant radius, spanning u,v = -9?r/32, -3?r/32 to -3TT/32^

~9TT/32.

Table 6-3 below shows the error values along the diagonal u = v for u = rm/32 for n € {1,2,3,...,16}.

The errors shown by this method are of the same magnitude, but not identical to those found by
the diagonal frequency domain method. In both measures involving transfer functions the error in
the approximation was found to be at most 0.012 ( out of 1.000) and this maximum error tended to be
at or near u2-hv2 =r 8?r/32, which is also the peak frequency, 6),, of the band-pass filter at band-pass
level L

The conclusion formed from these experiments was that the scaling approximation was accurate
enough for the finite filters formed using R = 4, a = 4.0, to permit its use in developing a
description technique based on the Sampled DOG transform.

Outside this region the reflection of the center lobe TO tlic auto-convolved filler will dominate the difference as seen in
figure 6-10.
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Figure 6-10: Transfer Function of Ey^-{go(x,y)} - go(x,y) * go(x,y)

n 1 2 3 4 5 6 7 8
0.000 0.001 0.002 0.005 0.008 0.011 0.012 0.010

10 11 12 13 14 15 16
7 { E v j { g } - ( g * g ) } 0.005 0.001 -0.005 -0.007 -0.007 -0.004 -0.001 0.000

Table 6-3: Values Along Line u=v in Transfer Function of E-/j{g} -
( g * g )

6.5 The Band-Pass Filters

This chapter comes to a close by showing the impulse responses and transfer functions for the
smaller filters. Given below arc the coefficients for the band-pass filters at levels 0 and 1, and plots of
the transfer functions of the level 1 and level 2 band-pass filters.

6.5.1 Size of Positive Center Radius

The scale or size of forms to which each filter in a sampled DOG transform is sensitive depends on
the size of the positive center lobe of the impulse response. We have observed by examining the
coefficients of the impulse responses that for the Sampled IXX} transform based on a Gaussian tow
pass filter with a radius. Ro = 4.0, and a shape parameter of a = 4.0, the radius of the zero crossing
of this positive center lobe, Rk+, at a level, k, may be predicted by the following formula.
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(6.5)

Tliis formula is based on the observations given in table 6-4 below. The radii of the positive center
lobes in this table were measured by finding the distance from the center point to the furthest ( and
smallest ) positive coefficient The filters tend to be most sensitive to objects whose width is
2Rfc + 1 . Note that as the radius increases there are more coefficients near the zero crossing, and
thus the accuracy to which the zero-crossing radius can be determined increases.

Level Radius of Center Lobe
= 2.23606

2 VTO = 3.1622
3 V20" = 4.4721
4 VAl = 6.4031

Table 6-4: Radii of Center Lobes
As measured by Distance to Furthest Positive Coefficient

6.5.2 Relative Size of Filters and Their Transfer Functions

Since the filters are circularly symmetric, it is possible to visualize each filter impulse response and
transfer function from the values along a line which passes through the center of the filter or its
transfer function. Figure 6-11 shows plots of the coefficient values along the X axis of the band-pass
filters for levels 1 through 4. Note that the size of each filter increases by a factor of VT from the
previous filter and that the maximum response (at the center) decreases by a factor of 2 from the
previous filter.

The following figure shows the transfer functions for the band-pass filters from levels 1 through 4.
The transfer function values from the u axis ( v = 0 ) from 0< u < m are shown. The spatial
frequency values are shown as integers from 0 to 32 because the transfer function was evaluated over
a 64 x 64 grid. (Note that u = 2?rf = 2?rk/64).

6.5.3 Filter at Band-Pass Level 0

We start with figure 6-13 which shows the filter which gives the high pass residue, 3BO. This filter is
the lowpass filter go(x,y) with its center coefficient subtracted from 1 and all other coeficicnts
subtracted from zero.
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Figure 6-11: Coefficients Along X Axis for Filters from Levels 1 Through 4

6.5.4 Filter at Band-Pass Level 1

Next is figure 6-14 which gives the coeficients for the band-pass filter at level 1. The formula for
this filter is:

bjfay) A go(x,y) - (go(x,y) * go(x,y) )

The values for this filter are shown in two sections so that they fit on a page. The first section is
columns -8 to 0, and the second is columns 1 to 8.

Figure 6-15 shows the transfer function, Bj(u,v) for the level 1 band-pass filter. The peak response
is 0.250 at Vu 2+v z = w/4.

Figure 6-16 shows a logarithmic plot of Bj(u%v). This plot spans -40 dB. ITie scale at the left marks
off drops of -10 dK in response. This relatively large ripple is not a concern because the level 1
band-pass image is not rcsampled.
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Figure 6-12: U Axis Of Transfer Functions for Band-Pass Filters from.
Levels 1 Through 4. u = 2wk/64

-.001488
-.003150 -.006669 -.008564 -.006669 -.003150 .

-.003150 -.010996 -.023278 -.029890 -.023278 -.010996 -.003150
-.006669 -.023478 -.049280 -.063276 -.049280 -.023478 -.006669

.001488 -.008564 -.029890 -.063276 .91752 -.063276 -.029890 -.008564 -.001488
-.006669 -.023478 -.049280 -.063276 -.049280 -.023478 -.006669
-.003150 -.010996 -.023278 -.029890 -.023278 -.010996 -.003150

-.003150 -.006669 -.008564 -.006669 -.003150
-.001488

Figure 6-13: Filter for High Pass Residue, S 8

i



91

" -.000002
-.000009 -.000020 -.000025

-.000010 -.000051 -.000131 -.000226 -.000271
-.000020 -.000111 -.000367 -.000798 -.001257 -.001460

-.000010 -.000111 -.000508 -.001461 -.002978 -.004512 -.005172
-.000051 -.000367 -.001461 -.003949 -.004609 -.004849 -.004560

-.000009 -.000131 -.000798 -.002978 -.004609 -.003962 .001282 .004904
-.000020-.000226-.001257-.004512-.004849 .001282 .017072 .026734

-.000002 -.000025 -.000271 -.001460 -.003684 -.004560 .004904 .026734 .039788
-.000020-.000226-.001257-.004512-.004849 .001282 .017072 .026734
-.000009 -.000131 -.000798 -.002978 -.004609 -.003962 .001282 .004904

-.000051 -.000367 -.001461 -.003949 -.004609 -.004849 -.004560
-.000010 -.000111 -.000508 -.001461 -.002978 -.004512 -.005172

-.000020 -.000111 -.000367 -.000798 -.001257 -.001460
-.000010 -.000051 -.000131 -.000226 -.000271

-.000009 -.000020 -.000025
-.000002

-.000020 -.000009
-.000226 -.000131 -.000051 -.000010
-.001257 -.000798 -.000367 -.000111 -.000020
-.004512 -.002978 -.001461 -.000508 -.000111 -.000010
-.004849 -.004609 -.003949 -.001461 -.000367 -.000051
.001282-.003962 -.004609 -.002978 -.000798 -.000131 -.000009
.017072 .001282 -.004849 -.004512 -.001257 -.000226 -.000020
.026734 .004904-.004560 -.003684 -.001460 -.000271 -.000025 -.000002
.017072 .001282-.004849 -.004512 -.001257 -.000226 -.000020
.001282-.003962 -.004609 -.002978 -.000798 -.000131 -.000009
-.004849 -.004609 -.003949 -.001461 -.000367 -.000051
-.004512 -.002978 -.001461 -.000508 -.000111 -.000010
-.001257 -.000798 -.000367 -.000111 -.000020
-.000226 -.000131 -.000051 -.000010
-.000020 -.000009

Figure 6-14: Impulse Response of Level 1 Band-Pass Filter
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Figure 6-15: BL(u,v), The Transfer Function
of the Level 1 band-pass Filter
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Figure 6-16: 20 Log10[Bj(u,v)], Tlic Transfer Function
of the Level 1 Band-Pass Filter Plotted in dB

Scale, shown at left in increments of-10 db, spans -40 dB
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6.5.5 Filter at Band-Pass Level 2

The impulse response of the filter at band-pass level 2 requires a 32 column by 32 row table to
enumerate. Rather than fill two pages with these coefficients we show its transfer function in figure
6-17 below. The formula for this filter is

= go(x,y) * go(x,y) - go(x,y) * go(x,y)]

Figure 6-18 shows a plot of B2(u,v) in dB, with a scale spanning -80 dB.

Figure 6-17: B,(u,v), The Transfer Function of the Level 2 band-pass Filter
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Figure 6-18: 20 Log10£B2(iuv)l The Transfer Function
of the Level 2 band-pass Filter Plotted in dB

Scale, shown at left marks increments of -10 dB to -80 dB
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Chapter 7
A Symbolic Representation Based

on the Sampled
Difference of Gaussian Transform

The previous two chapters described techniques which could be considered within the domain of
digital signal processing. In order to demonstrate the usefulness of these techniques, it is necessary to
show that the filtered image signals can be used to construct a structural representation of an image.
This chapter will describe such a technique. These algorithms were developed to demonstrate the
usefulness of the sampled DOG transform, and to explore and develop the principles for using the
transform to form a structural representation of gray scale images for object recognition and stereo
matching.

The algorithms described below were designed to be local As with the transform itself, they can
be implemented in parallel. Rather than try to develop a single monolithic process that would
construct the description, the process was broken down into a series of stages, and a number of
competing ideas were evaluated for each stage.

The process was broken into the following stages:

1. Identify and link ridge points (P-nodes) and local peaks (M-nodes) at each band-pass
level;

2. Remove small loops and fix short broken connections in the P-paths at each level;

3. Connect together peaks at adjacent levels (M-paths);

4. Use 2-D ridge points (P-nodcs) as candidates to find 3-D ridge points (L-nodes) in the
three dimensions (x,y,k);

The result of this process is a tree-like graph which contains four classes of symbols:

• P: Points which arc on a ridge at a level.

• M: Points which arc local maxima at a level.

• L: Points which arc on a ridge across levels (i.e. in the three space (x,y,k)).

• M * : Points which arc local maxima in the three space.
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Every uniform (or approximately uniform) region will have one or more M*'s as a root in its
description. These are connected to paths of L's (L-Paths) which describe the general form of the
region, and paths of M's (M-Paths) which branch into the concavities and convexities. The shape of
the boundaries arc described in multiple resolutions by the paths of Fs (P-Paths). If a boundary is
blurry, then the highest resolution (lowest level) P-Paths are lost, but the boundary is still described
by the lower resolution P-Paths*

Before launching into a discussion of how the values from the Sampled Difference of Gaussian
(SDOG) transform may be mapped into symbols, a word about one of the terms used below. The
SDOG transform produces values at discrete points in a finite space (x,y,k). Each point in this space
has the potential to contain a symbol. When a symbol is assigned to a point, a certain amount of
additional state information is encoded at the point. To avoid confusion between the words point
and pointer, each point in the space (x,y,k) will be referred to as a sample, when speaking of only the
band-pass value, or as a "node" when describing the various labels, flags and pointers assigned at a
sample point

7.0.1 Information Stored at Each Node

In the implementation that is described in this chapter, nodes were subdivided into the fields
shown in table

Filter Value 8 bits
Direction 8 bits
EJ3,S,*,L,MJP 1 bit flags
P Pointers 8 one bit pointers
Label, U, D 6 bit Symbol ID,

Pointer bits Straight up and down
UP (to k+1 level) pointers For L and M paths

(8 Bits, 1 for each neighbor)
Pointers to SAME level For L and M paths
DOWN (to k-1 level) For L and M paths

Table 7-1: Fields of a 64 Bit Node

The first 8 bit sub-field holds the value from the Sampled DGG transform. The direction sub-field
contains the result of a directionality measure that was employed in early versions of the
representation. This number is between 0 and 179 degrees. Next arc seven 1-bit flags whose
meanings arc discussed in the sections 7.2,7.4, and 7.5. 'Yhc next subficld contains the 8 pointer bits
feir connecting P nodes. Bach pointer corresponds to one of the adjacent 8 neighbors. The neighbor to
the right is pointed to by the pointer at bit 0, Neighbor numbers increase in a counter-clockwise
direction. ( A number of the algorithms below do modulo 3 arithmetic on the P pointers.) ITie next
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subfield is a 6 bit symbol ID that is assigned based on the configuration of ridges around the node.
There are then two 1-bit fields which act as pointers for the L and M paths. The U field can be set to
point to the neighbor directly above if that neighbor exists. The D bit can be set to point to the
neighbor directly below (at die k-lst level). The "UP" field contains the pointers for the L and M
paths that can point to the 8 neighbors at the k+1st level. The "SAME" field contains pointers for L
paths that can point to any of the adjacent 8 neighbors at the k* level. The "DOWN" subfield points
to the 8 neighbors below (at die k-lst level) for representing L and M paths.

7.0.2 Meaning and Purpose of Peaks and Ridges

Section 3.1 showed that a 2-D sampled correlation is equivalent to a 2-D sequence of inner
products between the filter and the neighborhoods centered at the sample points. An inner product
has its largest possible value when the two functions are identical. It is also a good measure of how
similar two functions are. For example, in communications theory an inner product is used to tell
how much of the energy in a received signal is described by a basis function [Wozcncraft 65], Thus a
local peak in a band-pass image indicates a local point where the image signal most resembles the
impulse response of the band-pass filter.

It is possible for a two dimensional signal to maintain a large amplitude along a line or a curved
path such that all of the neighboring values are smaller. When this happens in the band-pass images
from a IX)LP or SDOG transform it means that the impulse response of the band-pass filters are a
best fit to the gray-scale form in the image at a sequence of points. Such a sequence of points is
called a ridge. A ridge could be loosely defined as a 1-D sequence of points in a 2-D signal along
which the function value is larger than any neighboring points.

Both ridges and peaks occur in each of the band-pass signals produced by a DOLP transform. This
chapter shows that the appearance of an object in an image can be represented by encoding the ridges
and peaks from all of the band-pass images from a SDOG transform. To the extent to which the
band-pass signal can be reconstructed from knowledge of the position and magnitude of the peaks
and ridge paths, this encoding is approximately reversible. This chapter also shows that the concepts
of peak points and ridge paths can be extended to the third (or k) dimension, that is between
band-pass levels. These peak points and ridge paths in the (x,y,k) space provide sufficient
information to uniquely represent descriptions of the 2-D appearances of objects. Chapter 8 shows
how this a representation can be used to efficiently match 2-D appearances, despite changes in size,
2-D orientation, or position of the object relative to the camera.
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7.1 Phenomena in Each Band-Pass Image

This section describes the manner in which peaks and ridges occur in each band-pass image of a
SDOG transform. Section 7.4 describes peaks and ridges in the 3-D space (x,y,k). The phenomena
described in these sections are illustrated with filter output from uniform intensity rectangles. These
artificial shapes have simple descriptions and yet illustrate the principles on which this representation
is based. Examples of the descriptions of the images of real objects are presented in later sections and
in the next chapter.

7.1.1 The SDOG Band-Pass Impulse Response

In the following discussions, it is helpful to recall the form of the impulse response of the band-
pass filters implemented by the sampled DOG transform. The zero crossings and the center row of
this impulse response are illustrated below in figure 7-1. The impulse response is circularly
symmetric. The coefficient along any line passing through the origin will resemble the cross-section
shown on the right in figure 7-1. The impulse response consists of a positive center lobe, surrounded
by a negative side lobe. The sum of the coefficients is zero. The response at any point may be
thought of as the sum of the weighted points under the center lobe minus the sum of the weighted
points under the outside side lobe.
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Zero Crossings Impulse Response

(Center Row)

Figure 7-1: Impulse Response of Band-Pass Filter
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7.1.2 Edges of Large Regions
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Let us start by considering the response of the band-pass filters at the boundary of a much larger
uniform region. Consider a square whose side length is much larger than the diameter of the
band-pass filter, and whose picture elements are of a larger value than the surrounding background.
Let us examine the response of the filter along a line which is perpendicular to the side of the square
and passes through the center. This response is illustrated in figure 7-2.
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Figure 7-2: Response Across Center of a Square

When the filter support is totally in the uniform background region the response is zero. As the
filter's negative side lobe begins to overlap with the square, the inner-product becomes negative. As
the edge of the positive center lobe reaches the edge of the square, the inner-product reaches a
negative minima. The response climbs through zero as the positive center lobe overlaps with more of
the square. Just before the positive center lobe completely overlaps the square, the response will
reach a positive maximum and begin to drop. The drop continues until the filter is completely within
the square and the response has tapered to zero. Thus the edges of the square result in a pair of peaks
of opposite sign, on cither side of the edge. The distance of the peaks from the edge can depend on
how sharp the edge is, and will occur at approximately 2/3 the filter radius on cither side of the edge.
If the edges are blurred at the resolution described by the filter, the amplitude of the peaks will be
decreased, the width will be increased, and the peaks will tend to be a little further apart

The fact that a negative response occurs outside of the square is interesting. Any approximately
uniform region will have a negative ridge surrounding it. Artists refer to a similar phenomenon in the
human visual system as "negative shape".
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7.1.3 Convex Protrusions: The Corner

The filters tend to respond to concave and convex protrusions by producing a peak. When linked
between levels, these peaks form an M-path which describes the shape of the protrusion. As an
example of a convex protrusion, consider the uniform square described in the previous section.
Consider the response along a line which is parallel to and about half the filter radius below the
upper edge of the square as shown in figure 7-3.
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Figure 7-3: Response at Corner of a Square

Ti

Response

(Level 1)

As before, the filter response is initially zero. As the negative sidclobc moves over the corner of
the square, the response will go negative until a minimum is reached. The amplitude of this negative
peak will be smaller than for the negative edge at the center of the square. This is because less of the
negative side lobe is overlapping with the square. As the positive center lobe comes over the square,
the response will rise through zero to a positive maximum. The amplitude of this peak will be
approximately twice the amplitude of the positive peak at the center of the square. Again, this is '
because less of the negative side lobe overlaps with the square. To the right of the positive maximum,
the response will decrease to about half of its maximum value. These points arc along the positive
ridge that is inside the boundary of the square. The response is symmetric about the middle of the
square.

Peaks, such as the one described above, will occur whenever there is a protrusion. Protrusions
which have sharp straight edges appear the same over a range of scales. For such protrusions the
height of the peaks at several adjacent band-pass levels will be approximately the same. If the
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protrusion does not have sharp straight edges, then there will exist levels at which the peak is larger
than the peak at adjacent levels. An example of such a shape would be a square in which the corners
are rounded.

7.1.4 Across a Long Thin Rectangle

Let us consider the response of a filter along a line crossing a rectangle (or bar) whose width is
approximately the same as the radius of the filter's positive center lobe. This situation is illustrated in
figure 7-4.
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Figure 7-4: Response of Filter Across a Rectangle

As with the first square example, the response starts out as zero, and falls to a negative peak as the
side lobe overlaps with the rectangle. However, since the side lobe passes beyond the rectangle as the
center lobe comes over the bar, the positive response will rise faster and reach a peak which is
approximately twice that of the positive edge of the square. ITie response is symmetric about the
center of the rectangle. What is important about this example is that the response of the filter whose
positive inner lobe is the same width as the rectangle will be larger than the response for filters which
are larger or smaller. Such a ridge results in a path of L-nodes; that is, a ridge between band-pass
levels. ITic index of the level at which the L path occurs gives an estimate of the width of the
rectangle.
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7.1.5 At the Ends of the Rectangle

Let us now consider the response of the same filter along the long axis of the same rectangle. This

is illustrated by figure 7-5.
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Figure 7-5: Response of Filter Along a Rectangle

"Fbe negative minimum that ocean x the filter cumes over the end of the rectangle will be smaller
than the ihe negative minimum beside the rectangle, because less of the negative side lobe will be
incr lipping »iih the rectangle As the pcwitive center Johc comes over the end of the rectangle, the
response mil rise to a positive maximum which is even larger than for the center of the rectangle.
I his 5!* becatise ai Ac end of the rcctanstie. *>nl> ubtxit a quiirter of ihc negative side lobe overlaps
*jth she reoaRgie, whtrr&K m ihc cenicr alwww half of the negative side lobe overlaps. 'ITius at the
iBiS t»f a rccungtc, i !*\JS pc*ik ivcur^, F«»r ibe filter whtfec center l«bc miKt cluscly fits the
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rectangle, the amplitude of this peak will be larger than for filters that are smaller or larger. Such a
peak will be detected as a peak between levels, and labeled as an M*. The levels below it will contain
an M path which splits into two parts, one for each corner. Above it another M-path will lead to the
center of the rectangle. This M-Path may or may not join with one from the other end of the
rectangle, depending on both the length to width ratio, and the difference in gray level between the
rectangle and the background.

7.1.6 A Square Which is Smaller Than the Filter

As a final illustration, let us consider the response of a filter to a square whose size is approximately
the same as the positive center lobe of the filter. This is illustrated by figure 7-6.

Path Across Square Response
(Level 4)

Figure 7-6: Response of Filter To a Square

As with the earlier examples, there is a negative ridge surrounding the square. As the center of the
filter moves over the square the response rises to a strong peak. The height of the peak will be
approximately four times the amplitude of the negative ridge outside the square. The peak that
occurs for the filter whose center lobe just covers the square is the largest response to the square
which any of the filters will have. "Iihis peak is delected as an M* point, and serves as a root for the
graph which represents the square. An M Path will extend above this peak for several levels. Below
the peak an M Path will split into four parts, one for each corner.
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7.2 Peak and Ridge Path Detection at Each Band-Pass Level

Detecting a local peak in a band-pass level from the SDOG transform is simple because of the
smoothness given by the band-pass impulse response. Unambiguous detection of the path of a ridge
with an algorithm that may be implemented in parallel has proved to be a more difficult problem.

It was originally believed that the detection of points on a ridge would require measuring the
direction of least change (local directionality) and then finding the local ridge by scanning
perpendicular to that direction. Several techniques for measuring local directionality were
investigated. A particularly reliable and efficient measure based on a 4 point DFT of the inner-
product from 1-D filters at four directions will be described in a separate report

The simplest measure of local directionality at a point is to compare the filter output at each of the
8 neighbors. At any point, the directions at which the largest neighbors exist is the most likely
direction of the nearest ridge. By definition, the largest neighbors of points on a ridge arc also points
on a ridge. This simple principle serves as a basis for the ridge detection algorithm described below.
Because it is not based on a costly directionality measurement function, this algorithm is simpler to
program and executes faster than any of the other algorithms for ridge detection that were
investigated.

None of the algorithms that were developed for detecting and linking ridge path points always
produced unbroken paths. The problems with these algorithms is that the data consists of fixed point
numbers which exist at discrete locations. While the algorithm described below was sufficient for the
purpose of demonstrating this thesis, there is room for further research.

7.2.1 Detecting Local Peaks

Local peaks ( positive maxima and negative minima) at a band-pass level are easy to detect A local
peak (M) is defined as any sample in a band-pass level for which none of the adjacent 8 neighbor
samples has a value of the same sign and larger magnitude. Note that this definition allows adjacent
samples with the same value to both be detected as peaks. This situation occurs because of the fixed
point quantization and is handled by interpreting adjacent peak points as part of a single peak. If two
samples have the same value, and only oee of them has an adjacent neighbor with a larger value, then
neither sample is labeled as a peak.

By this definition, an area of tinifonn filter output is composed of all peaks. Only a constant signal
will produce a uniform response over an area in a band pass image, and the values in this response
are zero. Such areas arc easily detected and excluded. It is possible to have small regions of width <4
which have a constant value if the amplitude is very small (eg. < 3). This is because of quantization
with fixed point numbers. This problem is avoided by not allowing a point where the magnitude is
less than 10 to be labeled as a peal,

It is mentioned above that a situation can occur where two adjacent samples have the same value,
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and only one of the samples has a larger neighbor. An example of this occurs in figures 7-8 and
7-9 below at row 54 column 142. Such false peaks arc eliminated by setting the E flag for any
M-node which has an equal valued neighbor. A second pass is made through the image during which
the M and E flags are cleared for any M-node which has its E flag set and is not adjacent to another
M-node.

Thus peaks are detected by comparing a value to its neighbors, and to the quantization threshold.
If implemented by itself, this algorithm requires 8 references to the image array for each sample. This
simple detection procedure is easily implemented as part of the more complex ridge path detection
procedure described below.

7.2.2 Detecting Ridge Pa th s a t a Band-Pass Level

This section describes an algorithm for detecting samples which are on a ridge in a 2~D band-pass
image. This algorithm is based on the principle that the largest neighbors of a point on a ridge are
also on the same ridge. Thus any pair of samples which point to each other as largest neighbors are
on a ridge (detected as P-nodes).

The algorithm for detecting ridge path nodes consists of two stages and requires 8 "pointer" bits.
The following is an informal explanation of this algorithm: The eight neighbors of a point are
assembled into a circular list with the nodes of the opposite sign marked as zero. This list is then
scanned looking for local maxima. For each local maxima, the corresponding pointer bit is set After
this process has been executed for every node in the level the second stage commences. At this stage,
at each node, any neighbor for which the pointer has been set is tested. If the neighbor has its
corresponding pointer (pointing back) set, then both points are labeled as ridge nodes, and marked
by setting a P flag. By deleting all unanswered pointers, the ridge nodes are left with a two way linked
list giving the path of the ridge.

This algorithm consists of the following steps:

• Stage 1: At each node:

1. Make a circular list of the absolute value of the 8 neighbors.

2. For any neighbor where the sign of the value is different then the center node, enter
a zero.

3. Scan the list (A finite state process works nicely here). For any list element for
which there is no larger adjacent value, set a pointer for that neighbor.

4. Store the pointers for the next stage.

• Stage 2: For each point:

1. Scan the pointers. For each pointer that is set get the pointer of that neighbor that
points back.
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2. If this pointer is also set, marlc the node as a P. Otherwise delete the pointer.

llie two way linked list of pointers is used in later processes.

This process is illustrated by the examples shown in figures 7-7 through 7-9 below. Figure
7-7 shows the raw values filter values from level 2 of the piston rod test image, columns 141 through
152, rows 47 through 57. Note that this data is on a VT sample grid.

Values for nodes - Level 2 rod.dat raw data
141 142 143 144 145 146 147 148 149 150 151 152

47 13 7 -3 -6 -11 -12
48 -2 -f -16 -li -20 -IS
49 -5 -18 -IS -17 -18 -IS
50 -18 -14 -7 -3 -1 -3
51 -16 -11 1 11 14 14
52 -3 8 13 15 17 15
53 0 14 15 8 1 1
§4 14 7 -9 -18 -19 -16
§§ 12 1 -20 -29 -36 -38
S© 0 -26 -38 -38 -39 -43
57 0 -27 -37 -29 -24 -23

Figure 7-7: Values at Level 2 of rociswf

Figure 7-8 shows the pointers that arc created by the first stage of the ridge path detection process.
Tic pointers are marked by the symbols {/ f \ - } - Also shown is the symbol M wherever a peak has
been detected.

The result of the second stage is shown in figure 7-9 befow* At this stage the ridge path points have
been marked with a F and only answered pointers are mi deleted.

7»2,3 EUminatins Small Loops

l i must cases the algorithm described above produce a unique path of largest values.
Gccasttmally twit paints occur with the mm value such Hal ihc direction between them is
perpendicular to the ridge pall* This occurs because i ccNtitinuous ridge is ltprcscnted by fixed point
numbers at discrete smpte points* His phenomenon becomes more likely as the signal intensity

Such small tonps ctmptjcase the programming for lattx stages of the process* Fortunately, fliey am
&KiJ> detected and eliminated by dclcisng one of the n ^ p t i i

The set of all such loops involving 3 or 4 points tmy be divided into three classes by grouping
togeiher those thai <ire rowtemal tt|imaten& I t e e dasm arc listed in figure 7*10 with the equal
vsmpJcs \hmn *J$ T w arid the i:-th«r sampks M nF\ %M that in classes 1 and 2 the loop on the right
n m d V^ ample grid.
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Values for nodes - Level 2 rod.swf pointers
141 142 143 144 145 146 147 148 149 150 151 152

47 \
47 13 7 -3 -6 -11 -12
47
47 \ / \ / \
48
48 -2 -9 -15 -18 -20 -19
48 -M -
48 / \ / / / \
49 / \ / \ /
49 -5 -18 -19 -17 -18 -18
49 -M -
49 /
50 / \ / \ /
50 E -18 -14 -7 -3 -1 -3
50 M
50 /
51 / \ !
51 -16 -11 1 11 14 14
51
5 1 / / \ / \ / \
52
52 -3 8 13 15 17 15
52 - - -
52 / \ /
53 / /
53 0 14 15 8 1 1
53 - M
53 /
54 / \ /
54 E 14 7 -9 -18 -19 -16
54 M
54 / ! ! ! !
55 /
55 12 1 .-20 -29 -36 -38
55
55 / \ / \ / \ / \
56.
56 0 -26 E -38 -38 -39 -43
5 6 - M - - - - - - M -
56 /
57 / \ / \ / \ /
57 0 -27 -37 -29 -24 -23
57
57 ! /

Figure 7-8: Pointers From First Stage of Ridge Path Detection Procedure

The possible presence of such a loop is signaled by a sample having a pair of pointers in adjacent
directions. When such an adjacent pair of pointers is detected the node is marked by setting its S
flag. A second stage process then makes a test of the directions of the pointers in the next sample in
the path. Loops are broken by deleting the P flag and the pointers of one of the equal valued
samples. The sample that is deleted is chosen such that path length is kept as short as possible and as
straight as possible. When these two criteria are not sufficient to choose an equal valued point to be
removed, the more clock-wise sample is chosen arbitrarily.

Figure 7-11 shows a path that includes a small loop. The nodes with adjacent pointers arc marked
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Values

4?
47
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50

so
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SI
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51
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S2
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S3
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S3
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§4
S4
§§
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§§
SI
ii
Sf
1$
§ft
s?
s?
i?
I?
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15
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-11
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-18
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-

I

-
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150

-20
HP -
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-

-18

14

-

1

-38
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152

-19
P
\

-3

15
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-16
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ftfgm 7«* Kid$e Paths After Stage 2 of P r ^ ^ i w

with m **8*\ Figure 7*12 ihtms the same path after H has been processed the procedure that
toup& His itcige posh ts from tie left most plsiti rod in ilte Piston Rods teat image

is Am a i» Hgure 7-25, "He rtdgc is JI negative ridge ihat txxna uutsidc the oval shaped
regain within e*m% piston r^
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Class 1 :

P - E - P

E
/ \

P - E

Class 2 :
E

/ I
P - E

P

I .

- E

Class 3:
E - P

/ /
P - E

Figure 7-10: Classes of Small Loops

Values for nodes - Level 3 rod.swf Ridge Path
49 51 53 55 57 59 61

61
61
61
61
63
63
63
63
65
65
65
65
67
67
67
67
69
69
69
69
71
71
71
71
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\
-29
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-18

2

20

26

-22

-28
P
\
\

-25
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3
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-29
P
\
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-18
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-33
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-32
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8
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-15

-20
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24

11
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-4

-6

-8

!
37
P
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15
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10

9

8

Figure 7-11: Ridge Path Containing Small Loop

7.2.4 Unterminated Ridge Paths

In most cases a ridge path will terminate at both ends at an M node, llicrc arc, however, several
situations where this docs not occur. In the following sections we describe these situations and how
they arc treated.

Whenever a node has only one P pointer* a flag, called the B flag (for Broken) is set A B node 'can
occur for the following reasons:
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Values for nodes - Level 3 rod.swf Small Loops Removed
49 51 53 55 57 59 61

61
61
61
61
63
63
63
63
65
65
65
65
67
67
67
67
69
69
69
69
71
71
71
71

-26

\
-29
P --

-18

2

20

26

-22

-28
P
\
\

-25

-17

-4

3

-16

-24

-29
P
\
\

-29

-25

-23

-5

-18

-24

-29
P
i

t

-33
MP
j

i

-32
P
i

8

-7

-15

-20

-22

-25

24

11

1

-4

-6

-8

i

37
P
j

!

23
P
!
t

15
PB

10

9

8

Figure 7-12: Path After Removal of Small Loop

1. When a ridge path is broken, usually because of an abrupt change in the ridge amplitude.
Such cases are an error and are handled by attempting to extend the path as described in
section 7.2.5 below.

2. A "Spur": This is an extra point which occurs to the side of a ridge path, usually
connected to an M node. Spurs are deleted only when they arc a single node and not
connected to an M node, as described by section 7.2.7.

3. A Fading Ridge: This can legitimately occur for some patterns. For example, when a bar
ends by fading into the background, or when a large area has square wave "teeth" that are
longer than they are wide.

4. An Isolated Pair. This is the case when two P nodes are connected to each other and only
each other. ITiis can be the result of a small region which is described at lower levels and
should be ignored at this level, or it can occur at a saddle point along a ridge.

The action which is taken at a B node is first determined by the number of pointers which the
connected neighbor of the B node has. The following situations occur:

L One pointer: This signals an Isolated Pair.

1 Two pointers: This usually indicates a break along a ridge path, although a fading path or
a long spur might be the cause. Which of these is the case is determined by attempting to
extend the path as described in section 7.2.5 below.

3. Three (or more) pointers: The B node is a spun
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7.2.5 Repairing Broken Paths

Under some conditions the amplitude of a ridge can make a sharp increase or decrease. Such a
rapid transition can result in a ridge path point not being detected or in a pair of pointers not being
formed along a ridge. An example in which this occurs in 4 places is shown in figure 7-13. The
pointers are used in the process for detecting the L-nodes. Thus it is necessary to correct such broken
paths.

A one pass process is executed for each node with its B flag set which is connected to a node with 2
pointers. This process attempts to extend the ridge path for up to 2 samples. If it is possible to close
the path with samples of the same sign, and without creating an adjacent pointer condition (as
defined above), then the path is closed. ITie algorithm runs as follows:

1. Determine the direction of the single pointer.

2. For the opposite direction, and the two directions adjacent to the opposite direction, get
the neighbor node.

3. If any of these neighbors are also a P-node and have the same sign, and linking to that
node will not create an "adjacent pointers" condition (see exception below), link to the
P-node with the largest magnitude and quit

4. If none of these three nodes are P nodes, choose the largest of them (with the same sign)
and repeat steps 2 and 3. Use the direction between the starting point and the chosen
neighbor for choosing the next set of three neighbors.

5. Steps 2 and 3 are repeated twice if the largest neighboring node is always found in the
same direction. Otherwise-steps 2 and 3 are only repeated once to avoid creating small
loops.

Exception: At step 3, an adjacent pointer condition does not inhibit linking to a node if the
adjacent pointer points to a B-node. In such a case the the link is made and the B-node is deleted.

Figure 7-13 shows the inner oval region from a piston rod at band-pass level 3 before it is
processed by the algorithm to connect broken ridge paths. Figure 7-14 show the result after the
extension algorithm. This figure also illustrates that the extension algorithm has a preference for
connecting to the adjacent node that has the largest value. The procedure also deleted the B-nodes
that remained as spurs after the linking.

7.2.6 isolated Pairs

The configuration of two P nodes with only 1 pointer (i.e. connected only to each other) is a rare
but troublesome one. It usually occurs in areas where 'the signal is weak, and if extended can often
cause a spur of length 2 or 3. It has been observed that when the amplitude of a ridge makes a dip
this configuration will occur. In this case, the broken path on either side of the pair of isolated
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Figure 7-13: Example of Broken Ridge Paths Before Extension

P-nodes will extend to the P-nodes, thus connecting the broken path. Thus these points are not
extended. If they both remain as B nodes after the extension process they are deleted.

7.2.7 Deleting Spy re

Occasionally the algorithm for detecting ridge nodes will leave a node which is adjacent to, but hot
on the path of, the ridge marked as a P^node. Such P-nodes, which are referred to as ftspurs" are
easily detected. Spur nodes have only one pointer, and they are connected to a node with 3 pointers.
When a spur P-node is detected, if the node to which it points is not an M node, it's P flag and
pointer arc deleted- A spur which points to an M point is retained as a potential point on an L-path.
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Ridge Paths After Extension
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Figure 7-14: Example of Repaired Ridge Paths After Extension

7.3 Phenomena Between Levels in the Transform Space

In this section we review some of the structures that occur in the sampled 1X)G transform of some
common forms. We first describe the chain of M-nodes (the M-path) that result from non-elongated
fonns, ends of elongated forms and corners. We then describe the chains of L-nodcs (the L-path)
that result from elongated forms and edges. This section describes the purpose and principles behind
the algorithms for forming M-paths and L-paths that are described in the next section.
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7.3.1 Connectivity of Peaks: M-Paths

In our first experiments with the band-pass detection functions [Crowley 78b] we observed a
phenomenon which has proved fundamental to constructing a size invariant representation of gray
scale forms from a SDOG Transform. This phenomenon is: Any non-elongated gray scale form will
cause a peak at approximately the same location in several adjacent band-pass levels. Furthermore,
except for certain degenerate cases, the magnitude of the peaks will rise monotonically across levels to
a maximum and then decrease.

These peaks may be detected individually at each level as described above in section 7.L The
peaks may then be linked by starting at each and examining its neighbors in the next upper level for a
peak of the same sign. The largest peak may be found during this linking process by comparing the
values of the peaks as they are linked. This process, which is called "flag stealing", is described in
section 7.4.

To sec why this connectivity occurs, let us consider the Sampled DOG Transform of a uniform
intensity 11 x 11 square. Each band-pass filter will respond most strongly to a uniform region which
just fills it positive center lobe. However the response of a filter falls off gradually as the size of a
uniform region grows larger or smaller. We have observed ihat the response will decrease by about a
factor of 2 for a factor of 2 increase or decrease in the width of a square. Since die filters are scaled by
a factor of V2" a local peak occurs within several adjacent band-pass levels. The band-pass signals for
an 11 x 11 square are shown below in figure 7-15. In this figure we have plotted the values along a
line which pass through two corners of the square for the band-pass levels 6 through 1. The largest
peak occurs for the filter at level 4, which has a positive center region of diameter 2 V20* + 1 (See
equation (6.5)) or diameter of approximately 9.9 samples.

In fact there are distinct types of M-paths that occur in a DOLP transform. The following three
sub-sections examine the three most common classes of M paths. Each of these classes has been
given a name. These names, "spots", "bar-ends", and "comers", are not intended to imply that these
peaks only occur in patterns which an English speaking human would call a spot, bar, or corner.
These are merely labels with which we can refer to these classes. These labels could just as easily be
labeled with numbers (as indeed they are in our programs).

In this subsection we are concerned with regions of pixels in which the values are approximately
uniform. ITiesc regions must have a background which is predominantly darker or lighter than the
region for these results to hold

73J.I "Spots" or Non-Elongated Forms

Let us consider such a region which is not more than twice as long as it is wide. We refer to this
class of gray scale forms as "spots". The square in figure 7-15 is an example of a form that includes a

A spot will result in M-nodcs at a set of adjacent levels of a DOLP transform. These M-nodes will
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be located at the sample at each level closest to the center of the form. As a result, these M's will tend
to be almost directly under one another. An example of such a sequence of peaks is shown in levels 7
through 3 in figure 7-15.

These M-nodcs may be detected individually at each level They may then be linked together by a
quite simple process to form a two-way linked list We call such a linked list of M nodes an M-path.
The magnitude of the values of the M nodes along such an M-path will rise to a maximum and then
drop off. ITie level at which the maximum occurs provides an estimate of the size of die spot. This
estimate may be obtained from the formula for the radius of the positive center lobe of the level k
band-pass filter. This formula is given as equation (6.5) in chapter 6.

In most cases each peak in the spot M-path will be surrounded by a ridge path of the opposite sign
at a distance of 3 to 5 samples. One way to classify a peak as part of a spot M-path is to detect such an
opposite signed ridge at all directions within a distance of 6 samples. We have employed a process
which scans at multiples of 45° searching for such opposite signed ridges to classify individual peaks
with satisfying results. The classification accuracy can be improved by combining the result of such a
scan from the peaks within several levels of the largest, or M* peak. This provides a label for the M*
peak.

7.11.2 "Bar-end": The Ends of an Elongated Form

If a gray scale form is more than twice as loag as it is wide, a sequence of peaks will occur at several
adjacent levels at ihc ends of the form. This is illustrated by figure 7-16. This figure shows one end
of a uniform Intensity rcctansie. Circles are drawn over this rectangle to represent the locations
where difference of gatssian fillers from an SDOG transform best fit the rectangle. Each circle has a
radius which is that of the ztm crossing of Ihc inner positive center lobe of the corresponding filter.
The circles are centered at legal sample points from the level of the SDOG transform of the filter
which they icptesmt

To ihc right of the partial rectangle is a tree of M-nodc& Each symbols corresponds to one of the
circles on the left aid ftprcsctits ihc Stecato of a peal is the 5DQG transform of the partial
rcctatglc. The largest circle corresponds to the top symbol* ihc second largest circle corresponds to
the second symbol etc. The labels rtIkr-findr# and "Corner* are these which were assigned on the
basis iif the out side negative ridge* The labeling process cmployedi a search scan in 8 directions that
reiurncd tine of three stales; w ridge, »atc~$igsed ridge, or opprate-signcd ridge. The base three
number was then used to index into a cable of label! The table was constructed by a training process,
Ttite labeling procedure will be described in a report

l i e position of these peals will move from the center tmmi the ends of the form as the level
sndet, St decreases, 4s with a spot M*path« the magnitude of the peaks wilt rise to a largest value and
then fall oil This largest value* which is labeled an M*. corresponds to the filter whose positive
tetter fofee test fits the end* of the

At each icvci the pcata at the end wiIJ he connected by a ridge path of the same sign, ITic entire
configuration will be surrounded toy a ridge of the oppttMtc sign. Fur bar-end VM^ths a scan of its
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M <Bar-End>

\
M <Bar-End>

\
M* <Bar-End>

M <Cornsr>
M <Corner>

M <Corner>

M <Corner>

Figure 7-16: Examples of Bar-End M-Paths

M <Corner>

M <Comer>

neighbors to a distance of 6 samples will show this opposite signed ridge spanning an angle of
approximately 270°. This fact, and the presence of the single ridge of the same sign can be used to
label the peaks as "bar-ends". As before, a label may be assigned to the M* peak on the basis of the
labels of the other M's in the M-Path.

7.3.L3 "Corners" and Other Protrusions

A comer or a sharp protrusion will also result in a sequence of peaks at several adjacent levels.
However, if the edges of this corner or protrusion are straight, then we have a shape which is the
same at several resolutions. In this case the magnitude of the peaks will tend to be constant (In fact,
small fluctuations can cause spurious M*'s to be detected.) If the protrusion is rounded, the value of
the peaks will rise to a maximum and then diminish as k decreases. The M-Path may even end before
the lowest (k = 1) level. In this case there will likely be a largest M node. For a peninsula that is
more than twice as long as it is wide, this M-path will be a bar-end. Both of these situations are
illustrated in figure 7-17.

In most cases, comers will have two ridges (P-paths) of the same sign connected to them, usually at
right angles. Also, within a distance of 6 samples there will be an ridge of opposite sign spanning an
arc ofabout 180°.



119
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Figure 7-17: Two forms that Cause "Corner" M-Paths

,3,2 3-D ftidtfM: I Paths

an ctonpicd gray scale form occurs* the DOI-P transferal of the form will contain a
ridge di several «uljiiccnt lc%ek 'the sample poinu along ihcsc ridges ciirrespciiicl in points in (x,y,k)
where the pcmtive center itAc of a banil*psivs filter is a close fit to the width of the gray aalc form.
Itiese pnnt% are deified b> the ndgc detection pnxess de^enbed alxivc and labeled as F nodes. As
mitli M ntxtcs, P mida *rfl ^ccur at approvtmatcty the same «*K location* in several adjacent levels.
At ihc k\d * here the filter center kibe R the dowrst fit to flic gray «a!e fewm. the magnitude of the
filter output falling the ndgc) ml hate a larger vaiuc Ihan at ^d)*cc«i lc%ck
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These largest ridge nodes ( called L-nodcs ) can be detected from the ridge nodes ( P-nodes ) at
each level by a process which is similar to the "flag stealing" process used for detecting the largest
M-node on an M path. Unfortunately this detection process is somewhat more complex because of
the directional nature of ridges and the difference of sample rates at different levels. Once the
L-nodcs have been detected they can be linked into a two-way linked list call an L-path.

In the following paragraphs we will examine the patterns of ridges that occur for uniform width
bars, bars of changing width, and edges of regions.

7.3.2.1 Ridge Paths for a Uniform Bar

Consider the uniform rectangle which was used as an example in figure 7-5 above. The response at
levels 6 through 1 of the Sampled DOG transform along a line through the center of the rectangle is
shown in figure 7-18 below. At level 2, an M* occurs at both ends of this rectangle. Between these
M*-nodes there is a ridge node that is larger than the ridge nodes above and below it. This ridge
node is detected as an L node by the process described in the next section. This rectangle produces a
graph as shown in figure 7-18. We can abstract all of the M* nodes and L-paths in this graph to
obtain a description of a class of forms that resemble this bar. This class of forms is defined by the
presence of the symbols:

M * - L - M *

If we held the width of the rectangle constant and increased its length the number of L-nodes
between the M* nodes would increase. We can define the class of bars as those forms which have a
pair of M* nodes connected by some number of L-nodes between them, and then encode the
cartesian distance between the M* nodes (measured in samples at some reference level) as an
attribute of the form.

73.2.2 Bars of Changing Width

Suppose, instead of a rectangle, we have a four-sided form which changes in width by a factor of 2
along its length. Such a form is shown in figure 7-19. As the width of the form decreases, the level of
the filter which best fits the form decreases. As a result the M* nodes occur at different levels, and
the L-Path changes levels. We can define a class of bars that includes bars that change width, by
collapsing the L-path into a single symbol. The L-path should retain the attributes of its length
(Measured in number of samples at some reference level) and the change in levels between the M*
nodes that it connects (Ak).

73-23 Edges of Regions

A straight line edge of a uniform region will result in a set of ridge paths at several levels in which
the values are approximately the same. If the edge is blurry, then the value along these ridge path will
decrease with decreasing k. If, on the other hand, the figure is washed out, the values along the ridge
path will be largest ai some level, and will be detected as L-nodes,
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The fact that an L node is part of an edge can be detected by the same scan procedure described
above for labeling M-nodes. An L node or P-node which is part of an edge will have a single ridge of
opposite sign running parallel to it within a distance of 6 samples. It may or may not have a same
signed ridge parallel to it in the opposite direction within 6 samples, depending on how wide the form
is. An L-path which is pan of a "bar" or other elongated form will have opposite signed ridges
running parallel to it on two sides. Figures 7-2 through 7-6 show examples of the ridge points and
opposite signed ridge points that occur for an edge. These figures show the response along a line at
one level. Figure 7-4 shows an example of a ridge point which is an L node and detected as a bar
with ridge points of the opposite sign on both sides. Both of these cases arc illustrated with a piston
rod image shown in figures 7-26(a) through 7-26(h) and 7-27(a) through 7-27(h) at the end of this
chapter. Figure 7-27(h) is a good 2-D example of the ridges that occur on both side of an edge.
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7.3.3 Connectivity of L-Paths and M-Paths

One of the properties that permits us to construct a representation of an image using only local
operations is the property that L-paths will almost always terminate at an M-path.

An L-path follows the length of an elongated form. As the form widens, the L-path moves
upwards in the k dimension. As the form narrows, the L-path moves downward in the k dimension.
At the ends of an elongated form the response of a DOLP (or SDOG) transform increases due to the
presence of more background area in the negative side-lobe of the band-pass filter. This increase
results in an M-node. Unless the form fades into the background very gradually there will be an
M-node at its end, and thus the L-path will terminate at an M-path. Because the same band-pass
filter will best respond to the width of a form both along the form and at its ends, an L-path will
usually terminate within one level of an M* node.

7.4 Connecting Peaks Between Levels

• This section describes a process which links peaks (M nodes) which are at adjacent levels in the
DOG transform to form M-paths. This process also detects the largest M nodes in a path and labels
these as M* nodes. An M* node is an M node which is part of an M-path and which has a larger
value than the adjacent M nodes in the M-path.

7.4.1 Linking NTs

The principle behind the process for linking M nodes is simple. Starting at the highest level, K, at
each level k each M node looks at the nodes withfti a local neighborhood above it, at level k + 1 . A
2-way pointer is made to all M nodes that arc found within this neighborhood.

This process proceeds as follows: For each level k, from K through 1, each M node at level k
examines the nodes which are adjacent to it at level k+1 . There may be cither 4 or 9 such adjacent
nodes due to the VT sampling. The nodes which arc adjacent to these nodes at level k + 1 are also
examined. Thus either 25 or 16 total nodes arc examined. If any of the adjacent 4 or 9 nodes at level
k +1 are M nodes and have a value of the same sign, then a 2-way pointer is formed. This pointer is
formed by setting the appropriate down pointer of the node at level k+1 and setting the up pointer
corresponding to that upper neighbor in the node at level k. See table 7-1 and section 7.1 for an
explanation of the up and down pointer bytes.

If any of the neighbors of the neighbors at level, k +1 arc an M node an indirect 2-way pointer is
made. An indirect pointer goes through the adjacent neighbor s pointer, llie set of possible indirect
paths arc illustrated in figure 7-20. The fact that a pointer is indirect may be determined by
examining the L and M flags of a node. If both these arc zero then any pointers for L and M paths are
indirect pointers.
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Figure 7-20: Possible Set of Indirect 2-Way Pointers for M-Paths

7.4.2 Detecting M*'s

M* nodes arc detected by a process which we refer to as "flag stealing". When an M node detects
another M node at level k + 1 , it compares values. If the M node at level k has a value of smaller
magnitude it clears its own * bit If the M node at level k has a value of larger magnitude it clears the
* flag of the node at level k + 1 and sets its own * flag. If more than one M node is detected at level
k + 1 they must all be smaller for the node at level k to set it's * flag. If no M nodes are found at level
k + 1 then the * flag is cleared; This prevents any isolated M nodes from becoming M* nodes. If
more than one node at level k link to an M node at k+1 any of them will clear the * flag of the node
at level k + 1 if they have a larger value. Thus * flags propagate down an M-path until they reach a
node with the latest magnitude.

7.4.3 Example

Figure 7-21 shows the M-paths and the M* node that occur at level 7 through 1 for a uniform
intensity square of width 11 pixels, and grey level 96 on a background of 32.

7.5 Detecting Ridge Nodes in {x,y,k) Space

This section describes the processes for detecting ridge nodes (L-nodcs) in the 3-D SDOG
transform space. The section starts with a discussion of the approach which is used and a description
of some of the problems that complicate such detection. A description of the search procedure for
P-nodes within two neighborhood sizes above each P-node is then given. A discussion of the "flag
stealing" process that is used and modifications to this process is then presented.



125

19 M Level 6

I

49 M Level 5

I

63 M* Level 4

I

52 M Level 3

/ / \ \

36 M 36 M Level 2
36 M 36 M

I I
t i l l

I i
35 M 35 M Level 1

35 M 35 M

Figure 7-21: M Paths For Square of Size 11 Pixels

7.5.1 Problems and Approach

Ridge nodes in the (x,y,k) space produced by the SDOG transform are detected with a form of flag
scaling process. As with detection of M*-nodcs from M-nodes, the P-nodcs which have been
detected as ridge points at each level are used as candidates for L-nodes.

These P-nodcs examine the P-nodes within a neighborhood at the level above them. This
examination occurs during a two stage search procedure. Initially a small neighborhood at level k+1
is examined above each P-nodc at level k. If no P-nodcs are found in this small neighborhood, then
the nodes within a larger neighborhood are searched for P-nodcs. This second search is inhibited for
directions within 45° of any P-path pointers in the P-nodcs at level k to prevent a P-nodc at level k
from stealing the L-flag from a P-node at level k+1 over a different part of the ridge.

The situation is more complicated than with detection of M*-nodcs, because:

• Ridge paths (L-paths) are directional and may travel through as well as along the levels.

• Ridge paths that describe an edge tend to move sideways toward the edge as the level
decreases. This creates situations where each P-nodc at level k +1 is examined by several
P-nodcs at level k.
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• Two connected P-nodes at level k may, because of VT resampling, have a P-node at level
k-1 between them, as illustrated by upper part of figure 7-22. In this figure, the larger
squares represent die P-nodcs at level k + 1, and the smaller squares represent die P-nodes
at level k. Which of the nodes at level k + 1 should the node in the center at level k
compare its value to?

The problem illustrated by figure 7-22 is even more severe when the P paths at adjacent levels are
displaced side-ways as shown in the lower part of figure 7-22. This situation is handled by a
modification to the flag stealing process described in section 7.5.3. This modification is based on the
principle that an L-flag is stolen only if all its lower P-node neighbors have a larger value.

p
p p

•

p
p

Overlapping Ridges at Adjacent Levels

p p p

Displaced Ridges at Adjacent Levels

Figure 7-22: Two Configurations of Ridge Paths at Adjacent Levels

7.5.2 Search Paths

At each P-node at a level k» the upper neighborhood at level k + 1 is searched for P-nodes. The
P-node at level k from which the search originates is refcred to as the "source" node.

A source node at (x, y, k) can have two possible neighborhoods at level k + 1 depending on
whether a sample exists at (x% y, k+1). 'ITicsc two neighborhoods arc illustrated in figure 7-23. In
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this figure, circles represent sample points at level k while boxes represent sample points at level
k + 1. The source node has a cross through it. If k is even (i.e. on a VI sample grid), these two
neighborhoods are rotated by 45 °\
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Figure 7-23; Two Possible Upper Neighborhoods

" There are two search procedures that are used to detect P-nodes at an upper level, depending on
whether the source node at (x, y, k) has a sample directly above it, i. e. at (x, y, k+1). The test which
tells whether a sample exists at (x, y, k+1) is used to determine which search procedure is used. That
is, if:

x mod 2k = y mod 2k = 1

is true then the source node at (x, y, k) has a sample dirccly above i t

If a sample exists above the source node, then it is tested to see if it is a P-node. If it is a P-node,
then only this node is examined.

If no sample exists above the source node, or the sample above the source node is not a P-node,
then a two stage search procedure is employed. The first stage examines the nearest 4 upper
neighbors. If no P-node is found in this first stage, a second stage searches for P-nodcs in an cnlai^ed
neighborhood. The neighborhoods examined by these search algorithms arc illustrated in figure
7-24. In this figure the sample points at level k which have no neighbor arc illustrated with a circle.
Points where samples exist at both levels arc indicated by a I, or a 2. Those points with a 1 are
examined in the first stage, those with a 2 are examined in the second stage if no P-nodcs arc found in
the first stage.

The second stage search does not occur for any direction within 45° of a P-path pointer in the
source node. I l l s helps prevent nodes from interfering with the flag stealing process at other points
on the P-path.
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7.5.3 The Modified Flag Stealing Process

The principles of "flag stealing" were described during the discussion of detection of M*-nodes
given in section 7.4.2. This process must be modified to use with detecting L-nodes, because each
L-node at level k + 1 is likely to be examined by several P-nodes at level k, some of which may be
displaced along the P-path ridge. Since the value can change along a 3-D ridge, nodes further along
the ridge might improperly clear the .L-flag of nodes above them, breaking the L-path. The
modification is based on the principal that all of the lower neighbors must have a larger value, before
the upper P-nodes L flag will be reset.

Modified flag stealing employs two temporary bits at each node which denote whether any lower
neighbors have a smaller value ( flag Tl) or a larger (or equal) value (flag T2). After flag stealing is
executed at level k, the L-nodcs at level k + 1 arc examined, and any with node which has its T2 flag
set and its Tl flag clear has its L flag cleared.

A search neighborhood which is of restricted duration along a ridge is also used. A larger
neighborhood is needed for directions perpendicular to the ridge because of the lateral drift that can
occur with P-paths as the level decreases.

733.1 Modified Flag Stealing

If a source P-nodc at (x, y, k) has an upper neighbor at (x, y, k + 1) which is also a P-nodc, then
only this neighbor is examined by this source node.

If the source P-nodc at (x, y, k) has no upper neighbor, or the upper neighbor is not a P-node, then
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this process is applied to the nearest upper 4 neighbors. If no P-nodes are found in the nearest upper
neighbors, the search is applied to an enlarged upper neighborhood. As mentioned above, the second
stage search is inhibited for all samples within 45° of a P-path pointer in the source node.

When a P-nodc is found at level k+1, its value is compared to that of die source node. If the value
of the upper neighbor is larger and the upper neighbor has its L flag set, then the T2 flag of the upper
neighbor is set to indicate that the upper neighbor has a lower neighbor with a smaller value. If the
value of the source node is larger, then ihc L flag of the source node is set Also, if the L flag of the
upper neighbor is set, then the Tl flag of the upper neighbor is set to indicate that the upper neighbor
has a lower neighbor which attempted to steal its flag.

7-5.3.2 Resolving the Tl and T2 Flags

After the L node deration process has been run at level k, the L-nodes at level k + 1 are processed
to resolve the Tl and T2 flags. At each L-nodc at level k + 1, if its Tl flag is set and its T2 flag is not
set then all of its neighbors at level k arc larger. In this case, its L flag is cleared.

This modified flag stealing process will permit two or more P-nodes at the same location in
adjacent levels to be L-nodes. This can occur when an elongated form has a sudden decrease in
width. For such a form, the L~path can travel straight down through the levels. An example of this
occurs with in Ihc Piston Rod images and can be seen at column 41, rows 97 to 109 in levels 7 and 6
of the Piston Rod description shown in figures 7-27{d) and 7-27(e). The L-nodes at the upper level
arc inhibited from losing their L-flags, because other P-nodes at in the lower level P-path have
smaller valu& and thus set their Tl flag.

7 5 3 3 liifclsf L-Mto

After she Tl and T2 flags have been resolved a process 1$ executed to form two way pointers
between all adjacent L-mnles. This pFaecss -runs as ftiliowi Each 1,-node at level k + 1 examines all of
its neighbors at level 14*2 within its 2Mi stage nrighboifaxKi m4 all neighbors at level k+1 for which
it hm a l^path pointer but no L-path pointer. If any of these neighbors are an ivnode, an M-mode, or
an M*~H0de a two nay pointer Is made bj setting the appropriate pointers in the UP, SAME and
IX) WN plater bytes of the neighbor and the source L<itod&

7,6 Examples

Hits Mellon *bo*s ^ws examples of \i*\ M Path*. L Paths and P Paths. These examples are
fm )2\QI\ "ft ihrough * *»f ihe r*mi WJM p?sa>n rod m the image shown m figure 7-25 below. This
u j j is \:vm ll^ GM "Bin af Farts" Jala h i ^ [Ifcard 77}.

:g::r^ m-ZH t) ZwtrA ^ i ^ L ^ ihc ijppcr third «*f the left miM piston rod. These figures are
an *)t>. r-^ics ^*x:d A 4 n:%c\ ^h;di H tic •^imj'h rate ai !eiel 5. figures 7~26fg) and
-ih) ^-V'-'A A sTu--:r '-MTii^ ?ihxh > -i^n ::^ >:p^r';?} corner of tin ^m&m ^hmn in parts a
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Figure 7-25: Piston Rod Image. Sampled at 256 by 256.
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Figure 7-26(a) is from level 10 of the DOG transform. At this level the data has been sampled at
16 V2* and so this figure is very sparse. Note the M node at row 81, col 49. This is the start of an M
path that leads into the piston rod.

Figure 7-26(b) shows the same window at level 9. As is often the case there are short spurs hanging
off of the M node at row 81, col 33.

Figure 7-26(c) shows the same window at level 8. At row 73, col 41 is the M* node which serves as
a landmark for the upper part of any piston rod. The two L nodes at row 65 are spurs; they do not
connect to anything else. The L node at row 89 is part of an L path that travels down through the
levels and down through the rows to become the long part of the piston rod.

Figure 7-26(d) shows a phenomenon which is very rare; This is the only instance that we have
observed. On rows 73 and 81, The values in columns 41, 49, and 57 are the same. The result is a pair
of parallel adjacent ridges of the same sign. This is not a serious problem as these points are not
strong enough to be L nodes. Note also that the M path has split into two parts. Both parts have two
way pointers to the M* node at level 8.

In figure 7-26(e) the shape of the upper part of the piston rod begins to become apparent. Note
that an M node has appeared in the middle, at row 77, col 45. This M node is attached by P paths to
nearby M nodes in 4 directions. These paths resulted when the spurs attached to this central M nod
were extended. This central M node evolves at lower levels into the oval shaped region which occurs
in the center of the top of the piston rod.

Figure 7-26(0 shows level 5 of the description. Note the M* node on row49, column 45. This
marks the large region at the top of the piston rod. Notice also that two L paths extend from this M*
node. These L paths drop down to lower levels as that part of the piston rod narrows. Also note that
at this level the negative ridge surrounding the inner oval has appeared. The oval is not connected to
the rest of the piston rod in this or any of the lower levels.

Figure 7-26(g) shows the upper right corner of the window from the previous subfigures, as scene
in level 4. At this level the data is sampled at 2VT. Note that the L path begun in level 5 continues
into this level Note also that at this level the negative ridge which surrounds the oval also forms a
part of ae L path.

Figure 7-26(h) shows the transform at level 3. The L path that describes the ring of the upper part
of the piston rod dips into this level in its narrow parts. The P path for this form is broken at this
level This is an artifact of the ridge detection process. ITie negative ridge outside of the piston rod
has an M* at this level This indicates that a rounded corner occurs in the background (A negative
comer!) The M* occurs because this comer is not sharp. ITic negative ridge between the outer
positive ring, and the inner oval also contains two M**s at this level These correspond to negative
corners in the inside of the ring. The L path attached to these negative M**s extends up to level 4.
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Figure 7-26c: Top of Piston Rod at Level 8
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Figure 7-27(a) shows this window at level 10. Because of the sparse sampling, there are only 2 P
nodes, which are an extension of the ridge path for the middle of the piston rod. The same is true for
levels 9 and 8, although one can see the values increasing as the level decreases.

At level 7, figure 7-27(d) shows this P path with two L nodes at rows 97 and 105. These L nodes are
part of the L path that started with the M* node at row 73, col 41 of level 8 shown in figure 7-27(c).
This L path continues into level 6, as shown in figure 7-27(c) as the upper part of the piston rod
narrows. Note, also, how the negative ridges move closer to the positive ridge as the filter radius
becomes smaller. This is a classic example of the configuration of ridges that occurs for a uniform
width longish object

The L path finally settles into level 5, as shown in figure 7-27(0- This L path connects to the M*
node at row 133 col 41, and then continues down the piston rod.

Figures 7-27(g) and 7-27(h) show blown up versions from the middle of the window shown in the
previous figures. In these two figures, the nodes are printed with a spacing of two columns; the
sample rates are iVl and 2, respectively. Figure 7-27(g) shows this smaller window at level 4. The
positive ridge at this level has a lower value than at level 5. Figure 7-27(h) shows this smaller window
at level 3. At this level the positive ridge has split into two ridges, representing the edges of the piston
rod. The spurs attached to the M nodes at this level extended to reach each other, giving an



141

occasional path between the two positive ridges.
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Chapter 8
Matching the Representation

This chapter concerns matching the representations of pairs of gray scale forms, particularly in
situations where:

• the iwo forms are in digitized images of the same object (or very similar objects), and

• one of the objects was at a different distance and/or 2-D image plane orientation from the
camera than the other at the time of digitization.

This chapter provides examples of the rotational quasi-invariance and the size quasi-invariance of
the representation developed in the previous chapters. However the techniques involved in such
matching can also be used for stereo image interpretation and object recognition. Thus, it is worth
while to develop principles and approaches to such matching while demonstrating the properties of
the representation.

He remainder of this section discusses the role which correspondence plays in stereo
inteiprctation and structural pattern recognition. Section $2 summarizes the matching techniques
which arc illustrated in this chapter. These techniques are preliminary; matching was not within the
domain of this research. These techniques were explored to assist in demonstrating the usefulness of
the representation and as a preliminary tool at an important problem which we will address when
this disscrtatton i$ complete. This is followed by a section which presents the test data (section 82)
which was used to verify the ske and rotational in variance of the rcpnsentation.

Sections S3 aid S.4 cotcem the use of M-nodes (local peals at a level), M*-nodcs (local peaks
among the levels}, and P~path$ fridges at a level) for dctennining the rotative position, orientation
and 4lzc of two icprescntauons of the same (or similar) gray scale forms* In section 83* the concept
of connected M*nodcs is defined and an example is presented* Section 8.4 illustrates the
zmtmpQn^mtt t*f M-noctes aid M*Hnode& in rotated m4 sealed linages of an object using the teapot
images. This section ends by showing the com$pondcnce of the Mknodcs in a stereo pair of paper
wad images. Section $S discusses the use of the M^node aHYcqxutdcnce to align L-paths (ridges
amtmg the levels! from rotated and scaled images of an object and describes a simple similarity
measure for dibgned (--paths. ITtts section cuds with examples of miichiiig the L~paths from the
righHJtlc iJhkHtuw of the teapot tna§e*
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8.0.1 Applications of Correspondence Matching

This Subsection briefly introduces the matching problem in the domains of stereo matching and
structural pattern recognition. It also describes the properties of the representation that make it
useful in these domains.

In image understanding there are several problem domains where it is desirable to determine the
correspondence between parts of two representations. One such problem domain is interpretation of
pairs of stereo images to obtain depth information. Depth information is obtained from a stereo pair
of images by triangulation. Triangulation depends on knowledge of the relative positions and
orientations of two cameras, the so-called "camera parameters" [Duda 73]. The "stereo
correspondence" of surface points in the images is also required. This is the positions of pixels in the
two images that correspond to the same point on the surface of an object. It is then possible to set up
the projective geometry that relates the two cameras to points on the surface of objects. Given this
geometry, the distance may be computed from one of the cameras to each surface point for which
correspondence is known. These distances provide a map of the 3-D form of a scene.

Before the depth to a surface point can be computed, it is necessary to determine the location of
the pixels which correspond to that surface point in each of the images This stereo correspondence
problem is the most difficult problem in stereo image interpretation. The usual approach to this
problem is to correlate patches in the two images. But this is an expensive process, and there are
problems with determining how large a neighborhood to correlate.

The representation developed in the previous chapters has properties which greatly simplify the
process of determining the correspondence of patterns of pixels in two images.

1. Only peaks correspond to peaks. The existence of peaks or M-nodes provides a set of
landmarks which can be used as tokens in the matching process.

2. The multi-resolution hierarchical structure of the representation permits the
correspondence process to commence with the most global M* nodes for each form.
Since very few such symbols exist at the coarsest resolution, the complexity of this process
is kept small.

3. The connectivity of M-paths permits the match information from a coarse resolution to
constrain the possible set of matches at the next higher-resolution level. Thus what could
be a very large graph matching problem is repeatedly partitioned into several small
problems.

Another important problem domain in image understanding is classifying two dimensional gray
scale forms, l l ie representation developed in this dissertation can be used for a structural pattern
recognition approach to this problem. That is, a gray scale form may be classified by measuring the
similarity of its representation to a number of prototype representations for object classes. This
approach was described briefly in chapter 1 for both 2-D gray scale forms and for 3-D shapes.

The properties of the representation cited above facilitate its use for constructing object-class
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prototypes and for matching prototypes to object representations. An object class prototype may be
formed by constructing the representations of a training set of images. The configurations of M-
patlis and L-paths that occur for a given class of objects can be determined by matching the
representations from this training set The prototype description can be composed of the M-paths
and L-paths that occur in the majority of the descriptions.13 This provides a simplified
representation which can serve as an object class prototype. The multi-resolution hierarchical
structure of the representation permits the set of possible matching prototypes to be reduced on the
basis of the few coarsest resolution symbols.

The study of creating and matching such prototypes could be a dissertation in itself. Only a few of
the more obvious principles and techniques are described below.

8-1 A Matching Procedure for Descriptions of Similar Grey Scale
Forms

This section describes a matching procedure for descriptions of the same or similar objects from
two images. The investigation of such matching is a research topic which we expect to pursue in the
near future. The procedures described below are very preliminary; matching techniques were not
within the scope of the research proposed for this dissertation. These techniques were investigated to
assist the demonstration of the usefulness of the representation for matching, and to show the
in variance of the representation to changes of the size and orientation of a gray-scale form.

Matching is treated as a problem of comparing a reference description to a measured description.
In this process the reference description is transformed in size, orientation, and position so as to bring
its components into correspondence with the measured data. The goal of this process is to determine:

• the overall relative position, orientation, and size of the of the forms represented in the
two descriptions,

• which M*-nodes, M-nodes, and L-nodes in the reference description correspond to which
M*-nodes, M-nodes, and L-nodes in the measured description (the correspondence
mapping),

• local relative changes in position, orientation, and size between parts of the reference
description and the corresponding parts of the measured description,

• parts in either of the descriptions that do not occur in the other description.

Such inatehing consists of several sieps:

L Initial alignment: In this stage the most global M*-nodc(s) is(arc) used to determine the
relative positions and sizes of the two descriptions.

B

cafe.
Although 1MB technique has been tried for i few hind examples, we have not, as of this writing, tried to implement it in
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2. Orientation: Given the relative positions and sizes, the correspondence of M-nodes and
L-nodes in the few levels below the most global M*-node(s) can be used to estimate the
relative orientations of the two descriptions. This correspondence can be found by the
same procedure used for the following task.

3. Correspondence of M-nodes: Each level in which there is more than one M-node in the
description of a form, gives a graph composed of M-nodes connected by ridges (P-paths).
Each P-path has the attributes of distance and orientation between the M-nodes at either
end. Techniques exist for determining the correspondence between nodes in such a pair
of graphs. Indeed, when the number of nodes is small it is not unreasonable to
exhaustively examine every possible correspondence. A similarity measure, such as the
average difference in the lengths and orientations of the P-paths may be used to
determine the correspondence which is most likely. A fundamental principle in matching
descriptions from an SDOG transform is to use the correspondence at the previous (lower
frequency) level to constrain the set of possible correspondences at the next (higher
frequency and higher resolution) level. This prevents the computational complexity of
matching M-nodes from growing exponentially as the number of M-nodes grows
exponentially with increasing resolution.

4. Correspondence of L-nodes: Forms which are elongated can result in a description
which contains few M-nodes. The shape of such forms can be compared by comparing
the L-paths in their descriptions. Comparing L-paths consists of two stages:

• alignment of the L-paths by aligning the M*-nodes which terminate thee L-paths at
each end, and

• computing the distance of each L-node in the reference L-path to the nearest L-
node in the measured L-path.

Determining the correspondence of individual L-nodes in two descriptions is not a
reasonable approach because the distance between L-nodes in an L-path varies by as
much as a factor of VT with orientation. Measuring the distance from each L-node in
one description to the nearest L-nodc on the second description allows the measures of
maximum distance and average distance to be used to compare the entire L-path

8.2 Test Data

The matching techniques described in this chapter arc illustrated with representations from five
teapot images.14 ITicse images were formed by photographing a scene composed of a teapot flanked
on cither side by a cup: all of these objects are on a white table cloth. The photographs were taken
with a 35 mm camera using a 55 mm lens and Pan-X black and white film. The negatives were
digitized by SRHntcmational to 512 by 512 by 8 bits. Test images of the teapots were formed by
cropping 256 by 256 pixel sections from each image. The pixel values in these cropped sections were
then normalized to have a mean of 128 and a standard deviation of 32.

14
A sixth teapot image was also formed and processed but the tape on which the image was stored became unreadable

during preparation of Hits di&grtation
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Images were formed at three scales by moving the teapot away from the camera. This movement

changed the position of the teapot and cups with respect to tlie lights, causing some changes in

shading and shadows among the images of different sizes. The distances are such that if the size of

the smallest teapot image is defined as 1.0, tlie middle scale images are larger by a factor of 1.14 and

the largest images are larger by a factor of 136.

At each distance, a second photograph was taken with the camera tilted by approximately -15 .

Thus there were originally six teapot images. The scales and 2-D orientations of the five images

shown in this chapter are summarized in table 8-1.

Teapot §E£ Qncntation
1 L0 0°
2 1.14 0°
3 1.36 0°

4 1.0 -15°
5 L14 -15°

Table 8-1: Size and Orientation of five Teapot Images

Reproductions of these five test images are displayed below in figures 8-1 through 8-5. To produce

ihesc figures, the original digitized images were displayed with the Grinnell image display on the

O M U Computer Science I3ept, IDS VAX. Fach display was zoomed by a factor of 2 to simulate the

cropping that produced the teapot image, "The zoomed images were then photographed with the

Dunn film recorder attached to the Grinnell monitor. The resulting 8" by 10" glossy prints were then

half toned to produce ibe images shown in figures 8-1 through 8-5.

Section 14 below describes the results of matching for teapot images # 1 through # 5 .

8*2,t Example of Band-Pass (mages of Teapot

Following l ie pictures of the test data is a picture showing the band-pas images for teapot # L

The forma! for this f>and-p*ts$ image is shown in figure 8*6. The actual band-pass images for teapot

# 1 arc shown in figure 8-7. The level 0 band-pass Image (also known as the high-pass residue) is

sh«*a in the fewer nghl comer. The upper left comer shows the level 1 band-pass Image, The level 2

kind-pass image is shewn in the upper right corner. The level 3 and 4 band-pas images are shown

underneath the level I image? mi so on, down to level 13.

The even level image* I levels 2,4, 6,,..,12 ) arc sampled at v T . In order Co display these images

on a raster display, each pixel i*n an «̂ fd nn* is used lo fill iftc undefined location to Its right and

each pixel on an even row K used to fill the undefined location tin its left. Ibis creates an interlocking

hnck-iike texture tn the displa). This filling was done only for display purposes,

ITxc haml-pa&* levels 12 Uwwgh 5 arc impurtmt la the examples given in section 8A Since these

levels are so hard le see in figure S**\ the> are *ht>wn ettijrgcii m figure 8-9, Iliis figure was formed

h^ m m i n g the inph% of lewis 12 through $ by a fiietor of 4. I'he format for this image is shown in
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Figure W: Teapot # 1 . Size = 1.0, Orientation = O.0a
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fcltt*

Figure 8-3: Teapot # 3 . Size = 136, Orientation = 0.0°
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Figure 8-4: Teapot # 4 . Size = 1.0, Orientation = -15.0°

.J



Figure 8-5: Teapot #5 . Size =1.14, Orientation = -15.0°



161

Runt 8-7: Band»PwIm^csfOTL<welsl3Tlirau^iOofTeaix»#l
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Level 5

Level 7

Level 9

11

J
12

Level 10

Level 8

Level 6

Figure 8-8: Format for Display of Zoomed Band-Pass Levels 13 through 5
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8.3 Matching M-Paths

This section describes how the M-paths from two representations may be matched to determine
the correspondence of M-nodes. The techniques described in this section employ only information
that is intrinsic to M-paths and P-paths. For clarity the section starts by describing how this
information is obtained from the representation. This additional information may be thought of as
either an abstraction from the representation, or as something that is computed from the
representation Mon the fly". After this M-nodc representation is described, the process of obtaining
the initial alignment based on the highest level (lowest resolution) M* node is described. The
correspondence of lower level nodes in the test images is then shown.

The processes described in this section will not work for gray-scale forms which are very long and
thin (e.g. roads, rivers, bars, stripes etc.) and do not have ends within the image. These forms are
described primarily by L-Paths. Matching L-paths is discussed in section 8.5.

8.3.1 Abstracting M-Paths from the Respresentation

Unless a gray scale form is a thin form with its end off of the image, it will have one or more
M-Paths in its representation. The M-nodes in these M-paths provide tokens for aligning pairs of
representations and determining whether structures that exist in one image also exist in another, as
well as determining how the structures differ in two images. Determining the correspondence of
M-Paths in two representations depends on information which is intrinsic to the M-nodes and the
P-paths that connect M-nodes. In order to illustrate M-path correspondence more clearly this section
describes this information and how it may be obtained from the representation. The first concept
that must be elucidated is that of connected M-nodes.

83.1.1 Strongly Connected M-Noies

Definition: Two M-Nodes are said to be *'strongly connected" if and only if:

1. They exist at the same level of the same representation,

2. They are not adjacent to each other (ie. are not part of the same M-path ),

3. They are linked by a P-Path or sequence of P-Paths.

In most cases, M-nodcs which arc at the same level and of the same form will be strongly
connected. When two M-nodes arc connected by a P-Path with no intervening M-Nodes along the
P-Paih between them, they are said to be "directly" strongly connected. If a third M-Node occurs
along the P-Path between the two M-Nodcs, then the two (outer) M-Nodcs arc said to be "indirectly"
strongly connected. This distinction will come in handy when discussing M-Path matching in the
presence of spurious or missing M-Nodes.
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8.3.1.2 Weakly Connected M-Nodes

Definition: Two M-Nodes are said to be "weakly connected" if and only if:

1. They exist at the same level of the same representation,

2. They are not adjacent,

3. They arc not linked by a P-Path at their level,

4. Other M-Nodcs within one level in their M-Paths are strongly connected.

The concept of weakly connected M-Nodes provides for the case where a P-Path has been broken
either for reasons intrinsic to the form or because of an error in the P-Path detection algorithm.

Weakly connected M-Nodes can be detected by examining the connectivity above or below them
in their M-Paths.

M-Nodcs have certain attributes based on their position in the transfomi space (x,y,k). They also
have an attribute that is the value of the filter at that level and location. Also, if desired, they can be
assigned a label on the basis of the configuration of oppositely signed ridges around them. Such
labeling can simplify the correspondence processc.

Connected M-Paths are "linked" by two way pointers. Each half of a pointer may also be assigned
the attributes of distance (D) and orientation (0), which are defined as:

Distance: The distance between two M-nodes is the cartesian distance measured in terms of
the number of samples at that level. In levels with a \fl sample grid, the distance
along the x and y axes are in units of V ? .

Orientation: The orientation between two M-nodcs is the angle between the line that connects
them and the x axis in the positive direction (right). For convention, this angle
ranges from 0° to 359° in the counter-clockwise direction. Up is 90 , left is 180
and down is 270°.

83.13 Example of Abstracted M-nodes and P-Paths

Several figures are shown in the next sections to illustrate connected M-Nodcs and M-Paths from
the upper levels of the teapot images. The following example illustrates how these figures arc derived
from the representation.

Figure 8-10 shows the M-eodcs and P-nodes from level 7 of teapot image # 1 . Level 7 is the
highest level with more than one M-nodc. Ikxause of space limitations this figure does not include
all of the negative ridges surrounding the teapot This figure shows three positive M-nodcs,
connected by P-palhs. Also present is the negative ridge above the teapot, the negative peak inside
the handle of the teapot and a part of the negative ridge below and to the left of the teapot. The
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most important feature of this figure is the presence of the three connected positive M-nodes (peaks)
and the P-paths that connect them.

Values for nodes - Level 7 Potl7.swf L Paths and M Paths

73 81 89 97 105 113 121 129 137 145 153 161
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Figure 8^10: Level 7 from Teapot Image # 1

The three positive peaks from level 7 of teapot # 1 are shown abstracted from the band-pass data
in figure 8-11. The direct P-Path links between these M-nodcs are illustrated with solid arrows and
labeled with circled numbers. The indirect P-Path link between the right-most and left-most M-nodes
is shown as a dotted arrow labeled with the circled number 3. The numbers arc an index into a table
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14 M

19 M

73 M

Figure 8-11: M-nodes and P-Paths for Level 7 of Teapot #1

Level 7

of attributes. The attributes for these particular links are given in table 8-2 in the next section. This
same set of links is included in figure 8-12. These numbers are also used to show the correspondence
which was assigned by hand matching between these links and the same links in the other teapot
images,

8.4 Examples of M-node Correspondence

This section presents examples of M-node correspondence using the most global levels of the
teapot images. In each of the examples, the M-nodes from the most global level (level 12) to the
second highest level with more than one M-node are used. .

This section begins with the M-node graph for levels 12 through 6 of teapot image # 1 . This is
followed by the results of hand matching this graph to teapot image #3 (scale = 1.36, orientation =
0°) and to teapot image #4 (scale = 1,0, orientation = -15°). Other examples of M-node matching
for the teapot images arc then presented and discussed. The section ends with M-node matching for
the upper levels of the stereo pair of paper wad images.

Figure 8-12 shows the upper M-nodes, M-Paths and P-path links for teapot image 1. In figures
8-12 and the other M-nodc graphs, the M-path links are shown as a dark line. Lighter solid arrows
arc shown between directly linked M-nodes at each level. Dashed arrows arc shown connecting some
indirectly linked M-nodes.

Each P-path link in the M-nodc graphs (such as figure 8-12) is labeled with a circled number.
These labels were assigned by hand on the basis of the length and relative orientations of the P-paths.
In the assignment of the labels in the second level with more than one M-nodc, the correspondence
of Oic M-nodcs in the level above this level was used to constrain the possible set of correspondences*
As mentioned above, these numbers also serve as an index into a table of attributes for the links.

These attribute tables give the values for dx, dy\ D, and 9 for each P-path link. The positive
directions for dx and dy arc the same as used in the image: +x points right, +y points down.
However, note that 8 increases in the counter-clockwise direction. In these tables,in the levels which
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are at a \/2 sample grid, the distances dx and dy are recorded in units of VT. In cases where an
M-node spans two adjacent samples, the M-nodcs position is assigned at the mid-point between
them. This results in values of dx or dy that have fractional parts of .5 in the cartesian sampled levels,
and .25, .5 or .75 in the VT sampled levels.

In these tables, orientation (0) is measured in degrees. On a cartesian grid, at distances that are
typically 5 to 10 pixels, angular resolution is typically 5 to 10 degrees. Of course, the longer the
distance," the more accurate the estimate of orientation.

8.4,1 M-nodes for Teapot Image # 1

The M-nodes for levels 12 through 6 of teapot image # 1 are shown in figure 8-12. As shown in
table 8-1 this is the smallest "non-rotated" teapot image. In levels 12 through 9 of figure 8-12 only a
single M-node occurs in the teapot. These M-nodes all occur within a distance of two samples of the
M-node above them, and are thus linked into a single M-Path.15 This M-path is referred to as the
principal M-Path. The M-node at level 8 has the largest value along this M-path and is thus marked
as an M*-node. This M*-node corresponds to a filter with a positive center lobe of radius R + ^ 18
pixels16 ( see equation (6.5)) or a diameter of 37 pixels. This corresponds to the form in the image
that results from the overlap of the shadow on the right side of the teapot and the darkly glazed upper
half of the teapot which appears as a light region in figure 8-1.17 At level 7, additional detail begins
to emerge. M-nodes occur over the upper right corner of the teapot and over the handle region.
These M-nodes are joined to the M-nodc on the principal M-path by a P-Path. These P-Paths are
illustrated by a solid arrow.

The indirect links between the M-node on the principal M-path and other M-nodes are shown as
dashed arrows. There are two reasons for showing the attributes of the indirect links between these
M-nodes:

1. In some of the teapot images, the M-node corresponding to the M-node of value 19 at
level 7 does not occur. In such a case the indirect link labeled as 3 occurs as a direct link.

2. Quantization introduces an error into the attributes D and 0, The magnitude of the error
in the D term is independent of D. Thus the proportion of D dominated by the error
decreases as D increases. The error in 0 decreases as D increases, Thus longer links
provide a more accurate measure of the scale and orientation of the object

Five M-nodcs occur in level 6. Three of these M-nodes occur underneath (within 2 samples) of
M-nodcs from level 7. These three M-nodcs arc thus part of three M-paths. The remaining two

Fhc M-path links appear as straight dark tines in figure 8-12 although in fad there can be a lateral shift of op to two
samples between their positions. M-paili linking was described in section 7.4.

16A pixel is the sample xatc in the original mage

17.
The teapot images were digitized from negatives. Thus dark forms appear light in figures 8-1 through
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P-Path (intra-level)

M-Path (inter-level)

32 M Level 12

37 M Level 11

50 M Level 10

63 M Level 9

14

19 M

75 M* Level 8

Level 7

14 26 M*
29 M

21 M k-
M

Figure 8-11- M-nodn and P-Paths for Levels 12 to 6 of Teapot # 1

Level 6
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P-Path Level dx dv D
1
2
3 (1&2)
4
5
6
7
8 (4&5)
9 (4&5&6&7)

7
7
7
6
6
6
6
6
6

-6
-5
-11
-4.0V2
-3.25 V I
-3.0VT
0.25 Vl
-7.25 VI
-lOVT

-2
3

1
-2.0V2
1.5 VI
0.0
3.25 VI
-0.5 VI
2.75VI

6.32
5.83
11.04
6.32
5.06
4.24
4.6
10.2
14.6

161.5°
210.9°
185.2°
153.4°
205.8°
180°
265.6°
176.1°
195.3°

Table 8-2: P-Path Links for Levels 7 and 6 of Teapot # 1

M-nodes are in fact the highest levels of two more M-paths. For simplicity, this illustration shows
only the indirect links for the M-nodes that are part of established M-paths at level 6.

Note that one of the M-nodes at level 6 is an M* node. This M-node corresponds to the upper left
corner of the teapot. This M*-node marks the left end of the dark region of glaze on the upper half
of the teapot. The width of the positive center lobe of the filter which corresponds to this M*-node
gives an approximation of the width of the darkly glazed region.

8.4.2 Initial Alignment to Obtain Size and Position

An initial estimate of the alignment and relative sizes of two gray scale forms may be constructed
by making a correspondence between their highest level M*-nodes. This is illustrated by comparing
the M-nodes and links in figure 8-12 to those in figure 8-13 shown below. Figure 8-13 shows the
M-nodcs and P-Path links for teapot number # 3 . Recall from table 8-1 that teapot # 3 has the same
orientation as teapot # 1 and is scaled larger in size by a factor of 1.36 which is just less than Vl.
The distance and orientation for each P-Path link in teapot # 3 levels 12 through 7 is shown in table
8-3 below.

The highest level M*-node in teapot # 3 occurs at level 9. The fact that this M*-node is one level
higher than the highest level M*-node for teapot # 1 confirms that teapot # 3 is approximately
VT larger than teapot # 1 .

correspondence of the highest level M*-nodcs from these two teapots gives an estimate of the
alignment of (he two teapots as well as the scaling. The correspondence tells us the position at which
teapot # 1 , sealed by V T in size will match teapot # 3 . Hie tolerance of the initial alignment is
dependent on which of the teapots is designated as a reference pattern* The reference pattern is the
one which is sealed* rotated and translated so that its components arc brought into correspondence
with the second, observed pattern. In this matching (as well as with stereo interpretation) which
image is used as the reference image and which image is used as the data image is arbitrary. The
tolerance of the initial position alignment is ± the sample rate at the level of the M*-node in the data
image. If teapot # 3 is designated as the data image, then the sample rate at level 9 determines the
tolerance. ITie positioning tolerance at level 9 is ±8%/? pixels.
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P-Path (intra-Ievel)

M-Path (inter-level)

16 M

18 M c N / 24 M ^ 2 9 M

26M

66M

I
78 M

I
87 M

I
I

59 M*

Level 12

Level 11

Level 10

Level 9

83M

72 M

Level 8

Level 7

Figure &-13: M-nodcs and P-Paths for Levels 12 to 7 of Teapot #3



10.81
6.94
4.12
4.61
5.02
10.11
15.4
6.67

191.3°
149.7°
194.0°
192.0°
264.3°
171.5°
193.1°
257.0°
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P-Path Level dx_ dy. D
3 8 -7.5VT 1.5V2
4 7 -3.5 -6.0
5 7 -4.0 1.0
6 7 -4.5 1.0
7 7 -0.5 5.0
8(4&5) 7 -10.0 -1.5
9 (4&5&6&7) 7 -15 3.5
11 7 -1.5 6.5

Table 8-3: P-Path Links for Levels 8 and 7 of Teapot # 3

The tolerance of the size scaling is less than ± \ / 2 . The correspondence of the highest level
M*-nodes provides an estimate of the size scaling factor which is a power of %/2~. Such an estimate is
sufficient to constrain the correspondence process. A more accurate estimate can be obtained from
the average of the ratio of D's for links whose correspondence has been found. An example of this
will be given in the next section.

8.4.3 Determining Fur ther C o r r e s p o n d e n c e and Orientation

The matching process starts by finding the correspondence for the highest level M*-nodes. This
provides the process with an initial estimates of the size and position of the two forms. The next step
is to find the correspondence of lower level M-nodes to refine the estimates of relative size and
position, discover the relative orientations, and discover where one of the forms has been distorted by
parallax or other effects.

Let us continue with our example. An M-nodc for the upper left corner of teapot #3 does not
occur. The change in scale from teapot # 1 to teapot #3 was not enough to bring this M-node up to
level 8. This may also be a result of the slight difference in shading that resulted from moving the
teapot with respect to the lights and camera in order to size scale the object, l l ic fact that the M-node
of value 16 in level 8 of teapot #3 corresponds to the M-nodc of value 13 in level 7 of teapot #1
must be discovered from the position relative to their principal M*-nodcs and the distance and
orientation from the M-nodc on the principal M-path at the same level.

The values for D and 8 for the link attributes in levels 7 and 6 of teapot I arc compared to the
attributes in the corresponding links from levels 8 and 7 of teapot 3 in table 8-4. The reader should
remember that all of these links arc constrained to begin and end at samples in their respective levels*
Because we are dealing with distances of between 4 and 15 samples at arbitrary angles, there is
quantization noise in these attributes. The differences in orientation are shown in the column labeled
# | - # r Except for link 3, these values show a consistent small rotation in the counter-clockwise
direction for the links from teapot 3. In light of this, the image data was re-examined after compiling
this table. landmarks were chosen at the base of the handle and the base of'the spout in both images.
In teapot # 1 , this baseline had an angle of 3.8° relative to the raster line. In teapot # 3 , this baseline
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Teapot 1
P-Path Dl

3
4
5
6
7
8
9

11.09
63
5.1
4.2
4.6
10.2
14.6

Average Error

•l

185°
153°
206°
180°
266°
176°
195°

Teapot 3
D3

10.8
6.9
4.1
4.6
52
10.1
15.4

*3

191°
148°
194°
192°
264°
171°
193°

-6°
5°
12°
12°
2°
5°
2°
4.57°

D3 /D1

0.974
1.095
0.804
1.09
1.13
0.99
1.05
1.020

Difference
D3-°l

-0.2
0.6
1.0
0.4
-0.6
-0.1
0.8
0.257

100x(D3-D1)/D3

-1.8%
8.7%
24.4%
8.7%
-11.5%
-1.0%
5.2%
4.3%

Table 8-4: Comparison of D and 0 attributes for Teapots 1 and 3

had an angle of 7.1°. Thus it appears that the two teapots actually have a relative change in
orientation of approximately 33°. The actual values of 0 fluctuate more than this due to
quantization error from sampling and changes in shading.

The ratio D3/Dj would show a factor by which the lengths consistently shift when the teapot is
scaled by 1.36. Since this shift in scale was enough to drive the corresponding P-paths in teapot # 3
up to a new level but less than the y/l = 1.41 scale change between levels, an average ratio of
D 3 /D| = 1J6/L41 = 0.96 was anticipated. In table 8-4 we see that this average ratio worked out to
1,01 Our conclusion is that quantization noise and changes in shading accounted for most of this
diffidence. The actual differences in length, D3 - D r show that the lengths were always within one
sample. Except for link 5, the percentage differences, (D3- D^/Dj were generally small ( <10%).
The conclusion front this experiment is that the correspondence between M-nodes from similar
giay-scafe forms of different sizes can be found provided that die matching tolerates variations of the
lengths of P*paths of up to 25% and variations in the relative angles of up to 12 .

8,4*4 CorT-esponcence of M-nodes Under Rotation

P i p i t 8-14 shows the M-ftodes, M-patfc& and P^path links for levels 12 through 6 of teapot image
# 4 This teapot image is the same size as teapot image # 1 , but rotated by approximately -15*.
Figuit 8*14 cmtains all of the M-nodc$ fotiid In figure 8-12 (teapot # i) plos one additional M-node
al level 6. l i e values for dx, dy, IX and § for the links to teapot 4 are shown in table 8-5. These
values are corapaitd to those from teapot # 1 in table 8-6-

This eomparfcon sttctws an average rntmion for the P-Paths in teapot # 4 of-13.7° with respect to
the P-Paths in teapot # t 11 is is %er%j dim to the 45* which the rotation was estimated to be from
the ph#fofraphi h% with the n « scaling example ii tie previous section, all of the lengths match
within one sample, "fie percentage diffeittcc in the length of links ranges from -9% to 14%.
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P-Path (intra-level)

M-Path (inter-level)

•29 M

13M ^ — __ 4 - — 13

62 M Level 12

66 M Level 11

I
68 M Level 10

Level 9

Level 8

Level 7

75 M

78 M*

=- =57 M25 M <^r

Level 6

16 M

Figure 8-14: M-nodcs and P-Paths for Levels 12 to 6 of Teapot #4
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P-Path Level _dx_

1
2
3(1&2)
4
5
6
7
8(4&5)
9 (4&S&6&7)
10

7
7
7
6
6
6
6
6
6
6

-6
-5
-11
-2.5V2
-3.75VI
-325 \fl
-0.75 V2
-6.25V2
-1025 V2
15 s/l

-3
2
-1
-3.0V2"

0.25V2

-0.75VI
3.75vf
-2.75 VT
0.25V2
2iV2

6.71
5J8
11.04
5.52

531
4.72
5.4
9.65
14.50
5.0

153°
202°
185°
130°
184°
167°
256°
153°
179°
315°

Table 8-5: P-Path Links for Levels 7 and 6 of Teapot # 4

Teapot
P-Path Dj

1
2
3
4
5
6
7
8
9

63
5.8
11.0
6.3
5.1
42
4.6
102
14.6

Average Error

1

161°
211°
185°
153°
206°
180°
265°
176°
195°

Teapot 4
D 4

6.7
5.3
11
5.52
5.3
4.7
5.4
9.6
14.5

*4

153°
202°
185°
130°
184°
167°
256°
153°
179°

ex-i

8°
9°
0°
23°
22°
13°
9°
23°
16°
13.7

Difference

U D/D,

1.06
0.914
1.0
0.876
1.039
1.119
1.174
0.931
0.992

0 i.oi2

D4-Dx

0.388

-0.5
0.0
-0.7

02
0.5
0.8
-0.7
-0.1
-0.121

100x(D4-E

5.7%
-9.4%
0.0%
-12.7%
3.7%
10.6%
14.8%
- 7 3 %
-0.72%
0.52%

Taitfe 'M: Comparison of D and § attributes for Teapots # 1 and # 4

8.4*5 Examples of Size Change L e s s than v2~

This subsection shows the result of hand matching the upper levels of teapots # 2 and # 5 . Teapot

# 2 is the same orientation as teapot # i but digitized approximately 1J4 larger. Teapot # 5 i s

ttppftiximatdy the w r o %kc as teapot #2* but oriented at *15 • Because of the change In scale and

lighting, boil of these teapot images contain addition*! M-ncil.cs in their upper levels*

Figure S*t5 &htm the M*fKKfc& M»palhs. and P*path& links for levels 12 through 6 of teapot Image

#2* Leie! 1 of feapttt # 2 contains 3 additional Mhnndcs thai did not 'ixxur in level 7 of Teapots # 1

M4 #4,, or level I of teapot #3» These M-nodes arc all ai t ie top of Mhpaths that start at level 6 of

teapots # 1 and # 4 and level 1 of teapot # 3 . The small scale change bciwecn teapot # 1 and teapot

# 2 was cnouph to bring these M-nodes up to the next level Hitese P-paths arc not labeled in figure

S-I5 dnd their attributes are »t>i siKiudcd in table S*7»
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Table 8-7 shows the attributes of the P-paths in figure 8-15 which were matched by hand to the
P-paths from teapot # 1 . These values are compared to those of teapot # 1 in table 8-8,

This comparison shows that each of the P-Paths links in teapot #2 are slightly larger than the
corresponding links in teapot # 1 , with the average ratio of lengths being 1.19. This is slightly larger
than the 1.14 estimated from the photographs, but well within the expected range. The average
mismatch of P-path links was 1.57 samples. The percentage change in the lengths of the P-paths
ranged from 8% to 27% with an average of 14%.

The M-nodes, M-paths, and P-path links for teapot # 5 are shown in figure 8-16 below. Teapot
# 5 is scaled larger than teapot # 1 by approximately 1.14 and rotated in the image plane by
approximately -15 . This teapot was supposed to have been a rotation of teapot # 2 . However, the
lighting was changed between the photographing of teapot image #2 and teapot image # 5 . As a
result the shadow on the right side of teapot # 5 appears to be slightly larger than that of teapot # 2 .
This slight increase in size is sufficient to cause the M-node in the upper left corner to appear at level
8, and to shift the M* node from level 8 to level 9. It also causes an additional M-node (value 32) to
appear along P-path number 5. Despite these changes, the P-paths which were identified in the
earlier examples are still detectable in teapot # 5 . The attributes for the P-paths of teapot # 5 are
shown in table 8-9. These attributes are compared to those of teapot # 1 in table 8-10 and to those of
teapot # 2 in table 8-11.

The average values for the comparison of the lengths and orientations of the P-paths from teapot
#5 to those of teapot # 1 are very close to the expected values. As shown in table 8-10, the difference
in orientation ranges from 4° to 26°, with an average value of 14.22 °, which is very close to the 15°
difference of orientation that was measured from the photographs. The ratio of the lengths of P-paths
range from 0.93 to 1.45, with an average value of 1.13. This is also very close to the change in size of a
factor of 1.14 which was estimated from the photographs.

The results of comparing the lengths and orientations of P-path links from teapot # 5 to those of
teapot # 2 , shown in table 8-11, are also reasonably close to the expected values. Teapot # 5 is
approximately the same size as teapot # 2 , but rotated by approximately -15°. The ratio of the lengths
of the P-paths ranged from 0.77 to L34 with an average value of 0.96. The difference in orientation
of the P-paths ranged from -13° to 32 ° with an average value of 10.34°. The match of P-path 6
stands out in this table as having the largest difference in orientation ( 32° ) as well as the smallest
ratio of lengths ( 0.77 ). P-path 7 seems -to correct for this aberration by having a ratio of lengths of
1.34 and an difference of orientation of 9°. The cause of this aberration seems to be that the M-node
to which P-path 6 points in teapot image # 2 is "out of place" by 1 or 2 samples. Checking back to
the comparison of teapot # 1 to teapot #2 , shown in table 8-8, shows that this same P-path was the
largest source of error in both orientation and length in that table also. Our conclusion is that
because of a change in shading, this M-node seems to have been shifted in position in the image of
teapot # 2 . This aberration illustrates that when an M-nodc is slightly shifted in position, the error is
averaged out by the lengths and orientations of the P-paths going to the M-nodc and those coming
from iL The conclusion is that the average ratio of lengths and the average orientation of P-paths is a
reasonable feature to use in determining the best correspondence of a set of M-nodcs from a level of
the descriptions of two images.
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35 M Level 12

P-Path (intra-level)

M-Path (inter-level)

M LevelH

56 M Level 10

6 4 Level 9

.19 M

10 M <

21 M

70 M* Level 8

Level 7

18 M

vds 12 to 6 of Teapot # 2
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P-Path
1
2
3 (1&2)
4
5
6
7
8 (4&5)

Level
7
7
7
6
6
6
6
6

9 (4&5&6&7) 6

dx
-7
-6
-14
-4.5
-4.0V2
-4.0V2
0.5 V2
-8.5V2
-13.0V2

-2
1

2
-2.5 V5"
1.0VT

3.5 V2
-1.5 V I
3.0V2

_D
7.28
6.08
14.14
7.28
5.83
5.83
5.0
12.2
18.6

e
164°
189°
188°
151°
194°
194°
262°
170°
193°

Table 8-7: P-Path Links for Levels 7 and 6 of Teapot # 2

Teapot 1
P-Path D,

Teapot 2
D 2

7.28
6.0
14.14
7.28
5.83
5.83
5.0
12.2
18.8

2

164°
189°
188°
151°
194°
194°
261°
170°
193°

e,-e
-3°
22°
-3°
2°
12°
-14°
4°
6°
2°
3.11

Difference
2 D 2 / D l

1.16
1.048
1.285
1.16
1.143
1.388
1.087
1.196
1287

° 1.19

D2"D1

0.98
0.2
3.0
0.98
0.73
1.63
0.4
2.0
4.2
L57

100 x

13.4%
3.2%
21.2%
13.4%
12%
27.9%
8%
16.4%
22.2%
14.1%

1 6.3
2 5.8
3 11.0
4 6.3
5 5.1
6 4.2
7 4.6
8 10.2
9 14.6
Average Error

Table 8-8:

161'
211'
185e

153'
206'
180'
265'
176'
195'

Comparison of D and 6 attributes for Teapots # 1 and # 2

8.4.6 Summary of Teapot Matching Examples

The examples shown above illustrate that the graphs of M-nodes connected by P-path links from
two images of similar objects can be matched despite changes in the size and orientation of the object
between the two images. Before advancing to a simple example of how the representation can be
used to find stereo correspondence, let us summarize the examples that have been presented.

This section began with an example of how the graph of M-nodcs, connected by P-paths, is formed
from a level of the description. This example showed how the M-nodcs and P-path links are
abstracted from level 7 of teapot.image # 1.

Next, it was shown how M-nodes from several adjacent levels form M-paths that give a
increasingly detailed description of structures in an image. The M-nodcs from levels 12 through 6 of
teapot image # 1 were presented, with the P-path links that connect M-nodes at each level. The Cable
of attributes for each P-path link was also presented.
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11 M

P-Path (intrarlevel)

M-Path (Inter-level)

14M 38 M

Level 12

Level 11

Level 10

Level 9

Level 8

Level 7

Level 6

Figure frifc M-nodcs and P-Paihs for Levels 12 to 6 of Teapot #5
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P-Path Level dx dv D
1
2
3(1&2)
4
5
6
7
8(4&5)
9(4&5&6&7)
10
11
12

7
7
7
6
6
6
6
6
6
6
6
6

-7
-5
-12
-3.5 V I
-4.0V2
-3.OV2
-1.5 VI
-7.5V2
-I2.OV2
3.0V2"
2.0V2
-7.OV2

-3
2
-1
-3.5 VI
0
-I.OVI
4.5 V2~.
-2.5 V I
0
3-OVI
5.0VI
-1.5

7.61
5.39
12.0
7.0
5.65
4.47
6.70
11.18
16.97
6.0
7.6
10.12

e
157°
202c

175e

135e

180e

162e

252e

162°
180°
315°
248°
168°

Table 8-9: P-Path Links for Levels 7 and 6 of Teapot # 5

Teapot 1
P-Path D., i

Teapot 5

5 5

Difference
D 5 / D l D 5 - D l 100 x

1
2
3
4
5
6
7
8
9
Average

6.3
5.8
11.0
6.3
5.1
4.2
4.6
10.2
14.6
Error

Table 8-10:

P-Path
Teapot 2
D 2

161"
211"
185"
153"
206"
180"
265"
176"
195"

7.62
• 5.39

12.04
7.0
5.65
4.47
6.70
11.2
16.97

Comparison of D

Teapot 5
D 5

157
202
175
135
180
162
252
162
180

and

" 4°
" 9"
" 10"
" 18"
° 26"
° 18"
° 13°
" 14°
" 15"

14.22°

6 attributes

1.21
•0.93

1.09
1.11
1.10
1.06
1.45
1.09
1.16
1.13

1.32
-0.41
1.04
0.70
0.55
0.27
2.1
1.0
237
0.99

for Teapots # 1 and

Difference
82-85 D5 /D2 D5-D2

173%
-7.6%
8.6
10.0%
9.7%'
6.0%
313%
8.9%
13.9%
10.9%

#5

100 x (D5-E

1
2
3
4
5
6
7
8
9

7.28
6.0
14.14
7.28
5.83
5.83
5.0
12.2
18.8

164'
189*
188'
151C

194C

194e

261'
170e

193e

7.62
5.39
12.04
7.0
5.65
4.47
6.70
11.2
16.97

157'
202'
175'
135C

180*
162'
252'
162'
180'

Average Error

-13°
13°
16°
14°
32°
9°
8°
13°
10.34s

1.05
0.90
0.85
0.%
0.97
0.77
1.34
0.92
0.90
0.%

0.34
-0.61
-2.10
-0.28
-0.18
-1.36
1.7
-1.0
-1.83
-0.591

4.5%
-113%
-17.4%
-4.0%
-3.0%
-30.4%
25.4%
-8.9%
-10.8%
-62%

Tabk: 8-11: Comparison of 1) and 8 attributes for Teapots 2 and 5

The use of the principal M-path and highest level M*-node was then shown for aligning two
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descriptions to get an initial estimate of the difference in size and position. * In this subsection a
comparison was made of the M-nodc graphs from teapot #1 to tlie M-node graphs of teapot # 3 . It
was shown that the correspondence could be found despite a change in size .of approximately 136 by
shifting the M-node graph from the larger image down by one level. It was also shown that this shift
was dictated by the difference in the level at which the highest M*-node occurred in the two
descriptions.

An example was then given of the correspondence that occurs when the object has been rotated.
The P-path links from teapot # 1 were compared to those of teapot #4, which is of tlie same size, but
rotated by ^ -14°. Further examples were then presented which showed how the matching is
affected by changes of size which are less than a factor of Vl.

The next section illustrates how this representation can be used to determine the correspondence
from a stereo pair of images.

8.4.7 Stereo Matching/Example

A stcneo pair of mages was formed of a paper-wad to test the use of the representation for
determining the correspondence between structural components in a stereo pair of images. The
original images arc shown with the output from the low pass filters in figures 8-19 and 8-21. The
format of the low-pas images is sfiown in figure 8-18. Unlike tlie baed-pass images, It is the odd
numbered low-pass images which are defined on a V? sample grid. In forming these low-pass
images, the undefined pixels were left with a value of zero. Thus the odd numbered low-pass levels
appear with much less istensity than the even numbered low-ptss images. In each of the low-pass
figure! the original image appears in the lower right comer.

The resulting band-pas images arc shown in figures 8-20 asd 8-22. The format for these band-
pass images is the mme as shown in figure 8-6 in, section 8Z

The scene was fbnned by placing the paper wad on a dark lab bench under a desk lamp. A vidicon
camera, mounted on a tripod, was placed approximately 14 inches from the paper wad, and the left
Image was digitized using the Grinncll digitizer. The camera was then moved to the right
approximately § inches and tilted m that lie paper wad was located in roughly the same part of the
image* 1TiifetiflaB|Icw1asapprwiiii,atcIy2§*, The right image mm then digitized

The pmtpmt of this aipcriwefst was to test the use of the representation for determining the
i of pans of ihe two images* No attempt mm planned or made to use this

in determine the actual distances to surface pints on the paper wad

lite Mknodes for Levels 13 through 9 of the two paper wads arc shown in figure 8-17 below. Then
between M*node$ was assigned by hand. 'His correspondence Is illustrated by the

aiTo*s m figure S* 17. hach correspDitdencc h UlmkM with tic displacement, dx, dy, between
the actual positions of the M-mxfcsi in ihe two images. Assigning Utese correspondences was a trivial

teviuse iif the small numbct *:if M*MKfc$ at each level* Kvcn when the number of M-nodes
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increased at the levels below level 9, the correspondences at the previous level constrain the possible
correspondences so that there is often no choice as to which M-nodes correspond.

Note that at level 10, two M-nodes occur in the right image, while only a single M-node occurs in
the left image. This difference in structure is the result of the parallax created by the difference in
perspective. This illustrates one of the problems in determining stereo correspondence: shape
changes when seen from different perspectives. Thus a stereo correspondence algorithm must be
capable of assigning a sample from one image to more than one sample in the second.

The conclusion from this experiment is that the representation can provide an efficient technique
for determining the correspondence of structural components in a stereo pair of images.



183

Left Right
dx = O, dy=O

53M

dx = O,dy =
65M

= -1,dy=1y
65M-

= 2.1,dy=0.7 ; T \y

/>

U — _

50 M
50M —I—> 71

Level 13

Level 12

Level 11

Level 10

Level 9

Frgure 8-17: Stereo G -:. •-

dx«-1,dy»=1 ^ 53M*

•••:.:~:e of M-n«xi« for Paper Wads* I-evels 13 through 9
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Level 0

Level 2

Level 4

6 7

Level 5

Level 3

Level 1

Original Image

Figure 8-18: Format for Paper Wad Low-Pass Images
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Ftfore 8-19! Left Paper Wad and Lev. -Pass Images
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Figure 8-21: Right Paper Wad and Low-Pass linages
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8.5 Matching L-Paths

When a gray scale form has components which are long and thin, ridges, or P-paths occur along
this component in several adjacent levels in the Sampled DOLP (or SDOG) transform. This
information is encoded by finding the level where the response is of the DOLP filter is strongest
along the path followed by the ridges. These strongest P-nodes arc labeled as L-nodcs by a process
described in the previous chapter and connected together to form an L-path. In some situations,
particularly in structural pattern recognition, identifying or discriminating objects requires being able
to measure the similarity of L-paths from two representations. This section is concerned.with this
problem.

8.5.1 Two stages of Matching

As with any curve matching problem, there arc two stages to matching L-paths:

1. An alignment stage: In this stage the L-path from the reference representation is
positioned oriented, and scaled so that will be in its closest correspondence with the
measured L-patbu

2. A Similarity Measure: In this stage, some measure of the "goodness of fit" is calculated
between the two L-paths.

8.5.2 L-Path Alignment

The previous section concerned the problem of determining the correspondence between the
representations i f two gray-scale forms, which are at different positions, scales, and/or orientations.
These techniques employed M-nodes and M*-nodes as landmarks which are brought into
eorrespmideiice. In mast cases, L-paths are terminated at each end by an M*-node. Two L-paths are
aligned by aligning their terminating M*-nodcs. This section shows how the correspondence of title

M*-ncxks is used to scale, shift and rotate the reference L-path so that it is in
with the measured L-path.

&5LL1 J/F*fb Notation ami Attributes

Let us define the values along an I--path as a sequence: L. Each L-nodc has attributes of filter
value and location as well as a set of pointers to adjacent L-nodes or M-nodcs on the L-path. The
location of the Ith L-nodc in the L-path before applying these linear transformations is <x., y., L).
This location is in terms of pixels from the original image.

One of the two M*-nodcs must be selected as a "distinguished" for the orientation attribute, for
indexing and for computing the linear transforms. If one M*-node is at a higher level than the other,
this k chosen as the distinguished M*-node. Otherwise, the choice is arbitrary.
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The entire L-path also has a set of attributes which are similar to those described for P-paths in the
previous section. The attributes of an L-path are determined by the relative positions in the SDOG
space18 of the terminating M*-nodes. The L-path attributes are:

• AL: The difference in levels between two terminating M*-nodes. This is computed as the
level of the distinguished M*-node minus the level of the other M*-node.

• DL : The cartesian distance between the M*-nodes measured in pixels from the original
image.

• #L : The orientation of the vector from the distinguished M*-node to the other M*-node.g

8-5.2.2 Alignment Parameters:

Matching occurs by aligning a reference representation to a measured representation. Finding the
correspondence between the terminating M*-nodes of the reference L-path and the M*-nodcs of the
measured L-path gives the parameters for position, scale, and orientation for aligning the reference
L-path to the measured data. These parameters are used by a set of linear transfonns that are applied
to the reference L-path to bring it to correspondence with the measured L-path. These transfonns
and their parameters are as follows:

• Ak: the change in level that must be applied to one L-path so that it may match a second
L-path. Each increment of 1 in Ak scales the L-path by a factor of Vl in size.

• Ad: A small scale change determined by the correspondence of the terminating M*-nodes
after they have been shifted to the same levels. Ad = D /D r where Dm is the length
attribute of the measured L-path and Dr is the length attribute of the reference L-path
after it has been scaled to account for shifting by Ak levels. This small scaling accounts
for minor deviations in the total length of the L-path. This scale change is applied to the
distance between each L-nodc and the M*-node which is used as a starting point for the
matching.

• Ad: The rotation of the L-path. The L-paths are originally encoded on cartesian and
\fl sample grids. A0 rotates one of the L-paths so that its L-nodes occur at real valued
(or high resolution integer valued) points. The result is a requirement for a rule which
relates the value at such a real-valued point to the values at nearby discrete sample points.
A nearest-neighbor rule is described below for this.

• (x ,y ): This is the location of the distinguished M*-node.

to

Oie SIX)G space is the set of points defined by the set of band-pass images (x* yt I).



193

8.5.4 Examples of L-path Alignment and Matching

This subsection gives examples of the use of the alignment function and the similarity measure.
The L-path that describes the shadow on the right side of each teapot is used in these examples. This
shadow does not have a well defined shape.19 At the upper right corner of the teapot, the shadow
merges with the darkly glazed upper half of the teapot In the lower half of the teapot, the left edge
of the shadow is very hard to discern. As is often the case in a cylindrical shaped object, the intensity
falls gradually as tine surface orientation moves away from the light source. Visually determining the
edge of the shadow is further complicated by the surface texture of the teapot. Thus this shadow is a
good example of the description by an L-path of a form without distinct boundaries.

Figure 8-23 shows this L-path for teapot #1. 2 0 In this figure, each node is represented by two
lines of letters and numbers. The top line consists of the SDOG transform value, the node type (M*f

M. or LI and the level (in angle brackets). For example, 75 M* <8>, refers to an M*-node of value 75
at level 8. The second line gives the relative position of the node with respect to the distinguished
M*-nodc in pixels from the original image. These numbers are (Ax, Ay). In the distinguished node,
the second line gives the actual position of the node. Also shown are the attributes of the entire
L-path;

• AL: (written as dL) the change in levels between the M*-nodes;

• D: the length of the L-path in pixels; and,

• ff: (written as Angle) the orientation of the vector from the distinguished M*-node to theother M*-node.

Each L~eodc has a circled number beside it These numbers serves as an identifier in the tables
that illustrated JL*node correspondence and distance.

Figure 8-24 shows the L-path which describes the same shadow in teapot #3 . The correspondence
between L-nodcs after the L-path from teapot #3 has been rotated aod sealed to match the L-path
from teapot # L is shown in figure 8-25 and Cable 8-J2. ITic coire^poedence in figure 8-25 is shown
with dashed arrows. Table 8*12 lists the tocicins to which the L-nodcs from teapot # 3 were
transformed and the closest L-nede from teapot # 1 The column labeled distance is the cartesian
distance between the transformed reference node and the nearest measured node expressed in pixels
(samples in the original image). The column labeled "error" shows the result of dividing this distance
by 'die sample rate at the level of to which the reference node was transformed. At the bottom of the
ybfe is the average error and the largest error.

he

V tem h i w v d *s S rt liv %w* mi iMcs m \hh wction f]m has ihc effect of making

vii rn VHuih Md ^* r,]mzv* Tt*>2?>3 r f the k^'H/'^^i nvidifuh* *\ iUm L^«1IJ u,<:d m irn^c processing. This also keeps
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Reference M*-node 75 M* <8>
(161,113)

©

Teapot #1

(Right Shadow)

dL = 3

D = 40.19

Angle = 276

67 L <8>
(-8, 8, 0)

44L<8>
(-8, 24,0)

Format:

Value Symbol <level>
(dx, dy, dk)

35L<7>
(0,32,-1)

39M<6>
(4,36, -2)

41 M* <5>
(4, 40, -3)

Figure 8-23: L-path from Teapot # 1

The top line of table 8-12 shows the change in attributes between the two L-paths. AL is the
difference in levels between the distinguished M*-nodcs. I \ / r \ «s the ratio of the lengths of the
measured (m) to the reference (r) L-paths. This ratio is computed with length measured in pixels
before the reference L-path is shifted by Ak levels. Thus this ratio is the product of the match
parameters Ad and 2A k / 2 that were described above. A0 is the difference in angles. The program that
matched these two L-paths transformed the reference L-path by dividing each distance by the ratio of
the lengths and rotating by the difference in angles. Table 8-13 shows the results of transforming the
L-path from Teapot # 1 to match that of Teapot # 3 . In both table 8-12 and table 8-13 a one-to-one
correspondence was found between L-nodcs and the error is always less than one sample.
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89 M* <9>
(161,145)

Teapot #3

D = 44.72

Angle = 280.3
72L<9>
(0, 16, 0)

46L<9>
(0,32,0)

30L<8>
(8,40-1)

38M<7>
(8, 40. -2)

41 M* <6>
(8,44,-3)

Figure 8*24; L/path from Teapot #3

Transtbrming the t-patft fhun icapot #3 to he in coircspM£tc«c with the smaller L-path from
teapot # I gave a worst cm error t$ &B24 samples ̂ »d the average enw is 0.32. Matching the L-path
frpiB the lirger teaptrt #1 to the larger teapot #3 gave «*» worn ca^ error of 0.648 samples and-aa
average em>r «f 0.30 samples. 'Ihus^ despite a %u}c change of » 1,36 between the two images,
aligning the tenninauftg M^itodcs bremght the Irpinh from the each image into a reasonably close
correspondence with the L*p*illi from the oiher image.

Figure S-2A shirAS the I/path fn>m the ^hadow in leapt image # 4 llic correspondence of
transformed i/nodes fnm mpil #4 u> the I/ninfes of ieap<it #1 is shtiwn in figure 8-27. The
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©

\ -r-.,

;s rr

89 M* <9>
(161,145)

72 L <9>
(0,16,0)

46L<9>
(0,32,0)

© 30L<8>
(8, 40. -1)

38M<7>
(8,40.-2)

41 M* <6>
(8,44, -3)

Teapot # 3

75M*<8>
(161,113)

67 L <8>
(-8,8,0)

44L<8>
(-8, 24,0)

©

35L<7>
(0,32,-1)

39M<6>
(4,36,-2)

41 M* <5>
(4,40,-3)

Teapot # 1

:•(

-A:i

Figure 8-25: I -path CnrresppHdcrare;
L-Paih fn5m Te.ipns # ? 1 ran^frnncd :o Match l.-p:nh from Teapot # 2

Tifd^ ^-,d 'ihc.T d^£.ir.o> are \h;>»n in lahk H-I4 I -node nurr.hcr 3 IT.

ii. u. dw :*** 1,-VAI?^ *SIU'« ha1.*.1 thi' >inu' nunKTsrfl.*p,:!»i».s. N^mciJw-

of

» ^ - ~ i ̂  •< t *"* t * ^ ; * i - ' j f ^ *̂

«jur : • ?..-?! *i. r ^: !;.;?••-t * 1 \ -?v^; ! rMDp4 #
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Transform of Teapot # 3 to Match Teapot # 1

AL = -1, D m / D r = 0.89, A0 = -9.18°

Nodes from teapot # 3 Nodes from teapot # 1

Transform of Reference Node
Node
1
2
3
4
5
6

AX

0.00

-1.15

-2.30
428
4.28

4.00

AV

0.00
14.33

28.67
36.41

36.41

40.00

Ak
0
0
0
-1
-2
-3

Closest
Node
1
2
3
4
5
6

Measured Node

AX

0.00

-8.00
-8.00

0.00
4.00

4.00

AV

0.00

8.00

24.00
31.99

35.99

40.00

Ak
0
0
0
-1
-2
-3

distance

0.000

9.329
7.366

6.155

0.505

0.000

error

0.000
0.824

0.651
0.769

0.089

0.000

Average Error = 0.38

Worst Error = 0.82

Table 8-12: Correspondence and Distance for Transform of
L-path from Teapot # 3 to Match L-path from Teapot # 1

Transform of Teapot # 1 to Match Teapot # 3

AL = i D m / D r = 111, A0 = 9.18°

Nodes from teapot # 1
Transform of Reference Node
Node
1
2
3
4
5
6

AX
0.00

-8.15
-6.73
2J5
7.64

7.99

Average Error =
Worst Error =

AV

0.00

9.58
27.32

35.48
39.56
44.00

= 0.30
0.64

Ak
0
0
0
-1
-2
-3

Nodes from teapot # 3
Closest Measured Node

Node
1
2
3
4
5
6

AX

0.00
0.00
0.00

8.00
8.00

8.00

AV

0.00

15.99
31.99

40.00

40.00
43.99

Ak
0
0
0
-1
-2
-3

distance

0.000

10.378
8.195

6.847
0362

0.000

error

0.000

0.648
0312

0.605
0.070

0.000

Table H 3 : Contspondcnce and Distances for Transform of
L-path from Teapot # 1 to Match Teapot # 3

Table 8-15 thows the result of tnmsfonning and matching the L-nodc$ from the L-path in teapot

# I to the l«*path ton teapot # 4 . The correspondence between L-aodcs in this table is different

than those for tfte match ft&m teapot # 4 m teapot # L In this case the worst case error was 0.901,

which is less than a sample. The average error, 6*481$ also smaller in this case. Node 2 from teapot

# h which ga%c the largo* wum case distance In table S44 was not found to be a closest neiglibor to
any of the i,*nodes form teapot 4 Node 3 from teapot # 4 , wbteh appeared to be spurious, actually
foil within 0*552 samples of a I,*node 3 (mm tmpM # 1

The 1 ,-path fhr the ripht shadow in teapot # 2 is shown in figure 8-28. The result of matching this

I .-path to thai of teapot # ! is shown in table 8-16. Ikspiic the change in scute of 114 between these

two images these two I/path* hate eiact2> Ae same lengths and orientations. Differences in position
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Teapot # 4

dl_ = 3

D = 36.2

Angle = 264

78 M* <8>
(145,81)

68L<8>
(0,16,0)

51 L <8>
(-8, 24, 0)

- 45 L <7>
(0, 24, -1)

©

45 L <6>
(0,32,-2)

50M<6>
(-4,36-2)

52M*<5>
(-4,36,-3)

Figure 8-26: L-path from Teapot # 4

relative to the sample, however, cause L-oodes 4 and 5 in these L-paths to each be off by 1 sample at
their levels.

Figure 8-29 shows the L-path from teapot #5 , This image Is scaled by a factor of LI 4 and rotated
by "-15° from teapot # 1 . The M*-nodes in the L-paths occur such that there is an angle of 37.4
between them* The reader may recall that teapot # 5 had an M*-nodc thai wxurcd at level 9, when It
was expected to occur at level 8* As a result this L-path spans 4 levels. This L-path also has two
L-nodcs that arc -2 levels below the root M*-nodc. The results which this had on finding the
correspondence is shown in table 8-17,
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Q

51 L <8>
(-8,24, 0)

78M*<8>
(145, 81)

75 M* <8>
— -> (161,113)

67L<8>
(-8,8, 0)

68L<8>
(0,16, 0)

44 L <8>
(-8, 24, 0)

(0,24,-1)

5) 45L<6>
(0,32, -2)

60M<6>
(-4,36.-2)

H , 36, -3)

35L<7>
(0,32, -1)

39M<6>
> (4,36.-2)

___ 41 M* <5>
~~ — > (4,40,-3)

Teapot #4 Teapot #1

Figure 8*27: I /path Correspondence:
L-Path firum Teapot #4 Transfbnned tc> Match Irpath from Teapot #1

As can be seen fnm table 8-17, the alignment of the highest level M*-node from teapot #1 with
thai of te*ip#f #5 caused «%cral of the L-mnks fhwn teapot # to find their nearest neighbor at a
lover le^ci Such' "acnm tevcr matthes mid a weight of I sample to the error distance. Both
K*nudcs 2 and 3 frem le^pil # found t/ntMle 3 of icapi^l 5 to be ihe detest neighbor after alignment
{.-node 3 from tcjptH # J had t<» f i » ! yp ime level to find this match, with an error of 1.090 samples.
N?«Jc 4 firifi! i&ipiti # 1 tifMi Arund ib ch ŝcst fieightair (mm tcapcit #5 in. iin upper level, giving an
error of 1.269 s»impte. Partly as a result of all the acrttss level Miches* the average error was 0.85
samples «md tltc %n?rsi case error was I J7 s
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Transform of Teapot # 4 to Match Teapot # 1

AL = 0, Dm /D f = 1.1.0, A0 = 24.10°

Nodes from teapot #4
Transform of Reference
Node

1
2
3
4
5
6
7

AX

0.00
3.70
-3.12
5.56
7.41
4.00
4.00

Av

0.00
17.36
27.90
26.04
34.73
39.99
39.99

Node
Ak
0
0
0
-1
-2
-2
-3

Nodes from teapot #1
Closest Measured Node
Node
1
3
3
4
5
5
6

AX

0.00
-8.00
-8.00
0.00
4.00
4.00
4.00

AV

0.00
24.00
24.00
31.99
35.99
35.99
40.00

Ak
0
0
0
-1
-2
- 2 •

-3

distance
0.000
13.456
6.246
8.145
3.642
3.999
0.000

error
0.000
1.189
0.552
1.018
0.643
0.707
0.000

Average Error = 0.58
Worst Error = 1.18

Table 8-14: Correspondence of Transformed L-nodes from Teapot #4
to L-nodes from Teapot #1

Transform of Teapot # 1 to Match Teapot # 4

AL = 0, D / D r = 0.90, A0 = -24.10°

Nodes f rom teapot #1
Transform of Reference
Node

1
2
3
4
5
6

AX

0.00
-8.55
-11.56
-6.01
-3.24
-4.00

Average Error =
Worst Error =

AV

0.00
5.54
19.64
28.19
32.47
36.00

= 0.48
0.91

;Node
Ak
0
0
0
-1
-2
-3

m r
Nodes
Closest
Node
1
1
3
4
5
7

from teapot #4
Measured Node

Ax
0.00
0.00
-8.00
0.00
0.00
-4.00

AV

0.00
0.00
24.00
24.00
31.99
35.99

Ak
0
0
0
-1
-2
-3

distance
0.000
10.194
5.628
7.339
3.282
0.000

error
0.000
0.901
0.497
0.917
0.580
0.000

Table 8-15: Correspondence of Transformed L-nodes from Teapot # 1
to L-nodcs from Teapot #4

8.5.5 Summary of L-path Matching Examples

The first example presented above was the match of the L-paths between teapot # 1 to teapot # 3 .
This illustrated matching between images when the object has been scaled by close to VT In size. In
this example, there was a one-to-one correspondence between the L-nodes from the two images^ for
both the case when the L-path from teapot #1 was scaled and rotated and the nearest neighbor was
sought from teapot #3 and when the L-path from teapot #3 was scaled and die nearest neighbor
from teapot 4t 1 was sought. In both cases all of the correspondences were found within one sample.



Teapot # 2

d- = 3

D = 40.19

Angle = 264
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70 M* <8>
(185,153)

©

54L<8>
(-8,8,0)

34L<8>
(-8,24,0)

27M<7> Q
(0?32f-1)

34M<6>
(0,40.-2)

36 M* <5>
{4f 40, -3)

8-28: L-path from Teapot #2

In lie third mi fourth examples, the L-path from teapot # 1 was matched to that of teapot #4.
Tcapctt #4 n of the same sale as teapot # 1 , but rotated by approximately -15*. The difference in
position of the terminating M•-nudes led m a difference of angle between the two.L-paths of
approximately 24#, Aim the K-path frtin teapot # 4 was 0.90 the length of the one from teapot # 1 .
His difference in length aid (mentation ted to a difference In the number of L-nodcs in the two
i.*fMths, Ilicfc w^i nut a one-to-one corresptrndcoce in the matchis of the two L-paths* When the
!,-p<£th ftmn leapt n #4 wa> scakd and rotated Ui mutch the tmc (him teapot #L two of the L-nodcs
found their nearest match more than tine simple Jiwaj, with the worst f>eing LI89 samples away. The
average disUtnce was 0.5H ̂ iiiiplc\ When the L-ruxles; from teapot # ] were compared to those of

#4,, the worst C*KC notches w.isfWJ samplesond the avemge error was 0.48 samples.
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Transform of Teapot # 2 to Match Teapot # 1

AL = 0, Dm /D r = 1.00, A0 = 0.00°

Nodes from teapot #2 Nodes from teapot # 1

Transform of Reference Node Closest Measured Node

Node AX Ay Ak Node Ax AY Ak distance error
1 0.00 0.00 0 1 0.00 0.00 0 0.000 0.000
2 -8.00 8.00 0 2 -8.00 8.00 0 0.000 0.000
3 -8.00 24.00 0 3 -8.00 24.00 0 0.000 0.000
4 -8.00 31.99 -1 4 0.00 31.99 -1 8.000 1.000
5 0.00 40.00 -2 5 4.00 35.99 -2 5.656 1.000
6 4.00 40.00 -3 6 4.00 40.00 -3 0.000 0.000

Average Error = 0.33
Worst Error = 1.00

Table 8-16: Correspondence of L-nodes and Distances for Transform of
L-path from Teapot #2 to Match Teapot #1

In the next matching example the L-path from teapot #2 was matched to that of teapot # 1 .
Teapot #2 is 1.15 larger than teapot # 1 . The two L-paths had exactly the same length and
orientation. All of the L-nodes except two found their nearest neighbor at a distance of 0.0 samples.
These two L-nodes found their nearest neighbor 1.0 samples away.

In the final example, the L-path from teapot #5 was compared to that of teapot # 1 . Teapot #5 is
rotated by -15° and scaled by 1.15 from teapot # 1 . The principal M*-nodc in teapot #5 was one
level higher than expected, and this had a big effect on the matching of these two L-paths. Many of
the nearest neighbors in thios example were found across level.

Our conclusion from these experiments is that the L-path matching procedure and similarity
measure described above gives a reasonable estimate of the of the similarity of L-paths from two
images. The worst mismatch between individual L-nodes in all of these examples was L37 samples
while the worst average error distance was 0.85. This matching procedure gives the ability to
compare L-paths from any orientation and length, and spanning any number of levels. The simple
similarity measures of worst distance and average distance provide a useful measure of the similarity
of L-paths from two images.
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Teapot 5

dL = 4

D = 36.87

Angle = 257 46L<8>
(-16,16,-1)

82M*<9>
(177, 129)

62 L <9>
(0,16, 0)

©

36L<7>
(-8, 24, -2)

38M<7>
(-8, 32, -2)

42 M <6>
(-8, 32. -3)

43 M* <5>
(-8, 36, -4)

Figure 8-29: L-path from Teapot # 5
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Transform of Teapot # 5 to Match Teapot # 1

Nodes

AL = -1,

from teapot-#5
Transform of Reference
Node
1

.2
3
4
5
6
7

Ax

0.00
5.59

-10.92
0.13
2.93
2.93
4.32

Average Error =
Worst Error =

AV

0.00
16.52
22.11
27.58
35.84
35.84
39.97

= 0.85
1.37

Node
Ak

0
0
-1
-2
-2
-3
-4-

D m / D r =
Nodes ]
Closest
Node
1
3
3
4
5
5
6

1.09, ,\d = 37.42

from teapot •# 1
Measured Node

Ax

0.00
-8.00
-8.00
0.00
4.00
4.00
4.00

AV

0.00
24.00
24.00
31.99
35.99
35.99
40.00

Ak

0
0
0
-1
-2
-2
-3

distance
0.000
15.516
8.723
7.178
1.080
4.143
2.847

error
0.000
1.371
1.090
1.269
0.191
1.035
1.006

Table 8-17: Transform of L-path from Teapot # 1 to Match Teapot # 5
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Chapter 9
Discussion

This chapter presents a discussion of applications of the DOLP transform and a discussion of how
the properties of the representation for gray scale shape could be proven with experiments.

9,1 Applications of the DOLP Transform

The DOLP transform, in both its 1-D and 2-D form, can be useful as a representation for a variety
of applications requiring signal detection or signal description. Characteristics of the DOLP
transform that make it useful in signal detection situations are:

• It provides a function for detecting pulses that is not dependent on the sharpness of the
boundary or the uniqueness of the amplitude of the pulse;

• It separates pulses of different durations so that they may be detected independently;

• It provides a way of detecting a pulse whose width is not known a priori;

• It provides a way to find the resolution at which some desired signal occurs;

The following paragraphs elaborate on these characteristics.

9.1.1 Detecting I Undefined Puts**

The OOI,P transform provides a technique for detecting pulses In 1-D signals and regions in 2-D
signals which is not dependent on the sharpness of the boundary of the poise or region. Indeed,
within the DOM* transftwnm tie tsuuBdarj is a separate signal at a higher resolution. In a 1-D signal
this ability can be used to find blurred pulses of a particular frequency, even in the presence of noise.
For a 2- J) signal the 1)01 ,P transform pun ides a simple technique for detecting and describing small
2-0 regions* A 2-1) region will appear as a local maxima in the DOLP transfrom. This maxima may
be tracked in consecutive frames without a search proeesi

Hie IX>I P t r i fo rm is dm useful for detecting the orientauon of a surface from iextorceu.es. An
image lextmre is usually ecjmposcd of elements a! a particular set of si/cs. In many natural textures,
the shapes of the individual dements may he random. If the %im of the physical objects which
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correspond to the regions is known, the distance to the surface may be inferred from the size of the
texture elements. Furthur-more the orientation of the surface may be inferred from the gradient of
the size. For either process, the size of the the texture elements may be measured by detecting local
maxima in the 3-space of the DOLP transfrom. The level at which the maxima occurs gives an
estimate of the size of the clement This simple detection scheme will even work when the shapes of
the individual elements vary randomly.

9.1.2 Detecting Pulses of Different Durations

The DOLP transfrom separates a signal into band-pass components. Each band-pass channel
responds to signals of a particular range of durations (in 1-D) or widths (in 2-D ). This property can
be used to detect overlapping signals of different durations which are superimposed in the same
image. For example, consider printing on a textured or nonuniform surface, such that the patterns or
blotches on the surface arc much larger than the printed letters. A DOLP transform of the image will
separate the characters of the writing from the pattern on the papers, allow either the pattern or the
writing to be detected by thresholding.

9.1.3 When Width is not known A-Priori

The DOLP transform channels are sensitive to frequency ranges which are exponentially spaced
and cover the range from the smallest to the largest signal representable in the image. This property
can be useful for detecting a signal whose width ( or duration ) is not known a-priori. Such a signal
will result in a local maximum in at least one of the DOLP channels.

9.1.4 Automatic Focus

When a camera is out of focus the effect is the same as convolving a low-pass blurring function
with the image. It is possible to measure whether a lensc is moving toward or away from correct
focus by detecting the change amplitude with which a high frequency pattern ( e.g. a thin bar ) is
detected by a DOLP transform channel. In the case where the scene docs not contain an artificial
focusing pattern of known spatial frequency it is possible to servo the focus from the highest
frequency level at which significant signal energy is observed in a DOLP transfrom.

9.2 Evaluating Claims

This research was undertaken to show that it was possible to respresent an image with a set of
band-pass filters and to determine the properties of such a representation. This research was
undertaken with very limited resources. This resource limitation has restricted the investigation to
forming the representation of only a few images.

The research has gone well beyond its original goals; we have shown that it is not computationally
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prohibitive to compute the convolution of an image with an expontially spaced set of band-pass
filters; we have shown that such a set of convolutions can be organized into a reversible transform;
we have shown that the image shapes can then be representaed by detecting peaks and ridges in the
band-pass images; We have shown that these peaks and ridges can be detected by local processes.

9.2.1 Claims Concerning the Representation for Shape

The primary claim of this dissertation is that the representation of a shape based on the 2-D
Sampled DOLP transfrom which is described in chapters 6 and 7 can be matched efficiently. A
secondary claim is that this representation can be matched regardless of changes in the size, position,
or 2-space orientation of the shape.

The ability to match hierarchically from global to local is intrinsic to the structure of the
representation. In chapter 8 we have demonstrated how this matching is done. Having such a
representation does not completely solve the problem of how to best do such matching- Issues of
how to organize the search for a match and what criteria to use to measure the over all goodness of
the match most also be settled. This representation presents the data in a structure that allows a
matching procedure to precede hierarchically, and to use the results of a each match to constrain the
search for matching features at a more local level

The hierarchical nature of the representation is intrinsic to the DOLP transfrom; it can not be
disputed* To prove the usefulness of such a representation for matching* it is necesary to develop a
matching algorithm based OH the representation. The ability of the algorithm to produce correct
iresults must be demonstrated in a large number of different images. This will provide proof that the
technique works*

The computational complexity of the matching algorithm must then be analyzed. The resulting
measure of computational complexity should then be compared to the complexity of other matching
algorithm

9.11.1 Imarfance to Size and Rotation

Experiments have shown that the reprcseitaticta cOTfw»ei of M-nodes, M*-nodes> L-nodes and
it subject to cyfic distoftitits whet a pattern shifts in position, %im or orientation. As a shape
in site, the Mhiuxfcs* L-nodcs, Mi M*-IMKIC$ roust male the transition to a higher level in

discrete steps. Since these transitions are noc constrained to occur simultaneously, the specific
configuiation of nodes dines change. This Is a cycle distortion; after tic change in scale has advanced
by a factor of VT» the paticn will have returned m its starting configuration. The effects of change
in position are similar; as a pattern moves over a distance *hich is one sample rate at the level of its
highest M*-nodc ihc M-nudes, lo-nodcs* M**n«i« aid Pennies in the representation move to the
next sample at m discrete step* tot arc not aHtstrainetf to Ptxnr Simultaneously, However, after the

has shifted b> the M$unzt of one sample A my level* ail at the nudes at the level and tower
have returned u> the same configuration, 'iliis behaviour is suggested by reasoning and

confirmed *ith experiments wiih squares and rccungtaw the exception t« the cyclic degradation
from .i peMtwn 4iii"i occurs *hen a pattern shifts closer (less than its diameter) to a second pattern.



208

It is possible to construct a second, more abstract, description which compensates for the cyclic
distortions. This description, described in chapter 8, is composed of M-paths, M*-nodes, and L-
paths. While this representation is not subject to the cyclic distortions, there remain certain illusions
which can alter the representation of a shape as it undergoes a transformation in size, position, or
orientation. So far all of the illusions which have such an effect also cause distortions in the
perception of the form by the human visual system.
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Chapter 10
Summary and Conclusions

This chapter presents a summary of the contents of the preceding chapters, a discussion of the
results presented in each chapter, and the salient conclusions that can be drawn from these results.

10.1 Major Results of this Dissertation

This dissertation presents results in tee areas.

1. A reversible transform ( The Difference of Low Pass or DOLP transform) for detecting
and mathematically representing signals of any number of dimensions. Signals are
filtered into exponentially-spaced spatial frequency bins by convolution with circularly
symmetric band-pass filters. Hie filters arc size-scaled copies of a tow-pass filter minus
the same filter scaled laigcr by a scaling factor, S (typically VT). This transform resolves
a signal into components of different spatial frequencies.

1 Techniques for greatly speeding up the calculation of a DOLP transform using
resampling and cascaded filtering with expansion.

3* A representation for 2-D gray-seale pictures based on the sampled DOG 'transform,
whkh greatly simplifies matching of picture information for structural pattern
lecognition tad stereo interpretation.

This dissertation may be divided into the following sections:

• Background Material IChapters 1,2 and 3);

• Measurement detection and im&cmatical representation of noiiperiodic signals (
'Chapters 4 mi S);

• Fastcompiifattcfit techniques for the detection technique ('Chapter 6);

• Converting the mathematical representation to a symbolic representation which describes
grayscale shape heinuthicafly b> spatial frequency {Chapter 7);

• Examples of the icprcscnuutm and its use for watching, including demonstrations of the
in variance uf tie suucitirc of a description to the size aid orientation of ihc pattern
(Chapter 8).
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10.2 Summary of Background Chapters

Chapter 1 introduced the problem context for this research: model based recognition of 2-D
patterns and 3-D objects by matching structural descriptions to prototypes. This chapter also
contains a discussion of the methodologies used in this research and a summary of the results.

Chapter 2 reviewed related work on the problems of measuring and representing 2-D signals. This
chapter began with a discussion of the two popular approaches to image description: edge detection
and region segmentation. Both approaches are based on the assumption that an image is composed
of approximately uniform regions. Careful examination of most images of "real world objects" in
unconstrained lighting shows this assumption to be inaccurate. This chapter also described
inadequacies in the representations produced by both of these approaches:

• the description of shape in terms of small events,

• the inability to describe gradual transitions in intensity, and

• die inability to describe textured regions.

A number of detection functions for edges are then described. Thwas was followed by a review of
several multi-resolution algorithms that have been used to solve various problems involving two
dimensional signals. The chapter ended with a review of two representation techniques which give
object-centered descriptions of shape.

Chapter 3 provided a brief review of mathematics and terminology from the field of digital signal
processing which are employed in later chapters. Definitions were presented for convolution and
correlation, the two operations were shown to be the same for a symmetric filter, and correlation was
shown to be equivalent to a sequence of inner products. The transfer function of a linear operator
was derived based on the properties of the eigenfunctions of linear systems. Resampling, aliasing,
and the 2-D Nyquist boundary were then described. The Vl resampling operation was defined and
its effects on the frequency content of an image were described. Chapter 3 ended with a review of the
parameters that arc commonly used to specify a digital filter.

10.3 Measurement, Detection and Mathematical Representation of
Non-Periodic Signals

Chapter 4 described the foundation on which the techniques described in the later chapters are
based. Chapter 4 began by describing the concept of a parameterized family of detection functions*
This idea was conceived early in this research and led to the development of the DOLP transform.

Chapter 4 then reviewed principles for the design of detection functions which arc to be used to
detect and describe non-periodic signals using ridge and peak detection, Ilicsc principles were
conceived early in this research and played a key role in the development of the DOLP transform;
they served as a guide which directed the research, 'liiesc principles also show the assumptions on
which the research proceeded*
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One of the major innovations resulting from this research is the Difference of Low-Pass (DOLP)

transform, described in chapter 5. The DOLP transform consists of a set of exponentially size-scaled

band-pass filters which are formed by subtracting a sequence of size-scaled low-pass filters. The

DOLP transform expands an N point signal into Logs(N) band-pass signals, where N is the number

of samples in the signal, and S is the scale factor for size scaling the filters (typically v 2 ) . Th e

band-pass signals, and a convolution of the largest low-pass filter with the signal may be added

together to recover the original signal. Thus the DOLP transform is reversible; it preserves all of the

information in a signal. The DOLP transform separates a signal into overlapping frequency channels.

This has the effect of decomposing a signal into components of different sizes, even if the boundaries

of the components are poorly defined. The configuration of peaks in the DOLP transform of a signal

describes its components in a tree whose structure is invariant to the scale of the signal.

The DOLP transform may be defined for signals of any dimensionality, and may be computed by

analog filters as well as digital filters. Based on this dissertation, a 1-D form of EHDLP transform has

been recently used to detect and discriminate defects in the coatings of florcsccnt light bulbs

[Hande!sman81]. An investigation is being launched into the use of a form of DOLP transform for

tricking formants in speech spectograms. Another effort is being started to investigate the use of a

form of DOLP transferal to describe range data from a depth sensor, Also, we have recently

proposed the use of a 3-D form of DOLP transform to represent 3-D shape in terms of primitives

which are fuzzy spheres.

As the band-pass impulse responses are scaled larger in size it becomes possible to resample the

baed-pass signals at a rate proportional to the scaling of the band-pass filter. This resampling can

greatly reduce the complexity of computing the DOLP transform as well as the amount of storage

required Resampling at a rate proportional to the scaling of the band-pass impulse response can be

designed m that the no information is lost to the description from aliasing, while the computational

cost is reduced from O(N2)' 10 Of N Log N) and the storage requirements are reduced from O(N Log

N) to 3N. IN is the aamber of sample points in the image,) The resarapled DOLP transform was also

ie loed and described in chapter 5.

10.4 Techniques for Fast Computation of a DOLP Transform: The
DOG and Sampled DOG Transforms

Chapter 6 concerned techniques for which were developed in this research to greatly reduce the
cost and speed of computing a 2-D DOIJP transform. Two properties of the Gaussian function can

be used to obtain substantial decreases in the cost of computing a DOLP and a sampled DOLP
uansfinm:

I the Gaussian autt>-ccmvolutkm scaling property, and

1 The separability of the circutarly symmetric 2*I> Gaussian function.

l i e Gaussian auton:cmoiut:on scaling property provides that when a Gaussian function is convolved

with itself, the result m the Gaussian function « a k d larger in standard deviation by a factor of V ? .

ITm suggests that the DOLP transform may tie speeded yp b> producing each low-pass Image from
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the previous low-pass image by convolving by the appropriate Gaussian function. In fact, the DOLP
transform may be reduced in cost from O(N2) multiplies to O(N Log N) multiplies by using an
additional technique for scaling a Gaussian function by V I : The VT expansion function. The
VT expansion operation maps each row of a function on a cartesian sample grid onto each diagonal
of a \/l sample grid. The expanded function is zero or undefined for points between those on the
VT grid. This expanded Gaussian filter has a transfer function with a Gaussian center-lobe which is
scaled smaller (in frequency) by a factor of VT. ITierc are also reflections of this center lobe in the
four corners of the (u, v) Ny quist plane. By proper choice of filter parameters, these reflections can be
formed such that they fall over a region of the auto-convolved Gaussian's transfer function where the
response is very small (i. e. < -70 dB). Thus, when the two functions are convolved, the center lobes
are attenuated to a very small response ( < -100 dB in our examples).

By repeated VT expansion the original filter may be scaled to the same size as the cumulative
low-pass impulse response at each level. ITius each low-pass image for level k-Hl can be formed by
convolving the low-pass image at level k with a copy of the low-pass filter that has been expanded k
times.

An algorithm for computing a DOLP transform using Gaussian filters, auto-convolution, and
expansion was described in section 6.2. This algorithm, called "Cascaded Convolution with
Expansion", produces a form of DOLP transform (the DOG transform) in O(N Log N) multiplies.

Further speed-up, and a reduction in storage requirements are possible by including
VT resampling in the algorithm. This algorithm, called "Cascaded Convolution with Resampling",
gives a form of sampled DOLP transform, the SDOG transform, in 3 Xo N multiplies, where Xo is
the number of coefficients in the kernel Gaussian filter. As with the Sampled IX)LP transform, 3N
storage cells are required.

Chapter 6 defined:

• The Gaussian function

• The 2-D Circularly Symmetric Gaussian filter

• The Gaussian auto-convolution scaling property

• the \/l expansion operation

• Cascaded convolution with expansion and the DOG transform

• Cascaded convolution with resampling and the SDOG transform

In this chapter the complexity of the cascaded convolution with resampling was derived. This
complexity was compared to chat of computing a SDOG transform using FFF convolution. Cascaded
convolution withTesampisng was shown to be more efficient whenever the Image signal is larger than
65 x 65 samples.
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Chapter 6 also examined the attenuation of the reflections that result from the expansion operator,

and the accuracy of the auto-convolution scaling property when used with a finite Gaussian filter

with a circular support. At the end of chapter 6, the impulse responses of the level 0 and level 1

band-pass filters were shown, and linear and log plots were shown of the transfer functions of the

level 1 and level 2 band-pass filters.

10.4.0.1 Conclusions Concerning Signal Detection

The principal conclusions to draw from chapter 6 are that:

• A DOLP transform is not prohibitively expensive to compute.

• A DOLP transform can be implemented using Gaussian filters and cascaded convolution
with expansion such that the computational cost is less than that of a Fast Fourier
Transform.

• Cascaded convolution with expansion can be used to produce a sequence of low-pass
images such that the impulse response with which the images are convolved have
standard deviations which form an exponential sequence, a. = aoVl\

• Cascaded convolution with expansion can be implemented such that the impulse
responses have stop bands which are kept very small, (i. e. < -80 dB).

The work described in chapter 6 could be extended in several ways,

» A substantial speedup { a factor of 49/18) cm be achieved by using the separability
property of the circularly symmetric Gaussian function. However this technique will
result in a slightly higher worst-case stop-band ripple because a square support is needed
for separable filtering. An investigation into the extent of the degrading of the stop band
rejection from this method would be useful. Such an investigation is to be carried out in
the near future.

• The caaradcd-filicring-with-expaBsto'ii1 algorithm approximates the Gaussian low-pass
filters with an auto-convolved Gaussian convolved repeatedly with expanded Gaosaans.
1 1 B is iitustnitcd In figure 6-9. 11c measures which were used to determine the accuracy
of this approximation arc somewhat crude. It would be interesting to compute the
standard deviations of the sequence of fillers produced in this manner. It would also be
interesting to fmd a tftea&iit1 for how closely these composite filters approximate true
Gaussian functions*

• The effects tif the Gaussian filter parameters 1 and a have only been examined over a
limited region of the R,«space* 'fhts examination showed that for R = 4 0 and a = 4.0
the transfer function lapcis mimiHonkalty akmg the u and v axes of the spatial frequency
plane io a response of approximately zero st the Nytptsf boundary points u = ±w, v =
H21 An exhaustive exploration of t ie effects of R mi m would be interesting. However
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M-nodes serve as markers for distinct features in visual forms. M-nodes occur at several levels for
forms such as corners, ends of bars, and other convex and concave parts in a visual form. They also
denote the presence of forms which are not elongated. Examples of the forms that cause M-nodes are
given in section 7.1 and 7.3. Because M-nodcs denote distinct visual features they provide excellent
tokens for matching images. Correspondence matching in an SDOG transform is a process of
determining the correspondence between M-nodes, M*-nodes, and L-nodes in the descriptions from
two images.

The fact that each band-pass impulse response is a copy of the impulse response from the next
lower level scaled larger by Vl provides that the M-nodcs from adjacent levels occur within two
sample distances of each other. Thus it is possible to connect M-nodes between the band-pass levels
by having each M-nodcs search for M-nodes in a small neighborhood in die band-pass image above
it. Such adjacent M-nodes form a two-way pointer between themselves. Sequences of M-nodes at
several levels such that each M-node is connected to one M-node above it and/or one M-node below
it are called M-paths. M-paths that describe a visual form give a tree. At the top levels of the tree
there are M*-nodes that provide an estimate of the size of the visual form. Aligning the M*-nodes
from two images gives an initial estimate of the relative position and size of the two visual forms. The
relative orientation is provided by determining the correspondence of the M-nodes, M*-nodes and
L-nodes in lower levels of the tree. Such matching is described in Chapter 8.

Forms that are long and thin result in ridges at several adjacent band-pass levels. Comparing the
values of ridge points at adjacent levels gives ridge points in the three dimensional SDOG transform,
The 3-space ridge points are labeled as L-nodes. L-nodes are linked to adjacent L-nodes with
two-way pointers to form an L-path. Except for certain degenerate forms, L-paths begin and end at
M*-nodes. An L-patli describes the points along the center of an elongated form. The level of each
L-node gives an estimate of the width of the form at that point along the center of the form. The
alignment of the M*-nodes at each end of an L-path provides an initial estimate of the best alignment
of the L-paths from two images. A nearest neighbor matching rule was described for comparing two
L-paths in section 8.5.

A conclusion that can be drawn from the algorithms described in chapter 7 is that a a structural
description of an image can be constructed without the use of explicit measures of directionality. The
issue of whether a measure for directionality was needed to detect ( or even define what is meant by)
ridges in each band-pass image was raised at the outset of our investigation into techniques for
constructing a description of an image from a DOLP transform. The outcome was that such a
measure is not necessary; a two pass process can be used to detect ridges. In the first pass of this
process samples arc linked to their largest neighbors. In the second pass, samples which link to each
other arc marked as ridge nodes. This process was found to be sufficient for detecting ridges,

A fundamental reason why the processes described in chapter 7 work is the smoothness of each
band-pass image. This smoothness is a result of the band-pass characteristics of the filters used in the
1X)LP transform. ITic DOLP band-pass filters sufficiently constrain the spatial frequency content of
each band-pass image so that relatively simple processes may be used to detect peaks and ridges in
each image. The V ? scaling between filters constrains the changes between adjacent band-pass
images so that nearest neighbor comparisons may be used to detect the local peaks and ridges among
the band-pass images in the transform space.
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The matching examples that were shown in chapter 8 were intended to both illustrate the size and

rotation invariance of a structural description based on a DOLP transform, and to show kinds of

matching which can be done with such descriptions. In some sense these were the results of a

preliminary investigation. These preliminary results were promising. M*-nodcs and M-paths were

found to be particularly useful in finding the correspondence of components in two descriptions. We

are preparing to launch a thorough development of matching techniques for descriptions based on

the DOLP transform within the problem domains of structural pattern recognition and stereo image

correspondence. This promises to be an exciting and fruitful investigation.
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Appendix A
Selection of HIter Parameters

This appendix describes the choice of filter parameters, R = 4.0 and a = 4.0, for the experimental
implementation of the SDOG transform which was used to develop the structural representation.

The choice of R and a must balance two opposing constraints. On one hand, the low pass filters
must sufficiently attenuate response at frequencies outside of the Nyquist boundary at each low-pass
level to avoid aliasing from resampling. Such aliassing would result in random errors in the position
of peaks and ridges as well as the detection of spurious peaks and ridges. The filter response can be
made arbitrarily small outside the Nyquist boundary by increasing tlie number of coefficients of the
filter, (i.e. by increasing R ). It is also possible to adjust the position of the stop band towards the
origin, at the expense of increasing the stop-band ripple, by decreasing the parameter, a.

On the other hand it is desirable to keep the number of coefficients and thus the computational
cost of the SDOG transform as small as possible.

The R parameter determines the cost of a DOLP transform ( Given the size of the image, and the
scaling value S = \fl \ R should be chosen to be the smallest value which gives acceptable low
levels of aliasing when the low pass images are sampled. The meaning of acceptable remains a topic
of debate. We have suggested that the stop band ripple is acceptable if the magnitude of the worn
case stop-band error is less than the quantization resolution used to represent the samples. In our
actual choice of R and a we were much more conservative than this guideline.

The a parameter'specifics the standard deviation of the filter for a given R. Since a controls the
tapering of the coefficients at die boundary' of the filter support it gives a trade-off between the
transition width (AF) and the magnitude of the ripples (5) in the stop band. Increasing a decreases
the size of the ripples in the stop band region while making the transition region wider and moving
the edge of the stop band away from the origin. For any value of R, a should be chosen as large as
possible, so that the stop band ripple is as small as possible. The upper limit for a is the value at
which the largest filter response at the Nyquist boundary is of the same magnitude as the stop-band
ripple.

The first re-sampling occurs at the level 1 low pass image, where the impute response of the
low-pass filter is the kernel filter, g(x,y;R,ot) convolved with itself. Thus the transfer function of the
composite filter at level 1 is the square of the transfer function of the the kernel filter.

It was decided to design die kernel filter so that the outer edge of its transition region would just
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touch the new nyquist boundary for Vl sampling. This meant that the sampling distance at each
levelwould be approximately \fi smaller than needed to minimize aliasing. This provides a factor
of V2 better positional accuracy in the description, although it tends to make peaks and ridges less
sharp This also meant that the worst case stop-band ripple would be the square of the ripple in the
kernel filter.

Parameters for the kernel filter were tested to determine:

1. The worst case ripple outside the Nyquist boundary for vT sampling.

2. The values at u,v = ±»/2, the four points on the new nyquist boundary that are closest
to the origin.

As a first pass, filters and their transfer functions were computed at each of the 9 points given by
all combinations of:

R €{3,4,5}
« C {3,4,5}

These starting values were chosen from earlier experience with circularly symmetric Gaussian filters
ific values obtained for maximum amplitude of stop band ripple (5) and for G(u=^/2,v=^/2)
< ITiis is for the real part of the transfer function) are shown below in table A-l. The symbol N/A is
given for S when the ripple did not come to a peak inside the u v plane

a = 3.0 a = 4.0 a = 5.0
S.G(ir/2.n/2)

R = 3 0.031,0.025 N/A, 0.063 N/A, 0.109
R = 4 -0.018,0.013 -0.008,0.011 0.003,0.021
R = 5 -0.003,0.0111 -0.006.-0.006 -0.002,0.002

Table A-l: Results of Initial Parameter Trial

From this experiment it was teamed that R=3 was not not quite adequate to keep the transition
region within the Nyquist boundary for \/2~ sampling. R=5 was rejected because R=4 was judged
lo be adequate. The value of a = 4.0 was judged to be the best of these three trial points due to the
cl<wcn«s of the stop band rippfc magnitude and the maximum stop band error. The transfer
functions were then computed for R = 4 and a = 3.80 to a = 4.20 in steps of 0.05. The value a =
4.Q was fi>uiitl to put the first zero crossing at the points (u,v) = {±w»G) and (0,±»), and thus was
selected for use in developing ihc symbolic description technique described in the chapters 7 through
9.

From the ubk of \aiucs given above st an be seen that the worst case aliasing when the level 1
low paw image R sampled, occurs at <u,vj = (±w/2,±w/2>. 'JTicse points arc on the Nyquist
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boundary, and for them the filter response is 0.0112 = .000121 or -78.34 dB down from the maximum
response ( 1.0 at DC). All other aliased frequencies are less than or equal to -.0082 = 0.000064 or
-83.8 dB or smaller. This was judged to be adequate and attention was turned to other matters.
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