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Abstract

This dissertation presents a new technique for representing digital pictures. The principa benefit
of tliis representation is that it greatly simplifies the problem of finding the correspondence between
components in the description of two pictures.

Tliis representation technique is based on a new class of reversible transforms (the Difference of
Low Pass or DOLP transform). A DOLP transform separates a signal into a set of band-pass
components. 'ITie set of band-pass filters used in a DOLP transform are defined by subtracting
adjacent members of a sequence of low-pass filters. This sequence of low-pass filters is formed by
scaling a low-pass filter in size by an exponential set of scale factors. The result of these subtractions is
a set of band-pass filters which are all scaled copies of a smallest band-pass filter.

Severa techniques are presented for reducing the complexity of computing a DOLP transform. [t
is shown that :is the each band-pass image can be resamplcd at a sample rate proportional to the scale
of the band-pass image. This is called a Sampled DOLP transform. Resampling reduces the cost of
computing @ DOLP transform from O(N? multiplies' to OV Log N) multiplies and reduces the
memory requirements from O(A’ Log N) storage elements to ~ 3 N storage elements.

A fast algorithm for computing the DOLP transform is then presented. This agorithm, caled
"cascade convolution with expansion” is based on the auto-convolution scaling property of Gaussian
functions. Cascaded convolution with expansion aso reduces the cost of computing a DOLP
transform to O(N Log N) multiplies. When combined with resampling, this fag agorithm can
compute a Sampled | X)LP transform in 3 X, N multiplies.?

Techniques are then described for constructing a structural description of an image from its
Sampled DOLP transform. The symbols in tliis description arc detected by detecting loca peaks and
ridges in each band-pass image, and among all of the band-pass image. Tliis description has the form
of a tree of peaks, with the peaks interconnected by chains of symbols from the ridges. The tree of
peaks has a structure which can be matched despite changes in size, orientation, or position of the
gray scale shape that is described.

The tree of peaks permits the gtobal shape of a gray-scale form to be matched independently of the

1N is the number of sample pointsin an image or signal

2JO is the number of coefkicnts in the smallest low-pass filler.
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high resolution details of the form. Thus it can be used for rapidly searching through a data base of
prototype descriptions for potential matches. This representation is very efficient for finding the
correspondence of components of forms from two images. In such matching die peaks serves as the
tokens for which correpondence is determined. The correspondence of peaks at each band-pass leve
condtrain the possible matches at the next, higher resolution image. This representation can aso be
used to describe forms which are textured or have blurry boundaries. Examples are presented in

which the descriptions of images of the same object are matched despite changes in tlie size and
image plane orientation of the object.
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Chapter 1
| ntroduction

This dissertation describes a representation for visua information. This representation is not
specific to a particular visud domain; it can be applied to any problem in which a two dimensional
sampled function must be represented with symbols. It is particularly appropriate for images where
the picture elements have many values, where the objects represented in the picture have blurred or
fuzzy boundaries, or have textured surfaces, and where objects occur a unknown sizes and
orientations.

Interpreting an image requires assertions about regions of the image whose szes may span the
range from a few picture elements to the entire image. The representation developed below provides
visud primitives which span this range of sizes. The position of these primitives are encoded as nodes
in agraph, ‘flic result is a data structure which is relatively invariant to the actual size, orientation
and position of the gray scale form in the image.

1.1 The Problem Context: Machine Vison

This Section describes the general vision problem and how this dissertation relates to it

This thesis addresses the problem of representing two dimensional (2-D) visua information. The
visua world in which humans function is a three dimensiona (3-D) world. Understanding this 3-D
visual world requires representation of the 3-D form of objects. The representation described in this
thesisdoes not, by itself, provide diis capahility; it is inherently 2-D.

The human visua system receives as raw data a stereo pair of 2-D images. Each of these images
must be represented as a 2-D signal and the pair matched againgt each other to receive 3-D
information. "Hie representation described here is wel suited for the analysis of stereo pairs. It isaso
well suited for the interpretation of images from some domains which arc inherently two
dimensional such as many classes of bioincdical images, aerial and satellite photography, and also
terrain data (where depth is represented as intensity).

Test data for this research has been acquired from diverse domains. Many of the images were
digitized from photographs of 3-D objects, such as the cup image shown as figure 1-1 below. The cup
image is placed here to illustrate a point about 2-D images of 3-1) objects. Careful viewing of a 2-D
image of a 3-D object will usually show that, the light and dark regions in the image do not directly
correspond to our ideas of the object's shape.

it




Figure 1-1: Test Image of a Cup. Note Shape of Dark Regions.

Note the shape of the dark regions of the cup. There is a dark handle which one might expect.
There is also a dark region at the top where the cup is open, and therc is a dark rcgion on the right
side. The shape of these regions are not at all like what an untrained person would draw if asked to
draw a cup. The human visual system takes the shading, highlights, and texwral information, from .
_such an image and uses them to reconstruct or rccall a model of a 3-D object. This process is .’
unconscious. and these visual cues arc often not noticed by an untrained observer unless they are -
explicitly looked for. Although intcrpreting shading. highlights and texture is an important and o §
timely problem in machine vision, it is not the problem addressed by this thesis. Rather, this rescarch { - ’
will provide a new foundation for such interpretation.

Figure 1-1 also provides an opportunity to definc an important term. The dark regions in the cup
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image are cxamples of “eray scale forms”. The representation describes the shape of both individual
forms and the shape produced by a configuration of forms. The word "form™ i borrowed from the
art community. It refers to a pattern of any shape which is not necessari sarily uniform in intensity, It is

used in place of image object, because i Image objects could be confused with real world objocts. TM

words shape and blob were avoided because they carty connotations of uniform- ~imensity connected
patterns. e

1.1.1 Role of Representation in 2-D Visual Domains

In a 2-D visual domain. such as aerial photography. many assembly and inspection applications,

some classes of biomedical images, or terrain data, recognition of objects requires the fullowing
components:

1. A representation technique which compresses the information and expresses it in 2 usefisl
and cfficient form for recognition;

2. A set of object models (or perhaps in the case of terrain data 2 !mdc! mzf the terain of a
very large region). These modcels should be cxpmd m a ropreseniath
processed efficiently for recognition, or any representation
such a representation.

3. A matching procedure which compares observed data w swored mm gives some
measure of similarity, and. if desired, a description of where the observed
and docs not match a specific object model

lntcrprctation is thcn a matter of exwﬁdmg the observed data and apy

the matching pmbicm is ﬁndmg the COTTCCT YCPTes(
modecls. The main contribution of this thesis is the

In statistical pattern recognition, a pattern is represented | ‘
The sct of features comprisc a multi-dimensional WMQW@W

% m
choscnmmcachclassofpaﬁcmpmdﬁmawm’ MMka ‘ #’x
feature space. Apamcm;smgmd%%dﬁ%k apits the Fgion otk Space

which its vector of featurc mecasurements w.

anﬂymmmmmadﬂm
"structural pattern ccognit structural -
representation for cach pmwn GM%WM%
clements, such ascdgcswwnmwhmmmma M
classified by constructing @ COITCSpORGCH mf’ M
prototypes. A 2-D pattern smsigum mmmmm
correspond 1o those of the pattern. The represe velo
pattern recognition, although this is not the only application




1.1.2 Representation in 3-D Visual Domains

In a 3-D visual world in which input data consists of sterco pairs of 2-ID images, interpretation
requircs the following components;

1. A representation for the 2-D images which may be cfficiently used for depth detection by
stecreo matching. ‘

2.A broccdure for obtaining depth information by detecting corresponding objects in the
two images and observing their relative shift. This procedure should also make use of
information in shading, highlights, texture, and other visual cues.

3. A representation for the 3-D form of objects.
4. A repertoire of models for the 3-D form of objects.

5. A matching procedure to identify which 3-D object model(s) correspond to the observed
3-Dinput data.

Although this dissertation is primarily concerned with 2-D representation, some suggestions will be
made as 10 how this representation may be used for interpretation of sterco pairs. The other
components remain as timely and important research topics.

1.2 Thesis Summary and Background

This Section presents the thesis of this dissertation, describes the methodology for demonstrating
this thesis, and reviews the major results of the research.

1.2.1 The Thesis

This research began as an investigation of the use of a set of band-pass spatial frequency channels
for representing visual information. This topic was inspired by psvcho-physical theories of human
visual perception that hypothesize a set of "spatial frequency channcls” in the human visual system
[Campbell 68]. These theorics are summarized in an appendix to [Crowley 76].

Early in this rescarch principles (referred to as postulates) were formed to guide and constrain the
design of band-pass filters for representing images. These principles were refined in the course of
experiments in which filters were designed and convolved with test patterns. Some of the results
from these experiments arc described in [Crowley 78a] and [Crowlcy 78b]. A refined version of these
principles is given in Section 4.2 below.

These principles and experiments led to the development of the reversible Difference of Low-Pass
(DOLP) Transform. The DOLP transform is based on a sct of scaled copies of a circularly symmetric
low pass filter. The scale factors for these filters form an exponential sequence, Each low-pass filter is




subtracted from the previous low-pass filter to form an exponential scquence’ of band-pass filters.
Thesc band-pass filters may be convolved with the image to form a sct of band-pass images. The set
of band-pass images is very similar to the images which would be produced by the sct of spatial
frequency channels which have been hypothesized to exist in the human visual system.

The set of band-pass filters and the largest low-pass filter sum to form a single coefficient whose
value is 1. Another way to say this is that the sum of all of the band-pass images and the low-pass
image produced by filtering with the largest low-pass filter can be added together to form the original
image. This property demonstrates that no information is lost by the DOLP transform.

The low-pass filters are cach a scaled (in size) copy of the same function. Thus the band-pass filters
formed from their difference are also scaled (in size) copies of the same function. This gives the
property that scaling a 2-D pattern shifts the pattern in each band-pass image to a new band-pass
image. Thus a representation bascd on peaks and ridges in the band-pass images is invariant to
changes of scale of the pattern. The scale information is preserved by noting which band-pass image
the peaks and ridges actually exist at. It is the network of symbols which is not changed by scaling
the 2-D image. Note that in fact their are small cyclic distortions that occur during scaling, but these
can be obviated during matching.

A straightforward implementation of 2 DOLP transform for an N point signal requires O(NZ)
multiplics and produces O(N lL.og(N) ) samples. This can be quite expensive on a general purpose
computer. In an cffort to reduce this complexity the concept of re-sampling each band-pass image
was investigated. Re-sampling at a rate proportional to the scale of the band-pass filter provides the
benefits of:

¢ making the represcntation size invariant,
¢ reducing the computational complexity, and

e reducing the storage requirements

for the DOLP transform. Re-sampling creates a class of DOLP transforms referred to as "the
Sampled DOLP transform”. The re-sampling operation is described in Scction 3.3 and the re-
sampled DOLP transform is defined in Section 5.5.

Secking to further reduce the computational complexity of the DOLP transform we investigated
the use of repecatedly convolving an image with a Gaussian low-pass filter and re-sampling. This
‘algorithm, referred to as cascaded filtering with sampling, produces a sct of low-pass images with
impulse responses which are scaled in standard deviation by a factor of V2 for each convolution.
Subtracting cach low-pass image from the previous low-pass image gives a sct of band-pass images.

Cascaded convolution with Gaussian filters can produce a sct of low-pass images whose impulse
responscs are are scaled cxponentially in standard deviation. This is a consequence of the Gaussian
Scaling property, discussed in Scction 6.1. The Gaussian scaling property shows that convolving a
Gaussian function with itself produccs a new Gaussian function which is larger in standard deviation
by a factor of V2. Cascaded Convolution with sampling using a Gaussian filter may be used to



compute a subclass of the Sampled DOLP transform called the "Sampled Difference of Gaussian”
(SDOG) Transform. Storage efficiency and Sze invariancc result from rc-sampling, while the
computational efficiency is the result of both re-sampling and an auto-convolution scaling property
of Gaussian functions.

Both the DOLP transform and the SDOG transform expand a 2-D (x,y) image into a 3-D discrete
gpace (x,y,k). The new dimension of tills space is k, the filter index. For an N point image, the
SDOG transform has 3N* samples and requires 3 N X, multiplies, where X, is the number of
coefficients in the smallest low-pass filter. This computational complexity, derived in Section 6.3, is
lessthan that of an FFT for most signals.

Because the filters implemented by the SDOG transform satisfy the criteria established in Chapter
4 it is posshle to congtaict a structural representation of an image which has certain desirable
properties for matching object descriptions. This representation is created by detecting peaks and
ridges in the (x,y X) space given by die SDOG transform.

Let us elaborate on the terms "peak” and "ridge” and on the role of peaks and ridges in this
structural representation. At each band-pass image, or leve, of the SDOG Transform, there are
points where the band-pass impulse response is a "best match" to one of the gray scale formsin the
picture. At these points, the filtered picture has alocd positive maximum or negative minimum;
such points are called peaks. Because the filter size at any level, k, is V2 larger than the filter at level
k-1. there is a connectivity between between pesks at adjacent levels. Connecting adjacent peaks
between dl of the levels gives a tree (or set of trees under some conditions) in which the path of the
branches describes the location, size, orientation and shape of objects in the picture. In fact, it is
necessary to compare the vaues dong each branch to detect loca maxima along the branch. These
points serve aslandmarks for determining the size, position, and orientation of gray-scale forms.

When an object has an elongated shape, it will give rise to a path of values which are larger than
any adjacent values, that is, a "ridge". Ridges tend to begin and end at branches in the tree, and
follow a path which can travel both between and aong, a level. The paths of the ridges gives further
information about the shape of objects in the image.

Figure 1-2 shows an example of a graph composed of peaks (IvTs)® and ridges (Us) which
represents a rhomboid form. This figure is taken from Chapter 7 where it illustrates the sequence of
ridge points that represent an elongated form which changes width.

Thistree and Its ridges describes agray scale form with symbols which represent circular regions*
The size of these regions span the range from radius = 4 to the sze of the image. The tree and
graphs for a particular gray scale form will have the same structure regardless of the gray scale form's
size, position, or orientation, liccausc this representation spans from global to local it may be used to
align the representations of a pair of forms which arc to be matched, even if they are of different

3Four npes of $)inhafe arc used in the representation. "These symboals arc labeled with Hie letters { M*» M, U P}. These
S mboK arc bnufl> defined in section 1.3, and discussed a length in chaplere 7 and ft.
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sizes. The correct scale, orientation, and position of one form to the other may be determined by

‘o -making a correspondence between the few “distinguished nodes” in the tree.  Similarity in shape
. between two forms is readily apparent from the few symbols at the most global level. Thus if the

4 . . . .
. identity of a form requires matching to a large sct of prototypes. the scarch may be pruned based on

the few most global symbols in the representation.

The representation produced by linking peaks and ridges in the 3-space function given by a SDOG
Transform of an image:

5 i e e TR S e e e
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1. is invariant (except for the effects of a discrete space) to changes in the size or position of
a gray scale form (the effects of 2-D orientation can be casily compensated for);

2. provides a structure which may be used to determine the relative size. orientation, and
position of two gray scale forms from two images;

3. permits the global shape of two gray scale forms to be compared without the cost of
comparing details;

4. is not seriously degraded by textured regions, and degrades gracefully with image noise,or
blurry edges.

The invariance to changes in size and position is qualified because there are small cyclic distortions
which occur when an object is moved or scaled in size. These distortions are the result of the discrete
nature of the 3-D space given by the SDOG transform.

1.2.2 Demonstrating the Properties of the Representation

The validity of the claims made above should become apparent as the reader absorbs the material
prescnted in Chapters 3 through 8. Thesc claims have been verified by experiments and are
demonstrated with examples. Test images were taken from local data bascs, in particular, from a
copy of test images from GM for the “bin of parts” problem [Baird 77}, and from a terrain data base
of the Washington DC area. Six test images were digitized from 35 mm Black and white negatives by
SRI International. In the last ycar, the CMU image understanding group has permitted access to the
image digitizer on its Grinncll Display system. This has been used to make sterco pair images of a

paper wad and a paint stirrer.

The partial invariance to size of the representation is illustrated by the representations from five
teapot images. Thesc images were formed from photographs of a teapot taken at three distances with
two orientations at cach distance. The change in size from the smallest tcapot to the largest teapot
spans a factor of approximately V2. The distortion of the representation from changes in scale is
cyclic as scale changes by a factor of V2. The cffects of this distortion are illustrate with the teapot
images in chapter 8.

The cffects of orientation are cyclic over a rotation of 90°. Rotating an object has only gninm'
effects on the tree of peaks. The major effect of rotation is t change the density of the symbols along
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a ridge path. ‘liiis effect can also be compensated for in a matching rule. This effect is illustrated by
two teapot orientations that differ in orientation bj' approximately 30 .

Tne use of the representation to determine the relative si/.c and orientation of two images of an
object is illustrated with the teapot images ft has also been demonstrated with the stereo pair of
images of the paint stirrcr.

Graceful degradation of the representation with noise, and the ability to represent both surface
texture mi the shape of a textured object have been demonstrated with the stereo pair of images of a
paper wad. A portion of one of the paper wad images was degraded by substantial high frequency
noise during digitization, “fhis high frequency noise is ailmost entirely confined to the most kcal level
of the representation. Tlic paper wads also have surface texture which is represented in the lower
(more loca) levels of me representation *hile the shape of the paper mads is represented in the
higher imore global) levels.

A uxnple explanation can obviate concern about blurr> edges. A blur is the result of a convolution
with a low-pass "blurring function" %hich occurs opticaly in the imaging system, usually from poor
ibeui dirt> lenses, or motion. OR!” the highest frequency filters used in the representation are
sensitive to such a distortion. " Thus binning affects only the m«si loca levels of the representation,
'11i2 same can he md for at e high frequency noise, and for textured surfaces®

1»2»3 Ris$#ac€tt M ethodology

THre:xaz*_ | & :irMvicj,Tvd a*nmcnul ospezisto this re-search, The nature of image signalsand
ihc czdired 2:iM"4:js % ihe representation ars used to 2%ir-hess/c a set of «constraints for ihc Slier
sisgjjn. 318 g i infr™? iri2itx . A mure hgoftius onahsss iss-jsedl to Jemunsirate that the
FjogwhlCa . fKrni'?as HItr> f4n~ivh: *ubiractiry a -equencs ar* Mnitp>,s fliers Srated a das of
re® A AL ' ae DilYrel KD of | SHATas UJOM*), JrarAhrm)’. Mrithcmaiits are also
Jrn-KHAL nianve @t e (5 I mef IX)LP triform u”ng Gjiustian filters [Tl;e sampled
DOG wansform).

‘0, the'offacr hAmi. thet ‘icciragiics Vr dirncdrg p~i and nidje ~othis, and the rules fcr describing
kKA W braidan A 2pi\i o > ind Arofe M- Trnfanly, expermentai tasks kecrc
VrIRatey CtewnArainG Aul #A 1 T-A0 dibon n et t-Nipti %\ &rLuh- Miil pMnrtieBa such
SATHYY SN SV Lihuds Turd W BSec A AA itk An'RE e Asrec f tnvAnance of fce

representation 1o objcy siat, orkatation, and position.

This cempicical vty 60XV A rpm penior iy o yon-se s Herh s s IMLLP iz Sampled
DOG Trassforves had the propertics which Oxy wore derivedd 10 have, and that they could be applied
to the prodlom of representing visual mformation whose gructure mst B2 compansd (o other visual
mformation {As i fxroo matching) or prototype representation of classes of vissal objocts (a8 in
stnxtury patern maschung). OF course. the empincal stage of the mvestigation yickded importamt
principics and techniques for doscribing visual information with band-pass fileers,

e e e
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1.3 Results

This Section describes the major innovations developed in this rescarch. New techniques were
developed in three related problem domains:

1. The dctection and measurement of gray scale forms in 2-D images;
2. Computational techniques for such measurement; and,

3. The representation of 2-D gray scale information.

The following three Sections summarize the results in each of these probiem domains. The first of
these Scctions describes the new representation. In particular it describes the set of symbols used in
this representation, the meaning of these symbols, and how they are interconnected. Some of the
novel and important properties of this representation arc also described. The sccond Section
describes the measurements on which this representation is based. The final Subsection describes
new computational techniques which were developed to reduce the time required to compute these
measurements.

1.3.1 The Representation

This resecarch produced a representation for two dimensional gray-scale signals. The
represcntation is composed of a tree-like network of symbeols which may exist at discrete locations in
the three space (x.),k). The x and y dimensions of this space represents spatial position, wm&am k
variable references a spatial frequency band.

%mmmwmmmnmaybcumdfml@obwadmmmmmmﬂmmm&
representation computed from image data may be matched to a prototype despite changes
oricntation or position. This matching may proceed from a few symbols which describe globa
to more detailed local form. !nmnspmmﬂwmhnngmmmybemmmadﬁmm
form is a poor match. Also, whmnmungmmpmﬂw >spondence between points in the
mimmmybgmﬁy determined by tracking through ﬂmmpmm

There are four types of symbols in the representation
QM*MWWWMWMMM the 3-space
ol Wmmmm
e M: Peak points at a given k (frequency

» P: Ridge points at a given k.

Fach point in the 3-space, (xy k). contains the inncr product of a neighborhood of the image
centered at (x.y) and a circularly symmuctric {ilter impulse response of a radius sclected by k. Peak and
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Figure 1-2 A Rhomboidal Form and its Representation
(Reproduced from Chapter 7, figure 7-19)

ridge points (M*'s and Us) in the 3-space mark the best it of the primitive over arange of scalesto a
local set of image neighborhoods. Peak and ridge points ( M's and Fs )at a particular level (or
band-pass image),  mark the best fit of a particular fixed scae verson of the primitive to aloca set
of image neighborhoods.

M™ points are particularly significant These mark disdoct visua landmarks or regions. The levdl,
J of an M* gymix>| gives an estimate of the size of the visud landmark. More detailed information
about the shape of the landmark is given by the linked paths of L*$ (L-paths) and NTs (M-paths) that
arc connected to the M*. The filters adhere to smoothness constraints which provide a continuity to
the L\ to the M\ and between the L's and M\ The continuity permits paths in the 3—5[3&36 to be
formed by connecting adjacent L's and adjacent M\ :

The shape of aform Is represented by the network of L-paths and M-paths which result from it [If
the form increasesin si/E, the entire network mowesin the k direction in the 3-spacc, but maintainsits
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connectivity and structure. Note, however, that since the components of the networks exist at
discrete pointsin the 3-spacc, the motion occurs as discrete jumps of pieces of the network. Similarly,
if the shape rotates, its network rotates, and if the shape moves, its network moves. The scae,
orientation, and position quasi-invariance that is spoken of in this dissertation refers to the network.
The size, orientation, and position information is available from the podtion {and orientation) of the
network in the 3-space. The modifier "quasi-" is used because the individua symbols may only exist
a discrete points, and make discrete jumps as the form changes smoothly in size, orientation, or
position.

Figure 12 shows an example of the use of peaks and ridges for representing the shape of a
gray-scde form. ‘ITiis figure, which appears in Chapter 7, shows a rhomboid shape. Circles over this
form illustrate the position and radii of band-pass filters whose positive center lobes best fit the
rhomboid. Bdow die rhomboid is part of the graph which is produced by detecting and linking peaks
and ridges in the SDOG transform. The meaning of these symboals is described in Chapter 7.

1.3.2 Measurement Technique

This research produced two results which pertain to the problem of sensing (or measuring) the
presence of gray scale formsin two dimensiona data;

h Design criteria for band-pass filters required to describe non-periodic data by means of
peak and ridge detection.

2. A reversible transform (The OOLP Transform) that separates image signas into spatial
frequency channels that meet the criteria for describing non-periodic data with peak and
ridge detection.

The DOLP transform provides an ordered sequence of band-pass filtered versons of the input
image. The impulse response of each band-pass image is a finite circularly symmetric function
formed from the difference of two low-pass filters. The radii of the Impulse responses form an
exponential sequence of the form:

RS

where Ry isan Initid radius ( typically 40 X Sisascde factor (typicaly V?)* mi k han index thai
ranges from 0to K IK Is 16 for a 256 by 256 mage).

One of the principal characteristics of the OOI-P transform is that it k reversible The Impulse
responses'may be thought of as a set of primitive functions from which pictures may be constructed
This primitive looks tike a fuluy disk on an inversdy shaded background The two dimensional
convolution of Ihe picture with each impulse response is equivalent to a sequence of inner prodncs
(sec Section 3.1.3), |ITiis result facilitates an intuitive understanding of the filtering process® Each
sample from ihe convolution indicates the proportion of signa energy within the neighborhood
overlapped bj the impulse response which is identical to Ihc impulse reponse® In oilier words It isa
measure of sSmilarity between the impulse response and the image signd centered a that sample
point
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Because these primitive functions are band-pass. they are sensitive to patterns Over a narrow range
of sizes. Thus for a textured region, the shape of the texture elements is described by a configuration
of high frequency (smaller) impulse responscs, while the shape of the entire region is described by a
scparate configuration of lower frequency (larger) impulse responses.

1.3.3 Computational Techniques

There are two computational techniques which resulted from this research:

1. The use of re-sampling in computing the Difference of Low Pass transform, and

2. A fast O(n) implementation of the transform (the Sampled Difference of Gaussian
Transform) that uses a novel technique: "Cascade filtering with re-sampling”

A conscquence of the use of band-pass impulse responscs is that the the cost of the convolution
can be reduced by computing only at sample points. The distance between re-sample points has a
lower bound which is a proportional to the size of the impulse response. Thus as the impulse
response grows in size, the number of points at which the convolution must be computed decreases.
If the convolution is done in the usual manncr the increase in size of the impulse response is exactly
balanced by the decrease (due to sampling) in the number of points at which the convolution is
computed [Crowley 78a]. In addition to reducing the complexity and storage requirements of the
filtering operation, re-sampling also contributes to the size invariance of the representation.

The Sampled DOG Transform, described in Chapter 6, is based on a property of Gaussian
functions. Whereas, with re-sampling, a DOLP transform of an NxN image requires O(N logN)
steps, the Sampled DOG Transform produces the same result in O(N) steps. A stecp may be a
multiply or an inner product.4

1.4 Organization of this Dissertation

This dissertation may be divided into the following sections:
e Background Material (Chapters 1, 2 and 3);

o Mcasurement, detection and mathematical representation of nonperiodic signals (
Chapters 4 and 5);

o Fast computation techniques for the DOLP transform (Chapter 6);

e Converting the mathematical representation to a symbolic representation which describes
gray-scale shape heirarchically by spatial frequency ( Chapter 7);

4Thc symbol "O(.)", is pronounced order and used to indicate that the number of steps in the process under discussion is
less than or cgual to (bounded by) a lincar function of the argument.
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s Examples of the representation and its use for marching, including demonstrations of the
invariance of the structurc of a description to the size and orientation of the pattern
(Chapter 8).

Chapter 2 describes related work by other rescarchers in sensing and reptesenting forms in 2-D
grey scale images. Chapter threc provides a quick review of signal processing techniques and terms
which were appcar in this disscrtation.

In Chapter 4, a set of criteria for designing band-pass filters for detecting and describing non-
periodic signals is described. The criteria described in this Chapter defines a broad class of filters
which may be used for detecting the presence of non-resonant signals of particular sizes (durations).

In Chapter 5, a reversible transform is defined which separates a signal into a set of short duration
spatial frequency channels. The filters used in this transform satisfy the criteria cstablished in
Chapter 4. This transform employs a sequence of low-pass filters which arc scale copies of a single
function. The subtraction of adjacent low-pass filters gives a scquence of band-pass filters. These
band-pass filters and the lowest frequency low-pass filter define the reversible DOLP transform.
When an image has been convolved with these filters, the band-pass images may be added together to
recover the original signal. The DOIP transform is shown to require SN2 multiplics and N
Logy(N/X,) + N storage cells for an image with N sample points. a basc filter of X, coefficients,
and a scale factor between filters of S. The technique of computing the convolutions at re-sample
puints spaced proportionally to the scale of the filters is then introduced. The re-sampled DOLP
transform is shown to require S X, N LogS(N/X,,) + X, N multiplies and require =3N storage cells.

In Chapter 6 a fast version of this transform is dcfined which employs re-sampling and Gaussian
filters to reduce the computational complexity to 3 X, N multiplics. This fast transform employs
repeated convolution with a small filter, and yet gives measurements which span the range of
neighborhood sizes from a pixel to the size of the image.

In Chapter 7. techniques are described for detecting peaks and ridges within this three-
dimensional transform space, and connecting these to form the representation. The structure of this
tree represents a gray scale shape independent of its size, position or orientation.

Chapter 8 provides examples of the uscfulncss of the rcpresentation for matching as well as
examplées ‘of the size, rotation and position quasi-invariance of the representation. This chapter
describes the matching (or correspondence) problem in the domains of structural pattern recognition
and sterco image interpretation. Examples arc then presented in which the tree of peaks from the
- teapot images arc matched despite changes of size and image plane orientation. A alignment
procedure and similarity measure is then presented for ridge paths in the 3-space.
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Chapter 2
Background: Related Techniques

This chapter reviews existing techniques for dctecting and representing gray-scale forms in 2-D
images. The first scction discusses detecting and representing forms by their boundaries or as
regions. Both region shape and boundarics are cncoded in the represcntation developed in this
research.

The second section covers popular techniques for detecting the presence of uniform regions using
some form of linear dectection function followed by a nonlincar decision rule. These techniques
attempt to find edges which are then used to locate the boundaries of a region. The techniques
described in this section range from very local edge detectors, such as Roberts’ gradient [Roberts 65],
to detectors which cover large areas, such as David Marr’s Laplacian of Gaussians [Marr 79a].

The third scction describes representation techniques. The problem here is to develop a
representation for gray-scale forms or uniform regions which permits a fast search, alignment, and
similarity measurc. Techniques in this section include representations that are produced by
segmentation programs, Blum's medial axis transform [Blum 67}, and Marr’s primal sketch.

2.1 Boundaries vs. Regions

At present there arc two popular approaches to image representation: boundary representation
and region representation. Pioncering work with the boundary description approach was done by
Roberts’ [Roberts 65]. The literature is full of recent work with this approach. Notable examples are
[McKec 77] and [Perkins 78]. Estimates of the boundary position are usually obtained by convolving
the picture with one or more small local edge detector followed by a non-lincar decision function
such as Roberts’ gradient, the Sobel operator [Duda 73], or the Hucckel opcrator [Hueckel 71],
[Hueckel 73]. Sec [Crowley 78b] for a list of many popular small edge detection functions and their
wansfer function. Some further cncoding of boundary points is usually made to yield a
representation which may be matched against stored models. McKee's paper [McKee 77] is a good
cxample of this approach.

The primary advantage of most boundary detection schemes is that the description may be
computed by a small, fast operator. However, a small operator can be a disadvantage, since the
boundarics that arc to be detected can be much larger (in width) than the operator. Also, a smail
operators tend to be sensitive to image noise, which is small and high frequency. Also, such a
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description is expressed as many symbols which stand for very loca events. It is can be more efficient
to represent the image as fewer symbols which represent more global (larger) events.

Region description is based on detecting regions of uniform intengity or color. This step is often
referred to as segmentation. The usual approach is to. compute a higogram of image intensities or
histograms of color features which is(are) then scanned for wel defined valeys. A threshold is set at
the vaue in the valey. This technique can separate object from background nicely under proper
lighting conditions. Regions are then represented by a binary bit map, or by measuring a set of
features about the binary shape. ITiis approach was pioneered by Prewitt [Prewitt 66}, and Rosenfeld
[Roscnfcld 69]. A good example of applying this approach to color features is described in
Ohiandcr's Thesis { Ohlandcr 75].

Neither of these approaches are sufficient for an image which contains surface texture or wesk and
blurry boundaries. With both approaches there arc problemsin how the image structure is measured
and in how the representation presents the information to later recognition processes.

2.1.1 Measurement Problems

Consider an image containing gradual intendty transitions. Such an image could be said to have
blurry edges. If alocd edge detector is used it will respond weskly over the entire large transition
regions and the response will be so wesk in some places that it will be lost. Increasing the gain will
increase the sengtivity to noise. Similarly a region detection process will ran into problems defining
where such aregion stops and starts. In such regionsit is difficult to even define what is meant by an
edge or a uniform region. :

In images of real-world scenes, some boundaries between genuine objects are very weak. In a
boundary description produced from loca edge detectors, this usudly results in missng boundaries
and/or a failure of boundariesto form aclosed loop.

In a threshold-based region segmented regions which should be distinct turn up joined. Also,
Unless a region has sharp boundaricd and its intensities are distinct from those of the background*
the 2*D shape of a region will be very dependent on the threshold.

One of the biggest trouble areas for bofh of these approaches is Image texture. Texture here refers
in regions of an image containing many smdl forms which have random gray level shapes. Often in
natural textures these small gray level forms arc not unifonn In intensity. Such tenures may appear as
many small hills anil valeysin a terrain map. If the $kc of these **hifis”” v approximately unifonn
across the aftjject, the way in which the sze Yarics in the image may be used to Infer infbnnatiQn
about the depth of the object surface (K cider 80].

A tenure composed of randomly shaped nonuniform elements will svamp a threshold-based
region segrnenter with many small randomly shaped regions. The shape of a»™ gnen clement can
depend on the threshold. I*hc region segincftter will spend a large amount of time and memory
representing each element when wlut k seeded i's the shape of the whole tcitured region. Rosenfcid
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[Rosenfcdd 69) has noted that successively blurring such regions until the elements merge can be
used to segment adjacent regions of different textures. This technique is based on the same principle
as the representation developed in this dissertation.

With a natural texture, a locd edge detector will respond sporadicaly over a large area with the
result that there is no clear boundary. However, loca edge detectors have been used to detect
textured regions for region segmentcrs [Ohlander 75],

2.1.2 Representation Problems

A boundary description attempts to draw a closed boundary around regions which correspond to
unigue objects. Encoding the boundary with a chain code [Freeman 61], [McKee 77], for example,
provides a representation which can be matched to a prototype to identify each closed region. There
is a problem if die boundary does not close. In this case the interpretation program will not know
which set of boundaries to attempt to identify. If there are many adjacent closed boundaries, there
can be a problem knowing which corresponds to a genuine object, and which arc artifacts. Also the
entire boundary must be matched to identify an object. That is, if half of the outline of a region
corresponds roughly to a prototype, but the other halfis grosdy different, the matching program may
not discover the problem until it has attempted to match most of the boundary. The main problem is
that in many situations edge detectors will report boundaries that do not correspond to an object's
actual shape.

In a smilar manner a region segmenter may prodube erroneous data because of measurement
problems, particularly when applied to images with weak or blurry boundaries.

Finally, with both techniques the resulting representation is dependent on the specific Sze of the
objects in the image when what is desired is to recognize a shape independent of its sze.
Furthermore, a good representation should make available both the global shape of aform as well as
loca details. In this way a 2-D matching procedure can begin by matching die globa form, and
proceed to finer detail only if necessaly.

2.2 Edge Detection Techniques for Boundary Representation

In this section we will review severd measurement techniques which are related to the techniques
described in this dissertation. [Tie techniques described in this section have in common the goal of
detecting edge segments for use as primitive symbolsin a boundary representation of the formsin an
image. As with the representation developed in this dissertation, most of these techniques are based
on some linear measurement of image intensity, and seek to provide a description of the 2-D shapes

‘in mimage.
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2.2.1 Local Edge Detectors

Many local operators have been proposed for detecting edges clements. A survey of such
operators is included in [Crowley 80] along with the formula and plots of their transfer functions.
‘The carliest such operator is Roberts’ Gradient [Roberts 65]. This operator consists of a pair of first
difference masks oriented at £45°. These masks are shown below in figure 2-1° Let the output of
the convolution of the two masks at point (x,y) in the image be defined as cl(x,Y) and cz(x,y). The
estimate of the boundary at point x,y, denoted ¢(x,y), is then formed as the square root of the sum of
the squares, as shown in the following equation.

e(x,y) = Ve (xy) +e,(xy)” 2.)

Since Roberts’ first defined this operator many rescarchers have observed that equation (2.1) may
be approximated by the maximum of the absolute values or the sum of the absolute values as shown
in cquations (2.2) and equation (2.3).

e(x.y) = Max( e, (x.y)| + lc,(x.y)l) 2.2
| 23)
e(xy) = le;(xy)l + ley(x.y)l
0 1 -1 0
-1 0 0 1

Figure 2-1: Masks Used in Roberts’ Gradient

Probably the most popular local edge dectector has been the Sobel operator [Duda 73]. Like
Roberts’ gradient, the Sobel operator consist of two small masks that are 90° orientations from each
other. Thesc masks are shown in figure 2-2.

1 2 1 -1 0 1
¢ 0 0 -2 0 2
-1 -2 -1 -1 0 1

Figure 2-2: Masks Used in Sobel Operator

As with Roberts’ Gradicnt, the results of the convolution may be combinced by either equation
(2.1),(2.2), or (2.3).

The Laplacian operator, V2p(x.y), has oftcn been suggested as an idcal edge operator. The
Laplacian, and its Fourier transform, are given in the following equations.

2 ) 2ol
Vi(xy) = 2 p(;-y) 4 9y

ox ayz—

SF:gums 2-1 through 2-3 show the masks for local edge detectors. These masks are shown as an array of cocfTicients which
arc convolved with an image.
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F{VPan} = (v’ + V) Fp(xy)}
whereu and v are the spatial frequency variables and?={} is
the Fourier Transform Operator.

Prewitt [Prewitt 70] designed two different two-dimensional difference equations which
approximate the Laplacian operator. These masks are shown in figure 2-3 below.

0 -1 0 -1 -1 -1
-1 4-1 -18 -1
0-10 -1 -1 -1

Figure 2-3: Two Discrete Approximations To the Laplacian from [Prewitt 70]

As with the Roberts' Gradient Edge Detector, these masks are convolved with an image. The result
of the convolutions are then combined using equations 2.1, 2.2, or 2.3 to produce amap of edges in
animage.

2.2.2 The Hueckel Edge and Bar Detector

Hueckcl developed a function for detecting edges and bars that partially compensates for the fact
that edges are not dways very locd discontinuities in an image. Tkz Hueckcl edge and bar detector
[Hueckel 71] and [Hueckd 73] isbased on amode of an edge as a step function, F, within acircular
neighborhood. Thisstep function has a number of parameters as shown in die following equation.

F(xir,GSpb,d) = §f b forCx + Sy<p
\ b +d forCx + Sy>p

The parameters C, S. and p describe the direction of an edge or line. The parameters b and d
describe the average grey leve on either side of the edge. The Hueckel operator approximates the
pixel values within a circular neighborhood,® E(x,y), by finding the parameters for which F is a
minimum distance from E as shown in the following equation.

f f [E(xy) - F(x,ys<CS,p,b,d)]? cx dx

The Hueckcl operator solves this minimization problem by multiplying the neighborhood, E(xyy),
and the ided step, F, by aset of eight basis functions, H':'ij) fori = {0,1, 2,3,..., 7}, asshown in the
equations below. These basis functions, which are 'separable into a product of angular and radial
components, arer eferred toas Hilbert functions. The interested reader should see [Hucekel 71] for a
discussion, definition, and drawings of the zero crossings of these basis functions.

8= f Hjx,y)E(x,y)dJcdy

‘Although Hueckcl defines these functions using integrals they are evaluated as a discrete summation over a dreylar
neighborhood.
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5, = / f H(x.y) F(x.y.C.S,p.b.d) dx dy

In these cquations, the s are variables and the a’s are constants. Finding the parameters of F
then becomes a matter of minimizing the following equation.
7 ,
(3 -s)
i=0

This minimization produces the parameters for the closest fit of an edge and an estimate of the
likelihood that an edge is present.

All of the techniques described above detect and encode small sharp discontinuities in image
intensity. As we discussed in section 2.1, such a representation does not capture all of the information
in an image that is needed for matching to an object model. Such a representation is also inherently
inefficient because it describes only very local detail and does not describe the global shape of
regions.

2.2.3 Kelly’s Use of Planning

One of the first resecarchers who attempted to usc information from more than the most local
resolution for finding boundaries was Kelly [Keily 71]. Kelly called his technique “planning”™.
Planning is a2 problem-solving technique for reducing the scarch space for a possible solution.
Planning is the use of the solution to a simplified version of a problem as a guide to the solution of
the original (more complex) problem [Minsky 63]. Planning was first employed by Newell, Shaw and
Simon in the General Problem Solver [Newell 59].

Planning was applied to boundary detection by Kelly as part of his system for classifying images of
faces [Kelly 71} In this form of planning, edges are first detected in a reduced resolution version of
an image. These edges are then used to guide the detection of edges in the original image.

Kelly’s system operated on images composed of 250 by 330 pictures clements. A 28 by 40 plan was
prepared by dividing the image into disjoint § by 8 scgments and calculating the average intensity
within cach segment. This operation is equivalent o a form of low-pass filtering followed by re-
sampling. The low-pass filter for this application is an 8 by § array of coefficients of valuc 1/64. The
re-sample distance is 8 picture clements. Serious aliasing can occur when the sample rate is the same
size as the window. This can be scen by deriving the transfer function of the uniform square low-pass
window [Crowley 78a). (The transfer function is defined in section 33 )
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2.2.4 Cones and Pyramids

In this section we will describe several recent research efforts which employ multiple-resolution
versions of an image.

2.2.4.1 Uhr's Recognition Cones

Uhr has investigated the use of "recognition cones” for the low level processes of a machine vision
system [Uhr 72], [Uhr 78]. A recognition cone is a multilayer array of micro-processors which exccute
the same instructions in "lock-step” fashion. Each processor in the lowest layer covers and operates
on a disjoint region of an image. Successive layers of the cone sce the output of the processors
directly below. With cach laycr. the size of the image is reduced by averaging disjoint regions so that
the conc converges 10 a single processor at the apex. Uhr has investigated the use of averaging and
differencing on such a processor structure. He also suggests that such a structure may be used to
assign symbols to regions of the image.

2.2.4.2 Hanson and Riseman's Preprocessing Cones

Hanson and Riseman have also investigated segmentation procedures which may be implemented
on a recognition conc [Hanson and Riseman 74] and [Hanson and Riseman 78]. However, they
prefer the term "pre-processing cone” rather than "recognition cone” because the processes
performed are pre-recognition. In their system, the pre-proccssing cone serves as the front end of a
general purpose color vision system. The system builds a structural description of a scene using
multiple knowledge sources and threshold based scgmentation.

Hanson and Riseman have categorized the operations which may be computed on a pre-processing
cone into the following classes:

e Data Reduction: Operations such as averaging which pass information up to the next
higher level.

e Data Projection: Operations in which image data and interpretations are passed down to
lower levels.

« Iterative (or Lateral): Operations which are based solely on the neighboring processors at
the same level.

2.2.4.3 Pyramid Data Structures

A recognition or pre-processing cone is a form of parallel Single Instruction-Multiple Data
(SIMD) Processor. The data structure which it contains is sometimes referred to as a "pyramid data
structure”. The low-pass images on which the DOLP transform is based can be considered as a form
of pyramid data structurc. While some rescarchers lump together the characteristics of the processor
and the data structurc it builds, others have made a distinction in order to study the propertics of the
data structure.

al¥
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Tanimoto has defined a pyramid data structure as "a scrics of digitizations of the same image at
increasingly higher degreas of spatial resolution™ [Tanimoto 78). A standard relationship between a
given level of a pyramid and the level under it is that a local property (such as edge intensity, color, or
intensity) at the given level is obtained by averaging the local property over some neighborhood in
the level under it. In virtually cvery system these averages are formed over disjoint regions, which
can cause a randomncss due to aliasing [Crowley 78a] as noted above in the description of Kelly's
planning technique.

Tanimoto has suggested that the sequence of reduced resolution images need not be obtained by
averaging nor cven based on powers of 2, but can be obtained by a specially designed digitizer and
computer controlled optics capable of providing magnification of the image over a continuous range.

Levine [Levine and Lecmet 76] has investigated a system in which a a pyramid data structure is
used for bottom-up and top-down segmentation. His algorithm constructs five pyramids from the
original image: one for each of the following local properties: intensity, a texture measure, hue,
saturation. and edges. These pyramids contain outlines of segmented regions which arc then passed
to an intermediate level process for interpretation.

2.2.5 Other Work with Multiple Resolution Representations

Kelly is most frequently cited in the image processing literature for pioneering the use of multiple
resolution versions of an image. However, similar ideas appeared in other literature at about the

Thcuseofa reduced resolution "plan” for space planning (i.e. arranging 2-D shapes in an area) is
discussed in a 1970 paper by Eastman [Eastman 70}. Eastman credits work conducted at SRI on
trajectory planning and on reconnaissance for the idea [Nilsson 69] and [Rosen and Nilsson 69).
Eastman referred w this data structure as a "Hierarchical Data Structure” but it has since come to be
known as a guad tree [Klinger and Dyer 76}, [Horowitz 76]. Quad trees represent binary shapes in an
image by recursively dividing the picture into a 2 x 2 set of sub pictures. If any subpicture s
completcely filled or complctely empty, it is marked as such and not divided further. If a subpicture is
only partially filled it is further divided. This process continues until cither all the subpictures are
uniform or the individual pixels arc rcached. The result is a tree which can be traced to detcrmine if
any point in the picture is filled or empty. This algorithm can be very cfficient in terms of the storage
mqumﬂfnrpécmmdmhmwhmmiﬁmmm However, the description of a region which
this representation mmmm&maﬁymusmmﬁﬂmmmumﬁa&dmmsmm
rotated.

Warnock [Wamock 67] devised a similar algorithm for computing the hidden surfaces in two-
dimensional views of three-dimensional polyhedra. In Wamnock's algorithm, a two dimensional
picture or subpicture i8 recursively divided into four squares if it contains a boundary between two
faces of polyhedra or a boundary between a face and the background.

A pyramid data structure has been used by w speed up corrclation template matching of acrial
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imagery using hicrarchical search [Hall et. al. 76]. Two-stage hierarchical template matching has also
been reported for image feature detection [Rosenfeld and Vanderbrug 77].

2.2.6 Marr’s Laplacian of Gaussians

Probably the work most similar to that described in this dissertation is that of David Marr. Marr
sought to understand the information processing problems inherent in vision. He was interested in
both the mechanisms to visual stimuli in the human visual system and in the computational problems
of implementing such processes in machines.

[Marr 79a] presents a theory of edge dctection which recognizes that the information in visual
stimuli occurs at many scales (ot resolutions). To detect these stimuli at different scales he employs
band-pass filters which are formed from a Laplacian of Gaussian low-pass filters (Vzg(x.y) ). Marr
forms these filters using a difference of Gaussian low-pass filters whose standard deviations have a
ratio of 1.6. He uscs an informal argument to show that such a ratio gives an optimum narrow band
width. (The implementation described in this dissertation employs a ratio of V2 arrived at by a very
different line of reasoning.)

A set of such filters (4 in [Marr 79a] ) are convolved with an image. The results are encoded by
detecting the presence of zero crossing segments and the directional derivative perpendicular to the
zero crossing at each segment (called the amplitude of the segment). This set of zero crossing images
is referred to as the "raw primal sketch”. Marr speculated that if filters werc used at a sufficient
number of scales, the raw primal sketch would be reversible. That is, the original image could be
recovered from the raw primal sketch.

Zero crossing clements from several scales are collapsed into a single boundary estimate called the
"primal sketch”. This is done by comparing zero crossing segments from adjacent spatial frequency
levels, to test for similar directions and amplitudes. The zero crossing segment from the highest
resolution raw primal sketch is encoded in the primal sketch. Closed boundaries are labeled as blobs
and assigned attributes of length, orientation, and average contrast. Terminations are assigned a
position and orientation. We shall have more to says about Marr's work in the section on
representation below.

2.3 Representation Techniques

2.3.1 Blum’s Medial Axis Transform

Blum devcloped a representation for binary shapes called the "Medial Axis Transform™ (MAT)
[Blum 67]. 'This representation is intercsting because it is object centered; that is, components of a
shape arc defined relative to a central (or medial) axis. 'This region representation bears some
similarity to the representation developed in this dissertation.
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The medial axis transform produccs a form of skeleton for a binary shape defined on a continuous
medium. The MAT may be defined by the following process. Fach point on the boundary of a
binary region transmits a circular wavefront on both sides of the boundary. These wavefronts
propagate until they reach another boundary point or until they mect a wavefront traveling in exactly
the opposite dircction. When two wave fronts meet traveling in opposite dircctions. they cancel cach
other, and the point where they meet is marked as belonging to the medial axis. Such points
correspond to the center of circles which are fit tangent to two or more points on the boundary of the

shape.

The collection of medial axis points defines a sct of connected spines (or center axes) describing
the form of the shape. Where a shape contains a concavity, spines occur outside the binary shape as
well. Similarly, spincs occur for the space between shapes. (This is the negative shape which occurs
between two positive shapes.) Spine points can be encoded with the distance to the boundary from
which they propagatced. This gives a reversible representation of the binary shape as these distances
correspond to the radii of discs that must be placed overlapping on the spine to reconstruct the binary
shape.

Unfortunately there arc several problems with the medial axis transform. For one thing, the
transform operates only on binary shapes which introduces all of the problems attendant to
thresholding techniques. Also the transform is only defined for a continuous medium. Propagating
circular wavefronts on a discrete grid is a difficult and costly process. Perhaps most troublesome is
that the structure of the medial axes are altered drastically by minor nicks and protrusions on the
boundary of the shape.

There is some similarity between the MAT and the representation described in this dissertation.
The path of the spines for a simple object rescmble the paths of peaks and ridges from our
representation projected onto the original picture. Our representation also produces a description of
the negative shapes outside a gray scale form when there is a concavity and when two shapes are
nearby. However, nicks or protrusions narrower than half the width of the gray scale form do not
affect the overall path of ridges and pcaks. The biggest difference is that our representation is
computed for discrete gray scale forms, while the MAT is defined for continuous binary forms.

2.3.2 Marr’s Three Levels

David Marr has devcloped a framework for visual information processing that includes
representations at three levels {Marr 78], The first such representation is the primal sketch which is
described above. The primal sketch encodes information about the boundaries of forms in an image
from differcnt resolutions.

The sccond representation is referred to as the 2 1/2-D sketch [Marr 79a). This is a form of depth
map of surfaces as scen by the viewer. Various processes that interpret depth cues from such
phenomena as texture, shading, and sterco perception contribute information to form the 2 172 D
sketch.
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Marr asserts that an object centered representation is also required for gencral purpose vision and
that this 3-I) representation should include shape primitives from many resolutions. Furthermore he
asserts that this representation should take advantage of axcs of symmetry which are intrinsic to the
object. He cites the aeneralized cylinder representation [Agin and Binford 73], [Nevatia and Binford
74] and the Medial Axis Transform [Blum 67] as examples of representations that have these

propertics.




Chanter 3
Signal Processing Background

Digital signal processing is an engineering discipline which, like image understanding, has been
made possible by the widespread use of digital computers since the early 1960's. It’s theoretical
foundation is linear systems theory, a body of continuous mathematics which is fundamental to
electrical engincering.

Since many persons interested in image understanding Jack training in digital signal processing,
this chapter provides some definitions and intuitive explanations for techniques from digital signal
+ processing which are necessary in later chapters. Most of the material in sections 3.1, 3.2 and 34 is
available in widely used references. The text [Oppenheim 75] is particularly relevant. A very readable
introduction to digital signal processing for non-clectrical enginecrs is [Hamming 77]. The transfer
function derivation given in section 3.2 is from this book.

3.1 Convolution, Correlation, and Inner Products

This section provides the formulae for the 2-D convolution and 2-D cross-corrclation of a finite
2-D filter with a 2-D signal. These formulae are shown to be identical for filters which arc symmetric
about both axes, as is the case with the circular symmetric filters discussed in chapters 5 and 6. The
2-D cross-correlation is then shown to be equivalent to a 2-1) sequence (or array) of inner products.
This equivalence gives a heuristic for interpreting the results of the cross-correlation. This heuristic
leads to the usc of peak and ridge detection for converting the filtered signals into symbols, as
described in chapter 7.

This rescarch has concentrated on the use of non-recursive finite impulse response (FIR) filters;
we have avoided the design problems involved in 2-D recursive filters, itmmpmh&ehramw
recursive filter to have zero or lincar phase. Furthurmore, there is no known design procedu
generating a stable 2-D recursive filter which would satisfy the constraints developed below.

3.1.1 Convolution

A 2-D finite impulse response digital filter may be defined by specifying its impulse response. For
discussion, let us define a 2-D discrete impulse response:

sixy) for x| < X andlyl <Y,
The variables x and y are, of course, integers.
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The filtering operation is usualy expressed as a convolution, denoted M *". Lét us aso define a2-D
discrete input signd:

p(x,y)for|x|<Xp,andly|<Y,
The convolution of g(x,y) with p(x,y) is given by the formula
Xg Yg,

T ™
gxy) * p(xy) = 2% 2-a p(x-k, y-1) ogkQ
k:'Xg/:'Yg -

3.1.2 Correlation

In thiswork we have preferred to express the filtering operation as a cross-correlation. The reason
will be explained below. We shal denote cross correlation with the symbol "*" for lack of a better
symbol. The formula for a2-D cross-correlation is:

X, Y

gy) * PlkY) = O D plxk, y+ D (k)

The difference between correlation and convolution is the presence of the minus sign in the term
p(x-k, y-1). These minus signs have the effect of rotating the impulse response about both axes. This
rotation describes the behavior of acontinuous linear filter, as implemented, for example, in acircuit.
If the impulse response is symmetric about both axes, asin the case of the circularly symmetric filters
described below, there is no difference. i

3.1.3 Inner Products

In this foetid* we aro interested in expressing an image as a configu,ratioii of primitive signas.
These primitives were referral to as a family of "detection functions' in pur early work, [Crowlcy
78a}. We have since developed a class of families of detection functions such that an image signa can
be expressed uniquely as a weighted, displaced sum of detection functions. A method for computing
the weights® which is revcrable, has come to be known as the DOLP transform, and is defined in
chapters.

The weight tells how strongly the primitive matches the image signa at a particular point This .

weight may be determined by computing an inner product of the primitive (which is an impulse .
response) and Che sgnd within a finite neighborhood ccntered at the sample point The size of the N
neighborhood is the same asthe size of the primitive. , . _

An inner product at some sample point Xq Y, is given by the formula: !
X Y, .

<Sp(Xoy,)> = 2 2 pxe+k yo+ D gk -

ITiis formulais identical with the formula for each point in the cross-correlation*
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The point here is that the filtering operation, or cross-correlation is a scquence of inner products.

This notion of the filtering operation as a sequence of inner-products leads to an important
heuristic for converting the filtered signal into a network of symbols. Those points at which the
corrclation of a particular filter and the input signal are at a 2-D local positive maximum or negative
minimum are the points at which that filter most strongly resembles the input signal. If the inner-
product at that point is also larger than inner-products from filters which are similar in size, then that
filter at that point is the best approximation of the image signal centercd at that point. Such points
form an important class of symbols in our representation. They are labeled M* and serve as
landmarks in the representation, as well as the root for subgraphs.

In summary, the view of the filtering opcration as a scquence of inner-products leads to the use of
pcaks (and ridges) in the filtered signals to construct the representation of the image. This is in
contrast to the more popular approach of using zero-crossings as pursucd by Marr in his rclated work

[Marr 78].

3.1.4 Boundary Values

The DOLP transform employs circularly symmetric low pass filters whose radii range from 4 pixels
to the sizc of the image. In each corrclation there is a strip along the border of the filtered image
whose width is the same as the filter’s, along which the filtered signal is corrupted because the filter
only partially overlapped the image. These points could be discarded, but this would lead to an
inability to detect any object closer than its own width to the border of the image. Our solution was
to provide a default border value, given by the mean of the image pixel values. This has the desirable
effects of allowing description of objects near the border of the image. and keeping the filtered
sizes as powers of 2. It has the undesirable affect of causing a ripple along the border whenever the
pixels at the border are not close in value to the mean.

3.2 The Transfer Function

The transfer function is an important tool for the design and analysis of discrete linear functions.
In this section we will define the transfer function for the case of a two dimensional discrete linear
function. W¢ will then show that any discrete 2-D function has a transfer function which is
continuous and periodic in two dimensions. The boundary of the region over which the transfer
function is unique is called the Nyquist Boundary. The shape and sizc of this boundary is determined
by the pattern of sample points used in filtering. The Nyquist Boundary is the primary tool for
sclecting the density of sample points for a filter or designing a filter for a given sampling density.
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3.2.1 Eigenfunctions

One of the properties which make linear systems so mathematically tractable is the existence of a
class of wel behaved eigenfunctions (dso known as characteristic functions). The eigenfunctions of a
discrete 2-D linear sysem are the set of sampled 2-D exponentials given in equation (3.1)

etj(xuryv) = Coslxu+yv) £Sin(xu+yv) (3.1)

The variables u and v arc continuous and often referred to as spatia frequencies. The eigenfunctions:

for a given discrete 2-D linear sysem are those complex exponentias for which u and v fal within a
bounded region in the center of the u,v plane. The boundary of this region is known as the Nyquist
Boundary. Its shape is determined by the pattern of sample points used in the filter operatl on. We
shall return to the Nyquist boundary in the next section.

3.2.2 Derivation of the Transfer Function

When a linear function is convolved with an eigenfunction the result is the same eigenfunction
shifted in space (or phase) and scaled in amplitude. The phase shift, 4>(uv), and the amplitude
attenuation, A(u,v), are position invariant. They are a function of only the spatial frequencies of the
eigenfunction.

We can express this phase shift and amplitude attenuation as a complex function, H(u,v), known as
the transfer function. Its relation to <I>(uy) and A(u,v) is given by the following equations:

A(uv) = [ H(uv) |
@(wv) = ArcTan[Im{H(u,v)}I/Re{H(uv)}]

H(uy) = A(uv) 1%
Where Im{.} givestheimaginary part of acomplex function and Re{.} givestherea part

The effect of convolving a discrete 2-D finite impulse response filter,

Wxj)ferM<Xpand|y|<Yh
with an eigenfunction may be expressed as a multiplication with the transfer function in the spatial

frequency plane as shown in equation (3.2).
X, Y,
Hum &=+ = D 0 3 (i) el Bu v 32)
k=-Xu/=-Y4, ‘
We can eadly derive the formula for computing the transfer function from the impulse response by
factoring out the eigenfunction from both sides of equation (3.2). This formula is given in equation
(33).
*h Yh
Huy) = 2o 2 hk.j) ekkes) 3.3)

¥
-
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k=-X, I=-Yh '

3.3 Two Dimensional Re-Sampling

In this section we examine in more detail what the Nyquist Boundary tells us about the pattern of
sample points. In this discussion it is assumed that the input image and the impulse response are
given as discrete 2-D sequences. We are concerned with reducing the number of sample points. We
use the term "re-sampling” to distinguish this from the related problem of sampling a continuous
function to produce a discrete sequence. Sampling a continuous function is amply treated in many
digital signal processing texts. We recommend [Oppenheim 75 which has come to be recognized as
the classic text book for digital signal processing. Re-sampling a 1-D sequence will be discussed first
and then the results extended to 2-D.

3.3.1 Re-Sampling a One Dimensional Filtered Sequence

For aone dimensional linear function, the eigen-functions are the complex exponentials, Qr™ for
which the continuous frequency variable, to, is within the bounded region | co \ < TT/Sg, where Sg is
the distance between samples, and must be an integer. Complex exponentials for which o> is outside
this ranged are aliased by the sampling. That is, they appear in the sampled sequence as one of the
complex exponentials from within the interval. Complex exponentials from outside the Nyquist
boundary are, in effect, rotated-about die interval boundary.

3.3.2 Two-Dimensional Nyquist Boundary

The extension to two dimensions is straight-forward if the samples are taken at points along axes
which arc aligned with the original sample axes. That is, if every S;th point in the x direction on every
S th row in the y direction are chosen as sample points, then the transfer Tunction of the sampled
sequence will be defined within the rectangular boundary:

|u|<Trscand |v.|< 7r/S,.

Tn the techniques developed in chapter 5 we employ a type of sampling in which the samples are
aong the diagonals, +45°. We refer to this form of_ sampling as vT resampling, because thisis the
minimum distance between sample points. The \fl resampling operation, §;*O niay be defined
as.

SyM[p(x,y)d = f p{x,y) forx mod2 =ymod2
undefined otherwise

When applied to a cartesian grid with axes at 0° and 90° it yields a new grid where the unit
sampling distance axes are at +45° as shown by the circlesin the Figure 3-1 beiow. When appliedto a
grid where the axes arc at +45° Kk produces a new sampling grid with a unit distance of 2 and unit
distance axes at 0° and 90° as shown by the squaresin figure 3-L
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Figure 3-1: Exampic of S\/i[p(x.y)] and Sz[p(x.y)]

In the frequency domain, cach application of V2 sampling introduces a new Nyquist boundary
which is skewed by 45° from the previous Nyquist boundary, and just fits inside it, as shown in figure
32

\ / Original Nyquist Boundary
- After Sqrt(2) Sampling
¢ u
" After Sqrt(2) Sampling Twice

Figure 3-2:  Nyquist Boundarics for Successive Application of V2 Sampling

Aliassing is minimized by designing the filters so that there is a large attenuation for all points
outside of the new Nyguist boundary.
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3.4 Design Parameters for Digital Filters

In this scction we will define some of the terms that are commonly used in the design of finite
impulse response digital filters. There is nothing original in this scction. It is included so that when
these terms are used in later sections and chapters the reader will know what they mean.

Digital filter design is an optimization problem. Digital filters are generally designed by specifying
a set of constraints on the transfer function and then allowing a linear optimization program, such as
the Parks-McClellan algorithm [Parks 72] to find the coefficients for the best solution. The
constraints that arc commonly used for designing a low pass filter are illustrated below in figure 3-3.

HE) |

- Figure 3-3: Transfer Function Constraints for a Low-Pass Filter
The symbols for the constraints are:
81: The pass band ripple peak amplitude
&,: The stop band ripple peak amplitude
W The pass-band cut-off frequency where responsc falls below 1-8,.

w: The stop-band frequency edge where response falls below 8,



35
AF: Thetransition width, or width of the transition region, given by cos-<oc
0>3dB' A frec34ency where response falls blow 1/2 (-3dB).

The usua god is to find the shortest filter which has a sufficiently flat pass and stop band and a
aufficiently narrow transition width. 8; and 8, can be traded off againgt each other. Their product
can be traded off against AF. The product of al three can be traded off against the number of
coefficients.
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Chapter 4

Criteria for the Design of |
Band-Pass Filters for Detecting
Non-periodic Signals

In this capter we develop several ideas which are fundamental to the results described in later
chapters. Section 4.1 describes the concept of a family of detection functions which are scaled copies
of asingle prototype function. This concept leads to a reversible transform based on the difference of
gze scaled copies of a low-pass filter, which is described in the next chapter. Such a family of
detection functions are convolved with a signal or image to separate the information into spatial
frequency channels. This provides an ability to discriminate the size of agray-scae form by detecting
the frequency at which the maximum response occurs. This transform aso provides the basis for the
representation described in chapters 7.

Section 4.2 establishes a set of design criteria for band pass filters that are to be used with peak
(and ridge) detection to construct a scale invariant representation of non-periodic signals. These
criteria arc general; there are many methods by which a band-pass filter may be designed to meet
them. Our early work with this criteria used filters which were designed by a quite different
technique than the difference of low-pass filters that is described in chapters 5 and 6[Crowley 78dl,
[Crowley 78D].

In section 43 we consider the problem of selecting die set of scale factors for a family of detection
functions. We show that the criteria of size invariance constrains the filter radii to be members of an
exponential sequence. Size in variance dso dictates re-sampling at a rate proportional to the radius of
each filter. Unless we interpolate and then decimate, the resampling distances must be members of
the set of distances that occur between points on the sample grid on which the picture (or signal) has
been digitized. The smallest base for such a sequence which occurs on the 2-D cartesian sample grid

isVI.

4.1 Family of Detéction Functions

In this section we define the term "detection function" and then introduce the concept of a
parameterized family of detection functions. Some of the possible approaches for designing a family
of detection functions arc then examined.
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4.1.1 Detection Functions

The term "detection function™ was coined carly in this research. A detection function is a linear
function (impulse responsc) followed by some non-lincar decision rule. Most of the edge detectors
described in section 3.2 are examples of detection functions.

The techniques developed below extend the concept of a detection function beyond the detection
of local sharp transitions in gray level.

The linear function part of a detection function is typically designed as a matched filter for the
pauern which it is to detect.  See [Wozencraft 65] for a discussion of matched filter design. The
obvious example are the plethora of edge detectors in the literature, but there arc other examples
such as the GM system for IC chip alignment in which corners are detected. In some systems, such as
the GM system, the image domain can be sufficiently constrained and the problem structured so that
a specialized detection function is quite reliable. However for general purpose vision, where there
are few constraints on image quality or content there are serious problems. For cxample, what
pattern should be detected? We have already discussed in section 2.1 some of the problems with
detecting edges and interpreting them as boundaries. Another problem is that patterns can occur over
a range of neighborhood sizes. If the pattern is blurred or noisy or the contrast is low, a larger
ncighborhood must be examined. But then it becomes easy 1o miss the edges of small patterns.
Textured regions are partucularly troublesome because it may be desirable w0 detect information at
many neighborhood sizes. In the following scctions we shall describe a solution that employs a set of
functions whosc sizes range from very local to global.

4.1.2 A Family of Detection Functions Which Provide Spatial Frequency Channels

This rescarch began as an cffort to demonstrate the following idea [Crowley 78b]:
A robust {in the sense of able to handle blurry or textured images) and efficient (in the
sense of representing global shape of an object in a few symbols) structural description of
an image can be formed by filiering the image into a sct of spatial frequency channels and

A principie on which much of this work is based is that a class of band pass filters can be defined
such that cach filter is seasitive to signals of a particular range of widths. Furthermore the width of a
signal can be determined, within some tolerance, by determining which filter gives the largest peak
response. In scction 4.2 we develop a sct of constraints for designing detection functions for this
purpose.

Investigating the design of the spatial froquency channels led 1o the concept of a parameterized
“family of detoction functions™. A family of detection functions is defined by a closed form
expression which includes one or more independent paramcters.  The independent parameters
determune the cocfficients of the bncar pan of a particular detection function. Initial cxperiments
were conducted with a family of detection functions formed by the product of a circularly symmetric
low-pass window and a 1-1) cosine [Crowley T8a) The independent parameters were the frequency
and onenstation of the cosing.
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Ideally we would like to convolve the image with a continuum of filters such that if a test pattern °
(say a solid disc) of a particular size is the input signal, one filter from the continuum will have a peak
response which is larger than all of the others. Furthermore, it should be possible to determine the
size of the test pattern (within some tolerance) from the identity of the filter with the largest peak
response.

A number of experiments were reported in the proposal for this dissertation in which band-pass
detection functions were convolved with uniform intensity circles and squares of different sizes and
with uniform intensity bars of different widths and orientations. These experiments demonstrated
that the size of the circles and squares, and the width and orientation of the bars could be determined
by obscrving which detection function produced the largest peak in the convolution. We also
obscrved that certain structural elements such as edges and corners resulted in casily detected
patterns of peaks and/or ridges when convolved with cach of the detection functions smaller than the
object. Thus it is possible to detect these structural clements at many ncighborhood sizes and
sampling densities. Also it was noted that a configuration of test patterns forms a shape which is
independent of the test patterns (a textured shape). The size and structural features of this textured
shape are apparent in the convolution with dctection functions which are larger then the individual
test patterns.

4.1.3 The Goal of Size Invariance

The three dimensional shape of an object is intrinsic to the object. The two dimcensional image of
an object should depend only on the objects 3-D shape, the viewing angle, and the lighting
conditions. A description of the 2-D gray scale shape of an objcct should not depend on the size at
which the object is imaged.

Early in this rescarch we decided to pursue a representation for 2-D form that has the property of
being independent of the scale at which the object is imaged. That is, suppose an object is in the field
of view of a television camera, and a representation is constantly being constructed of how the object
appears in a sampled, digitized image from the camecra. If the object is moved toward the camera, the
representation should shift in size but retain its structure. Also, as additional information about the
object’s surface texture and cdges becomes available it should be appended to the representation, but
this should not alter the part of the representation that denotes the global shape of the object. In this
rescarch we pursued the goal of producing a size invariant rcpresentation using detection functions
that are size scaled copics of the same function. '
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4.2 Linear Functions for Describing Non-Periodic Signals with Peak
and Ridge Detection

In this section we develop a set of constraints for the space domain coefficients and the frequency
domain (transfer function) for the design of a set of 2-D linear functions. These functions are to be
used with peak and ridge detection to construct a representation for die non-periodic signals which
occur in images. We are not able to provide a rigorous proof that dl of these congtraints are
necessary. We only make the claim that these constraints are sufficient

The following subsection will develop the reason why the detection functions are constrained to
be:

1. ZeroPhase
2. Finite Impulse Response,
3. Circularly Symmetric, and
4. Band PassFilters,
Wewill then develop the more complex criteria that the functions:
1. Must have 3 pesks (5 adternations) in the coefficients, and

2. Musgt have a pass band which rises monotonicaly to asingle peak.

4.2.1 Zero Phase

The transfer function of the linear function must be zero or linear phase. A non-zero phase will
shift the position of the response. If the phase is linear the shift is the same for dl frequencies. If the
phase is non-linear, the shift will vary with spatial frequency. The position of the signa is important
to the structure of the representation. We cannot permit unpredictable shifts in the reported position
of adgnal because of adight uncertainty in its width (frequency content).

4.2.2 Finite Impulse Response

The impulse response must be finite. The reason is that infinite impulse response filters can only
be implemented by recursive filters. There is no design process for a 2-D recursive filter that will
guarantee a zero or linear phase. There are dso problems with designing 2-D recursive filters which
arestable. We have limited our inquiry to finite impulse response filters to avoid these problems.




4.2.3 Circular Symmetric

The impulse response must be circularly symmetric. This is because the representation should be
as invariant to orientation as possible. We cannot allow the detected size and position of a peak to be
affected by the oricntation of a signal.

4.2.4 Band Pass

The impulse responsc coefficients must sum to zero. This will assure that if the function is
convolved with a uniform signal, the response will be zero. Another way to say this is that the DC
response must be zero.

The transfer function must also have a high frequency stop band. This will allow the convolution
to be computed at re-sample points without aliasing. The net effect of these two constraints is that
the function will be a band pass filter.

4.2.5 Constraining Altemation (Peaks) in the Space Domain Coefficients

In this scction we will show that the linear function must have 3 peaks (5 alternations) in its
cpefficients. This constraint is necessary when the detection functions are to be used with peak and
ridge detection (detecting local positive maxima and negative minima). Without this constraint, other
constraints such as the need for a narrow pass-band and sharp transition band would drive the design
to a function which had many ripples (alternations) in its impulse response. To sce why this is a
problem, consider the case where a detection function is convolved with a bar which is smaller than
half the width of the detection function. Each peak in the detection function coefficients will result in
a peak in the convolution output. Since the presence and shape of the bar is to be encoded from the
peaks and ridges in the convolution, the result will appear to be many bars.

We can dctermine the smallest number of peaks which the detection functions can have by
cnumerating the possibilitics and cxamining the function which results from cach. For convenience
this discussion will consider 1-ID) functions. The results must apply to 2-D circularly symmetric
functions. The results will only apply to a circularly symmetric function if the 1-D function is
symmetric, i.e. if g(x) = g(-x). Thus the 1-D functions discussed below arc constrained to be
symmetric. Also, we are only interested in finite zero-phasc functions for the reasons cxplained
above.

Let us define the term "alternation” to refer to a change in sign in the first difference, d{g(x)] of the
function, where first difference of a discrete function g(x) is defined by:
dig(x)] = g(x) - g(x~1)
I.et us make the arbitrary definition that when the first difference is zero, its sign is the same as the
puint to the right. With this definition functions which have a constant interval can be considered in
this discussion. Also, to keep things tidy, let us define the boundaries of the support for a finite
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discrete function to be alternations. Thus all finite 1-D functions automatically have at least two
alternations.

]

~
~
0

Figure 4-1: The Only Possible Symmetric 1-D Function with Two Alternations

Two Alternations: (see figure 4-1 above.) In order to be symmetric such a function must be
constant. It is thus a low pass function.

o
7

Figure 4-2: Two Possible Symmetric 1-D functions with 3 Altcrnations

Three Alternations: The third altcrnation must be in the center for the function to be symmetric.
There are two cascs (sce figure 4-2 ): The cocfficients can be all of the same sign, or of diffcrent signs.
If the cocfficicnts are all of the same sign, then the filter will have a non-zero-DC response ( sum of
the cocfficicnts) and will not be band-pass. If the coefficients arc of both signs and sum to zero, then
the function can be band pass. However, if it is band-pass, thc ncgative side-lobes will be
monotonically decreasing.  This results in sharp discontinuitics at the boundarics. These
discontinuitics cause large ripples in the high-frequency response which makes the function
unsuitable for usc with re-sampling.
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Figure4-3: A Symmetric 1-D Band-Pass Function with 4 Alternations

Four Alternations: If the function is finite, then two aternations are at the support boundaries.
' g The remaining two alternations must be placed symmetricaly for the function to be symmetric. Since
EL there can be no alternation at the origin, in order to be symmetric the function must be constant
13 between the two inner alternations. In order for our function to be band-pass, its coefficients must
sum to zero. The function shown in Figure 4-3 is such a function. This particular function is the
: g ' difference of two constant windows. For 2-D images, convolution with this function can be
1 implemented as a difference of square uniform windows, for which there is a fag convolution
algorithm [Price 76]. However, the sharp transitions cause large ripples in the stop band which can
cause aliasing when used with re-sampling.

Figured44: A Symmetric 1-D BandhPagt Function with S Alternations

Five Alternation*: fSee figure 4-4) f he aternation!; is the minimum which a symmetric band pass
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function with awell behaved stop-band can have. This is one of the constraints which is used in the
detection function design. Note that the coefficients must sum to zero in order for the function to
have a zero DC response. Note aso that the coefficients must taper to zero at the boundaries in order
for the stop-band ripples to be small.

4.2.6 Monotonic Pass Band with a Single Peak in the Transfer Function

The constraint of fivealternations in the detection function coefficients severdly limits the form of
the transfer function. In particular, it limits the flatness of the pass band and the width of the

transition region.

The ided dtuation would be to have a family of filters in which the peak frequencies give a
continuum. However, this would require an infinite set of convolutions, and so we are forced to
choose a finite set of filters, with the peaks staggered throughout die frequency domain. This s, in
effect, sampling in frequency. For detection functions which are size scaled copies of a closed form
expression, the peak frequency for a given family of detection functions may be determined by the
radius of the function. For reasons explained below, we end up constraining the filter radii to be
members of an exponential sequence:

RE{Ro,RoS,R0S%,...RoS"}

This gives an a sequence of pass bands whose center frequencies are an exponential sequence of the
form «,S~.

Let us define a3 space, (x,y,k), such that each point contains the value of the inner product of the
filter of radius R,S* with the image neighborhood centered at x,y. Furthermore, let us specify that
for each increment in k, the points in the image are rcsampled so that the minimum distance between
samples will increase by ascde factor, S. A representation can be constructed by detecting peak and
ridge points in this three space and linking them together to form agraph. In order for the structure
of this graph to be invariant to the size of a grey-scae form we must constrain the transfer function of
the filters to rise monotonically to a peak and then fal monotonically as spatial frequency increases.
To see why thisis so, consider the following situation.

Suppose we have a test pattern which is a uniform intensity square. It will result in a distinct
interconnection of peak and ridge points. An example of such a graph is shown as figure 7-21 in
chapter 7. A uniform intensity rectangle with an aspect ratio between 2 and 1/2 will result in apeak
at the top of this graph whose value is sgnificantly larger than any other peak in the graph. Thispeak
islabeled asan M* and forms the root of the graph which describes the square. It should be possible
to determine the sze of the square from the level, k, at which this root peak occurs.

If the test pattern is gradually increased in Size the graph which representsit must move upward (in
the k dimension). This movement must be monaotonic with size in order for the size invariance of the
description to hold. As a sufficient condition for this movement in the k direction to be monotonic
we make the following constraint on the transfer function of the detection functions.

L

| SO




Transfer Function Constraint

The transfer function must rise monotonicaly from aresponse of zero at DC to a peak response at
L some frequency. It must then fal monotonicdly until it has entered the stop band. Within the stop
‘ band it is permitted to ripple with a magnitude less than or equal to some value 8.

Thisconstraint isillustrated by figure 4-5.
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Figure4"5: MOEOIODIC PassBandwith Sngle Pesk

4.3 Selecting the Sequence of Radii and Re-Sample Distances

In this section we will address the problem of choosing the sequence of radii which Ihc family of
detections functions should have. We dso address the problem of choosing the set of re-sampling
distances, lite two problems arc intimately rotated because the representation can only be quasi-size

. invariant if the rc-samplc distance isthe same fraction of the filler radius for al of the filters.

4*3*1 Filter Radiush

) Scaing the gze of a gray scale foim k a multiplicative operation. That is if a Qunis is seated In Sze
Lt by some factor. F* al of its dimensions arc multiplied by F. ITie'ided situation would be to have a
) sequence of radii and re-sampling distances which includes al possible scding factors. ITils is
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impossible, because the set of such factors that can occur is infinite. It is the set of real numbers,
which even over a closed interval is infinite. Thus we must choose a sequence which gives a
reasonable approximation. '

Suppose there are two instances of a form such that the second is a copy of the first scaled in size
by F. For size invariance, we require that the representation of both forms be composed of the same
interconnection of symboals, albeit from different Sze detection functions. Each structural component
of the form must be shifted in the size dimension (k in our earlier discussion) by the same amount
Also the sampling distance (measured in terms of pixelsin the original image) must be scaled by the
same amount as the filter radius. That is, a configuration of peak and ridge points from the filters of
radius 8 must correspond to a configuration of peak and ridge points at radius 8F in the second
image. Similarly, a configuration from radius 4 in the first image must match aconfiguration at 4F in
the second.

if we employed-a non-exponential sequence such as the fibonacci sequence, s;.1 =§4-S_10 Or the
set of integers, the number of detection functions between radius 8 and radius 8F would be different
from the number of functions between radius 4 and radius 4F. As aconsequence, die representation
of the scaled form would not contain the same configuration of symbols as the original. An
exponentia sequence alows us to approximate the scale change, F, by some factor of the form S,
where S is the base scdle factor, and k is anindex. Scaling by S¢ then shifts dl configurations of peak
and ridges by k levelsin the representation, thus preserving the interconnection of the symbolsin the
representation. It is aso necessary to have re-sampled the image by the same factor, S¥, so that the
density of symbolsisthe same.

4,3,2 Re-Sampling Distances

The accuracy of the Sze invariance is determined by how closdy the change in scale, F, can be
approximated by S*. If not constrained by sampling, the value of S would provide a trade off
between the accuracy of the size invariance and the cost in terms of computation and storage.
However, S is congtrained by the requirement that the sample distance be a fixed proportion of the
filter radius. There is only a smdl finite set of re-sampling distances that can be used without
interpolating the image sample points. If we are to avoid the great increase in processing cost which
would come from interpolation we must use one of the naturaly occuring sample distances as the
scale factor, S. The set of distances to neighboring points for a cartesian grid is shown in figure 4-6.
Each number in thisfigure is the cartesian distance to the point on the lower I€ft of the figure.

i 5v2
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Figure4-6: The Set of Naturaly Occurring Sample Distances
For a Cartesian Plane
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Let us define the set of distances between points on ay grid as the set of "natural re-sample
distances'. Within this set we can choose subsets which are members of exponential sequences, i.e.
have the form S¥. In fact, each natural re-sample distance providesthe base, S, for such a subset

In the following chapters we will define a process in which the image is repeatedly filtered and
then re-sampled at some base distance, S. The smdlest such S which naturaly occurs on a cartesian
grid (greater than 1, of course) isthe value VT. Thisis tlie base vaue which is used for scaling both
the re-sampling distance and the filter size.

In summary for reasons of size invariance a family of detection functions whose radii are an
exponentia sequence must be used to filter the image. The set of rc-sample distances must also be
from the same exponentia sequence, athough smaler by a congtant fraction. A great savings in
computational cost is possible if tlie base number of the exponential sequence is a natural re-sample
distance. Thus the experimental implementation is constructed using the smallest such resample
distance for acartesian grid, v2 .




47

Chapter 5

Rever3| le DOLP Trangform
, iIch Resolves Non-Perio Data
Into Short term Frequency Components

This chapter introduces the Difference of Low Pass (DOLP) transform which is designed to
separate a dgnd into short-term frequency components. This transform was devised to be used with
pesk detection to represent non-periodic 2-D sgnds as afirg gep in stereo matching or determining
abject identity. The DOLP transform is reversble and thus preserves the information in asignal.

The DOLP trandform is defined in the firgt section of this chapter so that the reader is aware of the
motivation for the problems addressed in later sections.  After the transform has been defined and Its
reversbility demondrated* the form of the hand-pass impulse response that results at many sizes will
be described. The computationd requirements of the DOLP transform will then be examined. The
DOLP transform is shown to require Of Nh multiplies for an N point sgna of one or two dimensions
md produces O( N Log(N) ) result data points. It is then shown that the DOLP transform can be
computed using resampling with areduction to KN LogfN)) multiplies and O(N) result data points.
Thisis followed by a discusson of the degradations in frequency and position resolution that result
from such resampling® Chapter 6 will pre&eiu the sampled Difference of Gaussian (DOG) transform,
a two dimensond implementation of the DOLP transform that exploits a property of Gaussian
ftinetitms to produce aform of sampled DOLP transform in O|n| computations.

Nutation:

The sat -of symbols which arc defined bdlow' me used extensivdly in the next two chapters®  Filters
have an index vafiadble, L The fitter's radius is determiined by the product of the smallest radius* R,
multiplied by a scafc factor, S, raised to the k™ power. Thus the radius of the fft filler R isgivcaby

R« s R, S

laMwjus* 2<md Knmbtypas~tp:S* SFA) Iuc ihis vuhs:npt t, which denucs the filter with which the
Agi: mh heen za’y«AHii~ fci> i }ar*pass signal and hj?id-pa% signal arc ~“meismes referred to as

Te'he IXAL Pjrrafeam; déltmid psvdA\ to Svgid'A -ind ullQts cfjn> dimziviimMly*  “Flic space
virigrrbew, $i3jfn vgn B\ im0 WU &t Avivdrha Sh A, mE A:1H?272S 10 “mphf>' notation.  This
smplification also Hlustraies the point that this transform & not specific W signals of a particular
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Let us start with the definitions:

p(x.): The input signal defined for 0< x < N, 0< y < M . In all the examples below N = M.

‘j v gk(x,y): A finite low-pass filter of radius R P which has been normalized so that the sum of its
45 coefficients is 1.0. For a 1-D filter, radius is the half width.
g R ,: The radius of the smallest filter with a useful frequency reponse, g,(x,y).

S: A Scaling Factor; typically V2 01“ 2,

L k( X,5): low-pass signal at level k.

B k(x,y): band-pass signal at level k.

b k(x, y): The band-pass impulge response (filter) of radius R &

X s The number of cocfficicnts in the &A™ band-pass filter.

K: The level at which the size of b L[x, y) exceeds the size of p(x, ). (X = M for two dimensions)

Size Scaling:

The DOLP transform is based on a set of filters which are size scaled copies of a discrete function.
For purposes of the following discussion, assume that the low-pass filter is defined by a continuous
function that has infinite duration and approaches zero asymptotically. Furthur-more, assume that
this function is sampled over a fixed interval of its range. Thus the radius of each scaled copy, R,,
actually defines the number of discrete samples which are obtained over the finite interval. This
permits us to discuss the scale of a filter in terms of the filters’ radius.

5.1 The DOLP Transform

This section defines the DOLP transform. The DOLP transform scparates a signal into a set of
band-pass components with cxponentially spaced center frequencies. These band-pass components
may be formed by convolving the signal with a sct of band-pass filters which are size scaled copies of

) a single prototype filter. Thesc filters are all formed by subtracting a low-pass filter from a copy of
. itsclf which is smaller in size by a factor of S.

The operations of convolution and subtraction are commutative. Because cach band-pass filter is a
Co difference of two low-pass filters, there are two obvious equvalent mcethods for computing a DOLP
‘ transform:

1. (The Direct Mcthod) Form the set of band-pass filters by subtracting cach pair of low-
pass filters, and then convolve cach of these band-pass filters with the signal. This method
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is illustrated in figure 5-1 below. If reversibility is desired the signal must also be
convolved with the largest low-pass filter.

2. (The Difference Method) Convolve the signal with each low-pass filter, and then subtract
cach low-pass filtered signal from the low-pass signal formed from the next larger low-
pass filter. This technique is illustrated in figure 5-2.

P =*b,(xy) > B,(xy)
—>*b, (x.y) > B,(x,y)
>+ b, (x,y) > Bxy)
—>* b, (x) > B,(xY)
—>"*b_ (xy) > B.(xy)

v [ 2 @

[ J ™Y

L 2 ) ( 2

Figure 5-1: Direct Method for Computing a DOLP Transform

The direct method is the simplest to describe. For the DOLP transform as described in this section
it is also the most efficient to compute, as it avoids the subtraction step required by the difference
method. With the difference however, it is casicr to illustrate the reversibility of the DOLP
transform. Furthurmore, in the next section we describe a fast algorithm for computing the
convolution with the scquence of low-pass signals. The following is a dcfinition "by construction™ of
the IDOLP transform. For cach level, we define the band-pass filter, describe the direct method, and
then define the difference method. Reversibility is shown at cach level using the low-pass signals.
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P B, (x,¥)
+
— *go(x,y) B, (x,y)
+
—> *g, (x,y) B (x.y)
+
— *g,(x,y) B, (x.y)
—> *g,(x,) > B(xy)
Voo, .
[ o
® o

Figure 5-2: Difference Method for Computing a DOLP Transform

Level O

The impulse response (cocfficient array) for the level 0 low pass filter is g, by definition. The level
0 band pass filter, b, has an impulse response of

The level 0 band-pass signal, B,, also known as the high-pass residue, is computed by the

bo =1- 8o
convolution’
B, =p*D,

With the difference method, the level 0 low-pass signal, L, is computed by

7ln this and all subsequent convolutions we assume that some boundary valuc is supplicd so that every £ k and B k will

have the same duration as p.
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A

Lo =D * 8o

The level 0 band-pass signal. B, is then formed by the subtraction
By =p-Ly=p-(p*g)=(1-g)*p

Note that p may be recovered from €B0 and LO by
P=By+Ly;=p-(p*g)+(p*g)

Some readers may note that for two dimensional signals, the opcration producing the high pass
residue is known as unsharp masking, and is sometimes used for edge detection.

Level 1
The level 1 low-pass signal, £ |- I8 obtained by convolving low-pass filter g with p. The low-pass
filter g is defined as a copy of filter g, scaled larger in size by a factor of S.
The impulse response _for the level 1 band-pass filter, b,,is
by=8 -8
In the direct method, the level 1 band pass signal, B r is formed by the convolution

B,=p*b

The difference method requires computing the level 1 low-pass signal, 1.1.
L, 2p*g
The level 1 band-pass signal may then be formed by subtracting the level 1 low-pass signal from .

the level 0 low-pass signal.
B, & L,-4,

Note that the original signal may still be recovered by
p=By+3B, +1,
=p-(P*8)+(P*8)-(p*g)+(p*g)

Levels 2 Through »K

The low-pass filter at any level, k, is a copy of the level 0 low pass filter, g, scaled larger by a factor
of V2. As with level 1, the band-pass filter for level k is the difference of two low-pass filters

S

by =81 &

Thus for any level, k, the band-pass signal, %k. may be computed by
B=p*b,
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With the difference method, low-pass and band-pass signals at level k may be formed by

. Ly=p*g ' ‘ .)
and
B, =L, -1, (52)
= As wiﬁ1 level 1, for any K the original signal may be recovered by
‘ K v
p=L .+, B, (5.3)
k=0 .

At some level (value of k) the size of the low-pass filter will exceed the size of the finite signal.
Beyond this value of & the band-pass signals contain no new information about the signal. This level,
K, is thus chosen as the level at which the transform is halted. Thus the DOLP transform produces:

‘:BO: The high pass residue.

B, for1 < k < K: The band-pass signals

and

L A low-pass residue.

Reversibility proves that no information is lost by the DOLP transform.

5.2 The DOLP Transform Parameters

Implementation of this transform requires choosing:

8(x,y): The low-pass filter and its parameters

R,: The radius for the smallest filter, g, (x,»); and

S: The scale factor.

The low-pass filter g(x,y) and its initial radius R, must be chosen with regard to how well the
band-pass filters, b, & 8.; — & mect the requirements for describing non-periodic signals, described
. in chapter 4. If re-sampling is used in the DOLP transform, the low pass filter and its parameters

must also be chosen so that a minimum of aliasing results from the re-sampling. This generally

involves trading off transition width (AF) and stop band ripplc (8) against processing time.

The scale factor, S, governs the bandwidth of bk(x. ») and the frequency resolution of the
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transform. Since maximizing the frequency resolution aso minimizes the degradations to the size
invariance (see section 4.3), the choice of S governs the trade-off between degradations to size
invariance and the cogt in terms of processing steps and memory. However, if re-sampling is used, S
must be one of the naturally occuring re-sample distances on the origind sample grid, as was
described in section 4.3.

5.3 Complexity of the DOLP Transform

In this section we examine the computational complexity of computing a DOLP transform with
the direct method. This analysis shows that the direct method requires 2 N2 multiplies and adds to
produce the N Logs(N/Xo) + N samplesin the DOLP transform.

The DOLP transform is based on a set of Sze scaed copies of alow-pass filter, gk(X) (or in the 2-D
cae gk(X,y)). The scding relationship between the filters is defined by an exponentia relationship
for the radii, R".

R = R, & (5.4)

where R, is the radius of the smallest low-pass filter. This relationship may aso be expressed
recursvely as:

Rk =R H S _ (55)

The band-passfilters, bjx) orbx(X,y), are defined by the difference of two low pass filters.

b*x) = g*x) -g™x) for k£{0,1,2,.., K}
whereg.i(x) = 1

Thusthe radius for each band-passfilter"isgiven by equation (5.4) or equation {55).

5.3.1 Number of Coefficients for Each Filter

Asthe first step of complexity analysis, let us examine the number of coefficients in the band-pass
filters used in a 1-D DOLPtransform and in a2-D DOLP transform.

53.1.1 One Dimensona DOLP Transform

Let S; be thé scae factor used in a 1-D DOLPtransform. A typical vaue for S; would be 2. The
number of coefficients, X, for the I"™ bandpass filter is given by:

Xk = 2Ry + 1 (5.6)

By substituting-equation (5.4) into equation (5.6) we get the exponential relationship:
Xk = 2RoSj + | m (5.7)
This sequence can be solved to arrive at the relationship:
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X, = (X, -)SE+1 (.3)

For all k such that S]l‘ > X, we can simplify the mathematics by replacing equation (5.8) with the
approximation:

~ k
Xk =~ X, S1 (5.9)
5.3.1.2 Two Dimensional DOLP Transform

Let us denote the scale factor for a two dimensional DOLP transform by S When resamphng is
used a typical value is S =Vv2 2 (Sce section 4.3). '

As with the 1-D filters, the 2-D filters are defined to have the relationship between radii given by
cquations (5.4) and (5.5).
The 2-D band-pass filter, b, (x,y), is defined to have non-zero coefficients over the disc:
X% + y2 < RIZ(

This disc is bounded by a square of sides 2 Rk + 1. The number of non-zero coefficients, Xk, may be
approximated by

X, =nRZ (5.10)

Plugging equation (5.4) into equation (5.10) gives:

X, = 7w R3S} (5.11)
This can be solved to yield:
= X, SX (5.12)

Thus for each increment in k, the number of coefficients of the filter increases by a factor of S for
a one dimensional filter or a factor of 82 for a two dimensional filter.

5.3.2 Computational Complexity

This analysis of computational complexity and memory requirements applics to both the 1-D and
2-D DOLP transforms. In the 1-d case, let:

S=S§, and X, = 2R, + 1
For the 2-D case let:
S=52and X, =wR2
Assume that we have a signal with N samples, (1-D or 2-D) and that onc¢ convolution inner-

product step is to be computed for the filter centered over cach of the N samples. This assumes that a
default boundary valuc is supplied when the filter cocefficients fall over the edge of the signal. Thus
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cach convolution produces N sample values as its result. Also, assume that the smallest low pass filter
with a reasonable stop band has X, coefficients.

The first filter, which produces the level 0 or high pass residuc has X, coefficients. Thus there are
N inner product steps, with each requiring X, multiplics, for a total of X ;N multiplics.

For each level, k, from 0 through K, the filter has: X,,Sk coefficients. Thus the total number of
multiplies, denoted C (for cost), is given by:

C=XN1+S+8 +..+55
= on({isk)
k=0
=X, N(S¥*1-1/(-1)
For the typical values of Sl = 2and 82 = V2, S will have a value of 2.

For S=2, we can make the approximation:

gK+14
ST
Thus our cost becomes:
~ C=X,NsK*! (5.13)

st+1

The largest filter in this sequence has an index, K, chosen such that it is the smallest integer for
which:

X SE>N

Plugging this into our cost formula for S=2 gives:
C=SN?

Since there arc K+1 filters and cach filter produces N sample values, the total memory
requircment, M, is:

M=X+1)N

Since X, S¥ = N then the number of levels, K, is:
K = LogyN/X,) :
Thus our total memory cost is:
M = NLog(N/X,) + N (5.14)
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5.4 The Form of the Band-Pass Filters

Section 5.1.1 described forming band-pass signals by subtraction of two low-pass signals. Because
convolution and subtraction are both linear operations, they are associative. Thus in the case of the
band-pass images:

(P'*' gk.‘;)_(.p* gk) =p *(gk-f_gk)

Thus the DOLP transform may be computed as either a difference of low pass images as described
above, or by precomputing the coefficients of each band-pass filter and then convolving each band-
pass filter with the signal. In fact, the latter process saves the subtraction step, and so is less
expensive. However in chapter 6 we describe a fast version of the DOLP transform in which the
computational complexity is reduced by using each low pass signal L to produce the next low pass
signal JLy+1.

In chapter 7 a description technique which uses peak detection will be described. The use of peak
detection for describing band-pass signals requires a constraint on the smoothness of the band-pass
impulse response (as described in section 4.2) as well as on its transfer function. In this section we
show how the low-pass filter employed by the DOLP transform must be constrained to produce a
band-pass filter which meets the constraints described in section 4.2.

This discussion is illustrated with one dimensional filters: b(x) and g(x). For two dimensions, the
filters should be circularly symmetric, so that response is not dependent on orientation. The variable
x may then be replaced by a radial distance to the center, r, at any orientation. The transfer functions
of the filters are denoted as: “

B(w) 2 7{b(x)} and
Glw) = F{g(x)}.

5.4.1 Space Domain Constraints

The smoothness of the band-pass impulse response is obtained by constraining the low-pass
impulse response to three alternations, or changes in sign of its first difference* The reasons for this
constraint are described in section 4.2.5. These alternations should occur only at the boundaries of
the low-pass impul se response and at its center as shown in the following figure.

The band-pass impul se response*
by A0 2 8% - &0 A9

which has a radius of R, e RAS = RoSM *, will then have 5 alternations as shown below. Two
of these arc at the outer edges* x ~= R labeled A* xénd Ay Two alternations, A, and A, will be at
approximately x = J2.; where the first difference
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Figure5-3: Pcrmissable Alternationsin Low-pass Filter

&l - 85— 1)
first becomeslarger than

OPLIAR W R
and of course, one at the center, A ’ where x=0.

figure 5-4: Pr«2ssablc :Mtematdons in Band-pass Filter

5.4,2 Transfer function Constralnts

The size mvariance of the final description requires that 25 2 gray scake form {or signa)) increases its
size, the position of the signals in the transform move up through thic [ow’s 2 mmMy, Hi's requirw
that the pass regum of the transfer fumction of the band-pass filicr h;?" a %ndc peal, and be
monatonic 06 cither wde of that peak.
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Both low-pass filters are normalized so that they have a gain of 1.0 atf DC (w=0). Since
subtraction and the transfer function are both linear operations, they are associative. That is:

7{h} - 7{g} = F{h - g}

Thus the difference of such normalized filters will have a DC response of 0. This will guarantee
that there is no reponse by a filter when it covers a region which is entirely uniform. Both low-pass
filters should have a single peak at DC and monotonically falling pass and transition regions, as
shown below in figure 5-5.

G(LO) /\/SinglePeak

Vv

—T -0 B\ g
Figure 5-5: Transfer Function G(w)

This will guarantee that the low-frequency side of the band-pass filter transfer-function pass band
is monotonically increasing. The peak frequency of the pass band, @, will occur somewhere before
the negative minimum of the first ripple of the larger low-pass filter’s transfer function. It occurs at
this minimum for large values of S ( S > 2 ) and at lower frequencies for smaller S. Since this should
be the first alternation in either kow—pass trmsfcr function (after the DC ahemaugn) there should be
no problem maintaining monotonicall v on the low frequency side of the peak
frequency. ) P

Alocalpmkmﬁmmm Bk _,(w}ﬁmmmwalmwhm

dw ‘w
This is the source of the m& rcspons ﬂrth+ (w) at w,. Howev«e‘rmmh a peak must not be
permitted any where clse in the pas transition regions of B, _ (). Otherwise, the size invariance
of the description will be wrmmed asa mmlt of the filter having morc than one peak as the
size of an object increases. The regions where this could happen are where the ripples in Gk + (@) go
through a zero crossing from positive to negative. Thus we must guarentee cither:
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Figure 5-6: Difference of Low-Pass Transfer Functions

e That the second zero crossing from positive to negative at G, +1(w) occurs outside the
transition region of B, _ ,(w) or,

¢ That the derivative @ Gk + 1(“’ )/ 9w near this zero crossing is smaller than 9 Gk(“’)/ dwat
the same w. :

For S < 2, the first criterion is met for most low-pass filters that meet the space domain criteria.
For larger values of S, if the first criterion is not met, the second may be achieved by adjusting the
stop band ripple magnitude, §.

5.5 The Re-Sampled DOLP Transform

In this section we describe the re-sampled DOLP transform. In this version of the DOLP
transform the convolution "inner product steps™ are computed at a sct of re-sample points.8 The
distance between these re-sample points is a fixed fraction of the filter impulse response.

In this section we show that such re-sampling cancels the growth in computational cost that occurs
in the DOLP transform as a result of the exponcntial growth of the number of filter cocfficicnts as k
increascs. This occurs because the distance between samples grows by the same scale factor as the
impulsc response size. The result is a form of DOLP transform which may be computed in O( N
Logs(N) ) multiplics. We also show that the storage cost is reduced by re-sampling to O(N) (For
$,=V2,M=3N). '

alhisiscqummwm‘mpﬁagm filtered image that results from cach convolution.

b
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5.5.1 Re-Sampling

The family of band-pass functions employed in the DOLP transform have a high frequency stop
band. For cach increment in the filter index, k, the low frequency edge of the stop band moves lower
in frequency by a factor S1 for a 1-D signal or S2 for a 2-D signal.

Because each filter has a high-frequency stop band it is possible to save a significant amount of
storage and processing cost by computing cach convolution at a sct of resample points. That is, when
computing the convolution

Bo(nm) = byx,y) * p(nm)
the inner product step of the convolution nced only be computed for the filter centered over the
points along every other diagonal as shown by the boxes in figurc 5-7 which is a reproduction of
figure 3-1 of chapter 3. A two dimensional form of the Nyquist sampling thercom can be used to
show that virtually no information is lost; The value of the convolution at the omitted sample points
can be recovercd by interpolation.

R OJNMORNORNOC]
OAMORNCORNC)
O ORNORNO]
TP -0 -

Figure 5-7:  Example of S, /5[p(x,y)] and S,p(x. )]
From Figure 3-1 of Chapter 3

In addition to the savings in computational cost and storage, the re-sampling used in the DOLP

transform is fundamental to the quasi-size invariance of the representation for images based on the
Sampled DOLP transform described in chapter 7.

5.5.2 Complexity of the Sampled DOLP Transform

In this subscction we describe the re-sampling in the sampled DOLP transform, and derive its
computational cost and memory requircments.

As before, assume that we have a onc or two dimensional signal composed of N samples, and that
default boundary valuc is provided for the case when the fiiter cocfTicients fall over the cdge of the
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signal Also, assume that the smallest band-pass filter has X, coefficients and that the filter sizes are
related by a scaling factor, S, by:

— —ck
X, = SX, =5%X,

As in section 54, this analysis of computational complexity and memory requirements applies to
both the 1-D and 2-D DOLP transforms. In the 1-d case, let:

stlandXo=2Ro+1

For the 2-D case | et

S:SEandXo:WRE

The filter for k = 0, bo(x) or be<x,y), ts a high-pass filter. Convolution with this filter can not be
resumpled. This filter has X, coefficients and so requires XoN multiplies and produces N result
sample points,

The filter for k = | is a band-pass filter, its passband is contained in the original Nyquist boundary
of the signal and so its convolution with the image also cannot be rcsamplcd without causing
distortion due to aliasing. Thisfilter has SX, coefficients so its convolution requires SXoN multiplies
and produces N result sample points

The filler for 1 =2 is a scaled copy of the filter for k=1. Its pass-band h within a new Nyquist
boundary «alcd lower ie frequency by a factor of S or S, The convolution of this filter with the
image can be rcsampled at points separated by adlstance of §j or $» A°'cAdtumaie 5N case
re-sampling at a distance of S reduces the number of samples by a factor of S= S* There arc thus
N/S points at uhich the convolution inner product mp% must be computed. Si nce this filter has
Sax»-chIkt'cnts, ihc convolution recjplres SXoN medtiplic$ ai d produces N/S sample values.

h% described'in section 43, the smallest naiurali} occunng rcsamplc disiaecc for a 2-D cartesian
grid is V2. Unless the signal % interpolated before the convolution. A is constrained to be one of
Ihc naturally occunng rcsaropie distances, lints in the ab”nce of interpolation, the smallest poslble
S for a 2-1) Samplci IXX.H'm V2» For 5_3n « VT, this itsampling consists of computing the
cunolumm tnmt products with the filler centered at puimu along every other iiagon” as shown by
the'sparesin figure 5*5.

SnriSgis, $12 flut far k = 3 S'Xs coefficients ard is acop> nf the filter for k=1 scaled lower

'm frcquciv::)* hy +:i " factor :vf évt:S "' Hus she ovru’ﬂjfum tinh lliss filler mav “ne cornpyf/d at

mp) 2 "mifs tttacr? - alz Arpuraeti h> a distance &' %‘ or S\ Thig\idds resjsnpkd comolution
reau"csSA"N!S n Qv \ o2 niliphtrn. i’ Li>"resJIthuu1resN/V M uragechemenss.

Ht ‘the 24). can™ %1 124, **t S, =\ 8™ % ri*arnp! 2, “mouRis U) compudng an inner
product comvolution step at cvery other column of cvery other row,

In genenal. for cach filter, k, i ér;0q@ A lu siurde A ceviAw nts 1Trsn: -<Jimgz s eiily offset
by the increase in distance Vroovn Ohft 26008 B> FIE ~* ek, (10 ;TANpuL;urTab U=M. is thus the
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same for every band-pass filter for k & {1.2,3,...K}. Given that there are K=Log((N/X,) band-pass
filters that require SX, multiplies, and one high pass level, k=0, that requires X N multiplies, the
total cost. C, of the Sampled DOLP transform is:’

C = $X, NLogg (N/X,) + XN

The number of sample points produced by each convolution decreases by a factor of S for each
increment of k from k=1 to k=K. Thus the storage requirement, M, for the Sampled DOLP
transform is:

M=N(l+1+1/S+ 1/8 + I/83 + .. + 1/SK)

-K-1
=N(1+ g—is—;z) Storage clements.

Note that for § = 2,

1-0
1-172

=N(1+2)
= 3N storage elements.

M=N+N

5.5.3 The Effects of Re-sampling on the Representation

As described in scction 3.3, the distortion from re-sampling (and subsequent loss of information in
the description) may be minimized by minimizing the signal energy outside of the nqust bomdary
defined by I u,v I < w/S where u and v are the spatial frequency variables and SR ] ]
pixels between the new samplc points. This analysis tells what information could be mvered by
interpolation. However, a peak detection algorithm will be employed to describe the transform.
Re-sampling introduces an uncertainty in the location of peak. That is, when a is detected in a
re-sampled signal it may actually have occurred anywhere in the interval bounded by ( xtSR, yiS).
If the sample interval is a constant fraction of the size of the impulsc response at cach level then the
unccrainty of a signal’s position will always be the same fraction of its size.  More accurate -position
information may be obtained from the descnptmn of the object’s boundaries, which is at kwwer levels
in the transform. ; :

Jdeally we would Tike the configaration of peaks that describes a signal to be invariant to the
signal’s position. However, mapmkmmﬁmmmpkmmemﬂmemamimwhm
amples. wﬁ;hammcmepmk valuc as shown here in 5-8.

The ﬁnqumcyafwmmm ufswch double peaks is wwm«w
represent cach sample and on the signal amplitude. Double peaks mcurm@st fmqmmly wlwn the
signal amplitude is small.

This randomness is also present in the relative mmmufpcaksmadmmkwisasﬂwwn in
figure 5-9.
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Peak Makes Discrete Jumps as Object Moves to Right

Figure 5-8: Location of Pesk Sample as Signal Moves to the Right

. . Level k

s e e e . Leve k-1

Figure 5-9: Uncertainty of Position of Peaks at Adjacent Levels

A peak could occur with equal likelihood at any of the positions directly under the higher level
peak. Thus any matching rule for graphs of peaks from this transform must accept a peak at any of
the three positions as amatch.

5.5.4 Sampling in Frequency

Each levd of the DOLP transform represents an ensemble of samples a a particular spatia
frequency range. The center frequencies of the band-pass levels are at discrete, exponentialy spaced
intervals. I Tie problem of choosing the step Sze for the center frequenciesis discussed in section 4.3.

As with spatial sampling, this frequency sampling defines the resolution in frequency of the DOLP
transform. Hi s trandates into the changes in the sze of sgnas that the transform can resolve. The
interval between center frequenciesis given by the scale parameter, S. l1iis parameter aso defines the
band width of the individual filters. Itie smaler Sis, the better the resolution in size (frequency).

A roughly uniform rcgion with a background of a different intensity results in aloca maximum in
the three space, (x.y,£), defined by the transform. The levd at which this peal occurs gives an
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estimate of the size of the region. Peak detection between levels produces an uncertainty in asignal's
sSze which is analgous to the uncertainty in the signal's position. That is, as a signa’s size increases,
the level at which the largest peak occurs will make discretejumps. In this case, the size uncertainly is
bounded by the scale factor, S. That is, a peak at level k places the sgnd duration somewhere
between

R (?*-/2 . . Sk+l/2
o < Signd Duratlon_<—-°--2-—---

The result may be compensated for in amatching rule by permitting a stretching or contraction of
one of the signals by a factor limited by S"? and S°A The particular stretching may be determined
for agiven signd by observing the distance betweeen landmarks in the description such as two peaks
at somelevel. Such landmarks for two dimensional patterns are discussed in chapters 7 and 8.
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Chapter 6

) The Sampied
Difference of Gaussian Transform

An Efficient DOLP Transform
Based on Gaussian Filters and ReSampling

This chapter develops an algorithm for computing the two dimensional form of the DOLP
transform in O(N) steps (where n is the number of picture points). This algorithm employs a property
of Gaussian Jow-pass filters to obtain a drastic reduction in the number of computations needed to
compute the sequence of low-pass images. This property is: when a Gaussian is convolved with itself
the result is the same Gaussian scaled larger in standard deviation by a factor of V2.

- The previous chapter defined a class of reversible transforms referred to as the DOLP transform.
It described how the 2-1D DOLP transform could be spceded up from O(Nz) multiplies to O(N Log
N) multiplies, and its memory requirements reduced from O( N Log N ) cells to 3N ccells by using
V2 resampling. This subclass of the DOLP transform is referred to as the Sampled DOLP
transform.

It is also possible to speed up the DOLP transform by using an algorithm referred to as "Cascade
Convolution with Expansion™ This algorithm exploits the Gaussian auto-convolution scaling
property and an operation referred to as V2 expansion. The "V/2 cxpansion” operator is a mapping
of a function from a Cartesian sample grid to a V2 sample grid. Cascaded convolution with
expansion reduces the computational cost of a DOLP transform from O(NZ) multiplics to O(N log N)
multiplics. Because this algorithm is based on propertics of the Gaussian function the DOLP
transform which it produccs is referred to as the Difference of Gaussian (DOG) transform.
Combining resampling and cascaded convolution with expansion gives a form of DOLP transform
which may be computed in O(N) multiplies. This transform is referred to as the Sampled Difference
of Gaussian (SDOG)

Chapter 7 shows how to construct a structural description of the contents of a grey-scale image by
detecting and linking peaks and ridges in the SDOG transform of the image.

The Sampled Difference of Gaussian (SDOG) Transform is defined in this chapter. The Gaussian
function and its usc as a finitc impulsc responsc low-pass filter are examined. The computational
complexity of the SDOG transform is analyzed and shown to be O(N). Two approximations for
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scaling the standard deviation of a finite Gaussian filter by V2 in standard deviation arc introduced:
The use of the auto-convolution of a finite Gaussian, and the usc of an "expanded” Gaussian.

Section 6.1 describes Gaussian functions and filters and proves the the scaling property. Section 6.2
describes cascaded convolution with expansion. It then examines the effects of the expansion
operation on a low-pass filter. Section 6.3 defines the Sampled DOG transform by construction, and
shows that this transform requires 3X N multiplies and produces 3N samples for an N sample
picture. Scction 6.4 describes an experiment that gives the accuracy of the scaling obtained by
multiple convolution with a Gaussian kernel. Scction 6.5 presents the impulse responses for the level
0 and 1 band-pass filters, and the transfer functions of the level 1 and 2 band-pass filters.

6.1 Gaussian Functions

Even with re-sampling, the DOLP transform of an image is a very costly process in terms of the
number of computations that arc required. It is possible to reduce the computational complexity by
several orders of magnitude by exploiting the properties of Gaussian filters. In this section, the
Gaussian function and its propertics are reviewed and the construction of 1-D and 2-D low-pass and
band-pass filters using Gaussian functions is described.

The Gaussian function is most commonly known in its one dimensional form

1 _a-p?rd?
g(tpo) & — e w20
t oV

where: p = The mean and
¢ £ The standard deviation

The term 1/0V 2w scales the infinite Gaussian so that it has unit area.

For the discussion that follows, the mean will always occur at the origin (t=0), and so will be
omitted from the notation. In some of the discusion values such as o, which determine the specific
function, arc uscd as variables. In these cases these values are included within the parenthesis to
simplify the notation. They are separated from the independent parameters of the function, such as x
and w, by a scmicolon.

The standard deviation, o, is the squarc root of the sccond central moment of the Gaussian
function, and thus defines its width. The zero mean Gaussian

1 252
g(t;o) = ——€
oViw
has a Fourier transform
-s22
Glwo)=€"7°
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6.1.1 Scaling by Auto-Convolution

The scaling property is easily deduced from the formula of a Gaussian function. It has been
observed by statisticians, and is used in Communications theory and Linear Systems theory to
describe the effect of repeated convolution. In this section it is employed to describe the effects of a
finite impulse response Gaussian filter as a kernel for cascaded filtering. This scaling property is only
strictly true for the infinite Gaussian function. For a finite Gaussian low-pass filter this scaling
property is only an approximation. 'The accuracy of this approximation is cxamined in section 6.3.4
and 6.4.

The fast algorithm described in this chapter is based on the following property of Gaussian
functions:

Gaussian Scaling Property:
A Gaussian function convolved with itself yiclds a Gaussian function whose standard
deviation (width) is V2 larger than the original function.

Proof:

The convolution:

1 oi?ndy 1 a-ind

oV2w oVin
may also be expressed as the product of Fourier transforms

2.2 22

e-uzwzll c@ 0w 2 _ goe

whose inverse Fourier transform is

1 e-12/4 0’2
o2Vw
To get back to standard form then requires the substitution

o’§=202 ore, = V2o.

Thus the standard deviation, and hence the function width, have been expanded by a factor of
vZ. O :

Note also that the amplitude has been multiplicd by a factor of 1/v2. Auto-convolution.
preserves the unit arca normalization.

T
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6.1.2 Discrete Gaussian Filter

The Gaussian function may be uscd as a low-pass digital filter. When used as a filter the variance
o’ is replaced by the ratio of a shape parameter, a, to the support radius squared, RZ. This gives a
family of finite functions with differcnt standard deviations for a particular radius. Adjusting the
parameter a permits a tradc-off between stop-band ripple. §, an transition width, AF, for the filter.

An experiment to determine the effect of a on this trade-off is described in appendix A.

The Gaussian is converted to discrete form by

2
1. Making the substitution o = —, and
2a
2. Sampling the continuous function at 2R +1 points given by the discrete variable x, |x| <

R.

Implicit in this form is a multiplication by a 2R + 1 point uniform window (or aperture or support)

Rect,p , ,(x) = (1 for |x| 5 R
0 otherwise.

This gives a space domain formula.
2,.2
g(x;a,R) = Rectyp (x) €7 /R

whose transfer function is

i 2 2
Glw:aR) = SM@ER+DD) /o pvmeRoela

Sin(w/2)
Where the first term in the convolution is the Fourier transform of the support

Sin(w(2R +1)/2))

FiRectr 00} = Sin(w/2)

6.1.3 Two Dimensional Digital Gaussian Filter

Generalizing the Gaussian low-pass digitai filter to two dimcnsions can be accomplished by
substituting the radial formula, x2+y2, for the distance variable x2. In addition, the finite support
must also be gencralized to two dimensions, which presents a choice. The two dimensional support
may be the square

s(x.y:R) = f 1for x| <R,y <R
| 0 otherwise
which is scparablc and has a transfer function [Oppenheim 75}

_ Sin(u(2R +1)/2) Sin(v(2R +1)/2)

S(u,v;R)
Sin(u/2) Sin(v/2)

Or it may be the disc
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o(x,y:R) £ { 1 for x*+y2<R2

0 Otherwise
which is circularly symmetric and has a transfer function [Papoulis 68]
27RI (RVuF+v?
C(u,v;R) = TR RVu+v7)

\/uz+vz |

where Jl(') is the first order Bessel function.

The Gaussian is the only two-dimensional function which is both circularly symmetric and
separable into onc-dimensional components. This property can be used to speed up two-dimensional
filtering with a Gaussian by replacing convolution with a 2R+ 1)x(2R + 1) filter by two convolutions
with 2R+1 point one-dimensional filters ( one for each dimension). This requircs 4R+2
multiplications for cach picture point instead of 4R?+4R +1 multiplications. ‘However, this savings
can only bc obtained by defining the Gaussian over a scparable support, such as s(x,y;R).9
Unfortunately, the square support focuses the stop-band ripple of the filter along the u and v axes.
This gives a non-circularly symmetric transfer function and a larger worst case stop-band ripple than
for the circular support. The stop-band ripple must be minimized if the filter is to be used with
re-sampling in order to minimize the maximum aliasing error.

For the experiments described in this dissertation, circular symmetry and the best possible stop-
band performance were judged to be more important than the computational savings. However, in a
real system, it may be worthwhile to accept some degradation in order to gain a significant savings in
processing speed.

The implementation described in this chapter and used for experiments in constructing a
represcntation is based on the Gaussian filter with circular support:

2 2
go(xy) = c(x,y:R) €7°& YR
Whose Transfer function is

20R1,(RVUZ+V7) iy Va )e_Rz(uz+vz),4a
Vai+v2 RVa

In the cxamples given in this dissertation, the parameters R=4.0 and a = 4.0 were uscd for the
Gaussian filter. These values were obtained. by an experimental procedure described below in
Appendix A.

G, (uyv) =

To control the filter gain, the filter cocfficients are normalized so that they sum to 1.0. This is done
by summing the coefficients and then dividing cach cocfficient by the sum.

g,mhmgh any uniform rectangle is a scparable suppont, the uniform square has the lcast effect on the circular symmetry of

the filter. Section 4.2 decribes the need for circular symmetry in the filters used in a DOLP transform
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The following figurcs show thc impulse response, g, (x.y) for R=4, a =4.0 and a plot of its transfer
function.

.001488
- .003150 .006669 .008564 .006669 .003150
003150 .010996 .023278 .029890 .023278 .010996 .003150
006669 .023478 .049280 .063276 .049280 .023478 .006669
.001488 .008564 .029890 .063276 .081248 .063276 .029890 .008564 .001488
006669 .023478 .049280 .063276 .049280 .023478 .006669
003150 .010996 .023278 .029890 .023278 .010996 .003150
.003150 .006669 .008564 .006669 .003150
001488 -

Figure 6-1: Normalized Impulse Response g, (x,y) for R=4, a=4.0

“igure 6-2: Transfer Function G (u,v) for R=4, a=4

In figurc 6-2 and all other transfer function plots, the transfer function was cvaluated over a 64x64
floating point array representing the Nyquist region - < u,v < #. Because the filters have zero
phase. the imaginary part of the function is identically zero. Thus only the real part is plotted. The
values were scaled so that the maximum would extend full scale on the plot. Lincar interpolation was
uscd to obtain the valuc between sample points. The range from 0 to maximum response (1.0 for
low-pass filters, =0.25 for band-pass filters) is represented by 4096 increments at 2045 dots/inch.
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6.2 Cascaded Convolution with Expansion and Resampling

In this scction we introduce a fast algorithm for computing the 2-D Sampled DOLP transform
with Gaussian low-pass filters. This algorithm, referred to as "Cascaded Convolution with
Sampling”, is based on the convolution scaling property of Gaussian filters, the V2 expansion
operation and resampling. In this algorithm, the image is filtcred, re-sampled at V2, and then
filtered again with a filter that has been expandcd out to the sample grid of the re-sampled image.

In chapter 5 it was shown that a DOLP transform could be computed by 2 methods:

1. Convolution of the image signal with a sequence of size-scaled low-pass filters followed
by a subtraction of cach low-pass signal from the next. i. e.

Lkzgk*p

By =Ly -2

2. Convolution with an exponentially size-scaled set of band-pass filters which are formed
by subtracting size scaled low-pass filters. i. e.

b =818

B, =p*b

This fast algorithm is based on the first of these two approaches. That is the computation cost is
reduced by computing each L, from .LH. As is shown bclow this computation may be done by
convolving the filter g, with £, . k times, or by a single convolution with a version of the filter g,
which has been expanded by V2 k-1 times. That is, ‘

Ly =L, *Eysiis.}

Although this expanded filter covers an area which is V2 k larger than g, it has X cocficients just as
g, does. Thus a set of low-pass signals with an exponential series of impulse response sizes can be
formed with cost which is the same for each low-pass signal.

" This section is mainly concerned with the effects of the V2 cxpansion operator. A form of DOLP
transform based on cascaded convolution with expansion is first introduced to isolate the effects of
cascaded convolution and expansion from those of rcsampling. The effects of the expansion

The impulse response of the level 0 low-pass signal, £, is g (x.y) by definition. At level 1 the
desired impulse response is g,(x.y) as described 'in section 5.1. The Gaussian scaling property,
described in section 6.1, shows that if g,(x,y) is a Gaussian filter, the level 1 low-pass filter impulse
rcponsc can be approximated by

g,(x.y) = go(x.y) * g,(x.y).

In a Sampled DOLP transform, for cach level above level 1, both the impulse response and the
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unit sample distance, Sg, are to be scaed in dze by an additiona factor of \fl. This section
describes how this sequence of low-pass signals can be formed by repeatedly re-sampling and then
convolving with the same filter expanded out to the proper sample grid. The motivation for this
algorithm is a great reduction in computational complexity in acquiring the sequence of sampled
low-pass signals needed to form a Sampled DOLP transform and its description.

6.2.1 Cascaded Filtering and the VIF Expansion Operation

The cost of computing the DOLP transform without resampling can be reduced from O(N?)
multiplications to O(N log N) by using the Gaussian scaling property and the \fl expansion
operation (defined below).

Let us consider the use of the Gaussian scaling property for forming a DOLP transform without
the use of V2~ expansion or resampling, in this version of the DOLP transform the low pass image at
level k is formed by 2**** convolutions of the low pass image at level k-1 with the kernel low pass
filter go. Thusthe level 1 low-pass filter impulse response, g,, is approximated by

% ~go * S0
and the level 2 low-pass filter, g, is approximated by

02 S Qo * go* Jo * Jo
For each additional level, the number of convolutions with g, doubles.

6.2.2 Cascaded Convolution with Expansion

The exponential growth that results from cascaded filtering can be averted by expanding each
low-pass filter onto a sample grid which is a V? larger before the convolution to produce the next
low-pass level. This expansion operation scales the low-pass filter impulse response larger in
standard deviation by \/2\ but it also introduces reflections of the low-pass transfer function in the
corners of the Nyquist plane, -w < u, v < *r. The kernel filter can be formed so that these
reflections fal over the stop region of the kernel filter and are thus greatly attenuated, as shown in
section 62.4 below. '

Cascaded convolution with expansion can be used to compute a DOLP transform that is not
resamplcd in O(N log N) multiplies. 'ITiis complexity may be arrived at by the following reasoning.
The VT expansion operation does not change the number of coefficients in the filter. Thus each
low-pass image may be formed from the previous low pass image with the same cost in multiplies.
The cost of each convolution is X, N multiplies where X, is the number of coefficientsin the kernel
filter and N is the number of samples in the image. Since the impulse response scale grows
exponentially, there arc O(Log N) low-pass images. Hence the cost of cascaded convolution with
expansion is O( N Log N ) multiplies. This expansion operation and its effect on the transfer
function of a Gaussian low-pass filter is examined in the following Subsections*
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6.2.3 V2 Expansion and Resampling

In this section we consider the expansion operation in the context of the use of cascaded
convolution and resampling. The v/2 expansion operator is a convenient way of scaling a Gaussian
low-pass filter by a factor of V2. When images are resampled, expanding the filter onto the same
sample grid automatically gives the expansion operation.

The V2 expansion operation maps cach row from a filter on a cartesian sample grid into every
other diagonal. This mapping takes each coefficient from point (x,y) of a filter g(x.y) and places it at
pouint (x-y,x+y) of a filter gz(xz,yz). Points of 8)(X5,¥5) which receive no coefficient under this
mapping are declared to be undefined.

Lct us define this mapping as the function E\/T“' Since

X, = X-y
y2=X+y
we get

x=_t¥
2

and

y=2tY
2

So that this function may be defined by _

E\/-[g(x,y)] gz(xz,yz) = [ 8((-x,+y,)/2, (x,+y,)/2) Forx,Mod2 =y, Mod2
Undcﬁned othexwrse

Where A Mod B is the remainder of A/B. This mapping is illustrated by ﬁgurc 6-3. This figure

shows the correpondence between points in the mapping. The dashes ("-") illustrate the points which

are not defined in the new filter.

The algorithm for cascaded filtering with sampling involves rcpeatedly re-sampling. Each re-
sampling enlarges the actual smallest distance between samples by V2 and alternates the direction of
that smallest distance between +45° and 0°,90°. For each convolution the distance between filter
cocfficicnts must be expanded by V2 as many times as the image has been re-sampled. For this, a
more general expansion operator is needed: E, /5/.}. This more general operator cxpands the filter
to the same grid as an image which has been V2 sampled / times.

When [ is odd, the filter is mapped onto a grid whose axes arc +45°, and whose smallest distance
bctwcmsmnplmiszm.'ﬁmpwinmonmisgﬂdmﬂmmwhich
x, Mod 2+ 2=y Mod 2+ /2 = g,

For even I, the expanded filter will be mapped onto a grid whose axes arc at 0° and 90°. The distance
between samples along these axes will also be 2“2, The mapping H\/f! may be defined as:
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(0,1).(2,2) .(2,1)
(0,0) (1,0) .(2,0)
0,-1)(1.-1).2,-1)

maps into

2.1
(1) - 2,0
£01) - (1.0 - .(2-))
0,0 - .-
{0,-1)
Figure 6-3: Example of mapping given by E\/Z—[‘]

Foreven I

g(xy) = { g‘%xlz‘gyr}z) For x, Mod 2=0and y, Mod 2 =0

Undefined otherwise

Forodd I

X, +y, X,+y
— 1°71 171
glxy) = { g(zuu)/z U/

) Forx, Mod 20+ D/2 =y Mod 2(+172
Undcfined Otherwise

For a circularly symmetric filter this mapping is equivalent to applying the following procedure
recursively / times:

E,/sH{-} Procedure:

For each point (x,y) at which the filter g l(x,y) is defined, define a new point in gl(x,y)
at (x-y, x+y) and copy thc value from g, I(X,y) into the point.

This is the procedure which was uscd for the cxperimental implementation.

6.2.4 Frequency Domain Effects of V2 Expansion

The V2 expansion operator has a well defined effect on the transfer function of its argument. As
with V2 sampling a new Nyquist boundary is created which is a 45° rotation and a V2 shrinking of
the old boundary. Insidc this new Nyquist boundary is a copy of the old transfer function scaled
down in sizc by a factor of V2. Outside this new Nyquist boundary is a reflection of the scaled
transfer function. This is illustrated by figurc 6-4 below, which shows the 3dB contour of a low-pass
filter before and after the expansion operation. Figures 6-5 and 6-6 show actual plots of a Gaussian
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low-pass filter (R=4. a=4), before and after the expansion operation. Note the 4 lobes in the
corners of figurc 6-6. These are the reflections of the pass region. If these were to show up in the
composite filter they could cause a large stop-band response, which would add aliasing to the
transform because of re-sampling.

3dB Contour

Eﬁ / 4

> U :> Q >4

Figure 6-4: Effect on Transfer Function of E\/“z' Expansion
Operator

r o/

E\/z'{-} scales the size of the transfer function by V/2 so that it fits into the new smaller Nyquist
boundary. That is

F{E /58 xyB} = 7{g,(xy)}
within 7w < l u+v ’ < o (The new Nyquist boundary)
Because the expansion operation introduces a reflection about the new Nyquist boundary, there is
reason to be concerned about the stop-band crror introduced by this technique. The stop-band error

is not a serious problem for the parameter values R =4, a=4. The reflected energy from cxpansion
falls into the stop-band of the previous filter. That is, outside of the new Nyquist boundary,

F{go(x.y) * g,(x.)}
will be very small (i.c. < 60 dB'® for R=4, a=4) and thus the product
FE/zlg(x)} = Fz.(xy) * g, (xy)}

mkcmmk<95dﬂmmmoﬁhemmmwwmmcwﬂemdmdesmmm
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Figure 6-6: Filter G, (u,v) After V2 Expansion

will be very very small outside the new Nyquist boundary. Thus the impulse response at low-pass
level 2, L., which is desired to be g(x.y; 02=20°) that is, g.(x.y) with its standard deviation scaled
larger by a factor of 2, is actually approximated by



m

gxy: 0,=20,) = S, /5[2.(x.y) * g (xy)] * E, /5lg.(x.y)]
Where S\/z“(') is the V2 resampling operation which was defined in section 3.3 as
Sv‘i-[p(x,y)] = [ p(xy) forxmod2 = ymod2
undefined otherwise

Figure 6-7 is a plot of the transfer function of the level 2 low-pass filter. As can be seen the
response in the corners is so small that it does not register in this plot.

Figure 6-7:  Filter Gy(uv) forR = 40,2 = 40
g{xy) = S szl (xy) * g, (xy)] ¥ E, /58 (xy)]

Amﬂmmkpmmmmm&mmuﬂ}z(uﬁ)hmmrmmﬁ—&misplowpm-iwdbin
amplitude. The scale on the left marks off drops of -10 db. Note that the response in the corner
region is well below -100 dB.

6.3 The Sampled DOG Transform

In this section we definc the Sampled DOG transform by construction and cxamine the
computational complexity and memory requirements. Unlike the similar sections in chapter 5 on the
DOLP wransform and the Sampled DOLP transform, in this section we are concerned with only the
two-dimensional version of this transform. Also, because we use the Gaussian scaling property and
resampling, we are concerned only with a scale factor of, 8, = V7.

As in the similar sections in chapter 5, the number of filter coefficients for the level 0 band-pass
filter, X ,, is related to the radius by:
X, =wR,?

Also, as before, the 2-1D image signal is assumed to have N samples. The convolutions are computed
for the filier contered over cach sample point, with a default boundary value supplicd as needed.
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Figure 6-8: Plotof 20 Logm[Gz(u,v)]
Scale (shown at left) spans -120 dB.
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6.3.1 Construction of a Sampled DOG Transform

The sampled DOG transform may be expressed byvthc data flow graph shown below as figurc 6-9.
The number of points ( for an N point image) produced by cach step are given in square brackets to
the right of each band-pass level.

As with the DOLP and Sampled DOLP transforms, the high-pass residue, 8., is formed by
convolving g, with the image, p, to form £, and then subtracting the convolution output at each
point from the sample under the center of the filter as it is computed. That is, the low-pass level 0
signal is given by:

Lo=g.%p
and the level 0 band-pass signal is given by:
G‘Bo =p- !‘o
The level 0 impulse response is:
bo =1- 8o
Note that when filters of different sizes are subtracted, it is implied that their centers are aligned,
and that undcfined coeficients are treated as having the value zero. The filter, b,, defined above is
the same as that given in figure 6.12 below.

Computing B, requires X, N multiplies and produces N sample points.

The low-pass level 1 signal is then formed by convolving g, with the low-pass level 0 signal. Thus

lego*‘t‘o
and
g3=go*go

During the convolution, the level 1 band-pass signal B, is formed by subtracting cach sample
pointof L 1 from the corresponding point of £ .

B, =L,-2
and
bl = go-(go *gb)
This operation also requires X , N multiplics and produces N sample points.
Since the level 1 low-pass filter transfer function has a pass and transition band that has been
designed to be inside a V2 shrinking of the Nyquist boundary, it can be re-sampled at V2. Thus,

only the samples along every other diagonal are stored. The result is a low-pass signal, S\/E{‘Ll}
which has N/2 sample points.
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Figure 6-9: Data Flow Graph for Sampled DOG Transform
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This sampled low-pass level 1 signal is then convolved with an cxpanded version of g, to produce
LZ. Thus: :
L,=SyztL 1 *Eyzied

and
8 = Ey5{g.} *Sy/5{80 * 8o}

During this convolution. the level 2 band-pass filter is formed by subtracting each low-pass sample,
L, from the sampled version of L.

B, =S, 5{L,} -4,
Thus the level 2 band-pass filter is given by:
b, =Syzigt -8
Since S\/E{Ll} has N/2 samples, this operation requires X, N/2 multiplies and produces N/2

samples.

The Sampled 1DOG process continues in this manner until the K™ fevel. Thus the level 2 low-pass
signal, 12 is again sampled at a distance of V2 . corresponding to a sample for every other column of
every other row of the original picture, p. This is a total of N/4 sample points. This resampled
low-pass signal is convolved with a twice expanded low-pass filter:

E{g.} = Ey/52{2.} = Ey 5 {E 7181}
to form the level 3 low-pass signal,

L, =E,{g,} *S,/5{L}

and | ’

g; = Ey{go} * S\ 5{Ey/5{g.} *# Sy 5{8. *8.3}
Thus band-pass level 3 is formed by:

By =Syziti-14, ,
and the level 3 band-pass impulsc response is:
by =8,5{8,} -(Ede.} *S,5{g, D

Since S\/Z—{LZ} has N/4 samples, producing the level 3 band-pass signal requires X,N/4
muitiplies and produces N/4 sample points.

In summary, for levels 2 through K we can state the following recursive formulae:
Lk = Eﬁﬂ'”{ge} * Sﬁ{‘ck.l} (6.1)

& = Eyztenie.} * Sy 5ig 3 (6.2)




(6.3)

\ = ki - (EVT*."fe,} * SfcA) 6-4)
6.3.2 Computational Complexity and Memory Requirements

Producing each band-pass level, k, for the k-1* low-passlevel requires X, N/2*** multiplies, and
produces N/2*"* samples. Thus the cost, Cspog, Of computing a Sampled DOG transform of an
image signal with N samplesis:

‘DOG = Xo(N + N + N/2 + N/4 + N/8 + ..)
» 3 Xo N multiplies

The total number of band-pass samples produced, M, is:

M=N+N+ N/2+ N/4+N/8 + ..
g 3N samples

6.3.3 Comparison of Complexity with Filtering Using FFT

The Sampled DOG Transform is based on a filtering algorithm which we have named "Cascade
Convolution with Sampling". Any sampled DOLP transform could dternatively be computed using
the Fast Fourier Transform (FFT) algorithm. A Sampled DOLP Transform of an N point signal
(1-D or 2-D) could be computed using the FFT algorithm by the following steps:

L Prccompute the coefficients of the level 0 band-pass filter (high-pass residue) and the
level 1 band-pass filter. Evaluate the transfer functions of these two filtersover N equally
spaced points in the nyquist interval. Since the level 2 through K band-pass filters are
size scaled copies of the level 1 filter, their transfer functions can be obtained from the
level 1 band-pass transfer-function by resampling, as described below. The cost of
computing these transfer functions will not be included in this complexity analysis.

2. Compute the Discrete Fourier Transform (DFT) of the signal using the FFT algorithm.
This requiresN Log, N multiplies for an N point 1-D signal or [M Log, M]? multiplies
foranN = M x M 2-D signal. Note that for this step alone is more expensive for:

LogoN>3X, inthe 1-D case, and

[Log,M]%>3X, inthe2-Dcase

3. For band-pass levels 0 and 1, multiply the DFT of the signal by the transfer function of
each filter. Each product costs N multiplies. For band-pass levels k=2 through k=K*
bolh the transfer functions and the DFT of the signal must be rc-samplcd to N/
evenly spaced points. Kach re-sampled transfer function is then multiplied by the
corresponding rc-samplcd DFI\ for a cost of N/2*"' multiplies at each level The total
cost of these multipliesis then:
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N + N+ N[I/2+ V4 + 18 + .] =3N multiplies

4. Compute the inverse FFT of each array. This requires

N Log, N +t_, (N /2% Logy(N / 2“%) multiplies
T k=l

2N Logy(N) + N/2Logo(N/2) + N/4 Logy(N/4) +...

2N Log,(N) + N/2[Logx(N) - 1] + N/4 [Logx(N) - 2]
N/8 [Logx(N) - 3] 4- ...

+

2N Logy(N) 4- Logs( N/2 + N/4 + N/8 +...,)f£,k N/2k
k=

Tliefina scriesterm at the end converges to approximately 2N. The middle series, aswe
have seen before convergesto N, so that the cost of the inverse FFT s is approximately:

3N Logx(N) - 2N multiplies

Thus the total cost of using the FFT agorithm is;

Cpp,.=~ N Logx(N) + 3N + 3N Logx(N) - 2N
ss4N Logy(N) + N Multiplies

Recdll that the Sampled DOG transform requires approximately:
Cspoc & 3 X, N multiplies
Thus the Sampled DOG algorithm costs less whenever:
3Xo9<4Log,(N)-hl

For the 1-D case, Xq has a typical vaue of 9. Thus the Sampled DOG Transform is cheaper
whenever:

N > 2% =905

-

For Circularly Symmetric filtersin the 2-D case, X, istypicaly 49. Also the cost of aFFT for an N
=M x M signd is[ M Log, MF multiplies, so chat the Sampled DOG Transform ischeaper in terms
of multiplies whenever:

4tLog,(M)f+>3(49)
or

fLog,(M) > 365

or

Log'M) > 604

or

M>fM. -6686
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6.3.4 The Size of Cascasded Filter Impulse Response

As discussed above, the sampled DOG transform employs cascaded convolution with sampling to
produce a set of low-pass images whose Gaussian impulse responses are scaled larger in standard
deviation by a factor of VT from each level to die next. In chapter 5 this scaling was discussed in
terms of the filter radius. Cascaded filtering produces a set of impulse responses whose radii grow
faster than a factor of V.

The level O low-pass filter is defined over a disc of radius R,=4. When convolved with itself to
produce the level 1 low-pass filter it produces an impulse response which is non-zero over a disc of
radius 2Ro. This is a property of the convoultion operation. At the same time, the standard
deviation of this impulse response has only grown by \/T.

The convolution of two functions which are normalized to sum to one produces a function whose
values also sum to one. Thus the autoconvolution of the Gaussian preserves its normalization to unit
sum. Since the auto-convolution has its unit sum spread out over alarger area, the coefficient values
are dightly smaller than the same coefficients for a unit-sum Gaussian filter which is computed by
scaling the R parameter by VT.*' The auto-convolved Gaussian filter has a larger tail and is thus a
closer approximation to the infinite 2-D Gaussian function.

The level 1 low-pass image is sampled at \/T and so the low-pass filter must be expanded to the
same sample grid by the E” { } operator defined above. From afilter defined over a disc of radius
R,, the expansion operator ij {} produces a filter whose furthest coefficient from the origin is at
VTRo. That is, for a radius 4 filter, the coefficient from (4.0) is mapped into the point at (4,4).
When_this filter is convolved with the level 1 low-pass filter, the result is afilter whose radiusis R, +
ROV 2.

Each additional expansion of the filter will enlarge it in radius by a factor of VT and will add its
size to that of the cumulative impulse response. Thus the radius of the cumulative impulse response,
Ry, for the level k low-pass filter is given by the following formula:

k

R = R,2 VIP
n=0

Thissupport radiusgrows much fester than the support radius
Re = RJV2F

for asimple scaling of the function. This faster growth in support radius is advantageous; it provides
a low-pass impulse response at each level which is a closer approximation to the infinite Gaussian
function. Thus at each level the error in the auio-convoludon scaling that results from the finite
duration of the Gaussian filter is: reduced.

I Note thai the two functions do have the same standard deviation.




85
6.4 Verification of Scaling Approximation

Because the discrete two dimensional Gaussian filter defined in section 6.1 is defined over a finite
window, the scaling relation described in scction 6.1.1 is only approximate for g,(x.y). Described
below are three measures for the accuracy of this scaling for the approximation:

gR=4V2 ,a=4.0) = g(R=4,a=4) * g(R=4,a=4)

6.4.1 Diagonal Method in Space Domain:

The casiest measure of the accuracy of scaling by auto-convolution is to compare the cocfficients of
g.(x,y) along the axis x=y to the cocfficients of g.(x,y) # g.(x,y) along the x axis. Thesc sample
points have the same ratio of distance from the center to total radius, and thus will have the same
valuc if the filter is exactdy expanded by V2 and is circularly symmetric. These data are shown in
table 6-1 below. The coefficients of g,(x.,y) are gencrated normalized to a dc response of 1.0. Their
auto-convolution also has a dc response of 1.0. The effects of this normalization were removed by
dividing each coeficicnt by the coefficient at 0,0, and this could be a source of small inaccuracy.

X 1 2 3

g 0.7788 0.3678 0.1054
g¥g 0.7768 0.3607 0.0952
%error 0.25% 1.9% 9.6%

Table 6-1: Comparison of Filter Coefficients

It should be noted that the auto-convolution, g,(x,y) * g,(x.y). has a finitc support that is a disc
with a radius of =2R, as opposed to gl(x,y) which is defined over a disc of radius V2 R. Yet both
filters are normalized so that their sum is 1.0. For this reason the autoconvolution should be expected
to taper slightly faster than the scaled filter. The auto-convolved filter will actually be a closer
approximation to a Gaussian function.

6.4.2 Diagonal Method in Frequency Domain:

This method involves comparing values in the real part of the transfer function G(u, v; R=4,
a=4) along the diagonal axis u=v to valucs of 7{ g(R =4,a=4) * g(R=4.a=4)} along the axis
v=0. The distance to the origin is uV?2 for the points from the first ransfer function and u for the
second. The values arc shown for distances of u=nw/32 where n ranges from 1 to 16.

The maximum crror shown by this method is 0.011 and it occurs at n = 9 and 10 or frequencies of
u = 9%/32 and u = 10%/32. As with the diagonal mecthod in the space domain this comparison may
be sensitive o any circular non-symmetry in the filter. A larger source of error would be the
difference in normalization that occurs because of the larger support for the auto-convolved filter.
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n 1 2 3 4 5 6 7 8
G(uyv) 0982 0931 0852 0750 0.636 0518 0414 0.302
G(u,v) * G(u,vy) 0982 0932 0852 0752 0639 0523 0412 0312
error  0.000 0.001 0.000 0002 0.003 0005 0.008 0.010
% error 0.00 0.10 0.00 0.26 0.46 0.95 1.94 3.20

‘n 9 10 11 12 13 14 15 16
G(uyv) 0215 0146 0095 0.060 0037 0024 0016 0.012
G(u,v) *# G(u,v) 0226 0157 0104 0066 0.040 0023 0.013 0.007
error 0011 0011 0009 0.006 0003 0001 0003 0.005
%error 486  7.00 865 909  7.50 434 2307 7142

Table 6-2: Diagonal Comparison Of Transfer Function Samples

6.4.3 Expansion Method:

The third technique for measuring the accuracy of the approximation was to form the two filters
g.(x.y) * g.(x.y) and E\/Z—{go(x,y)}, subtract the expandced filter from the auto-convolved filter, and
then compute the transfer function of this difference. A plot of this difference is shown below as
figure 6-10. This plot is dominated by the reflection of the center lobe from the expanded filter,
which is not present in the auto convolved filter. The idea behind this method is that within the
diamond shaped region, lu +vl < 7 the expanded filter should be identical to a V2 scaling in size of
the original filter.)2 The transfer function to the third decimal place shows a number of circular
ripples within the region where the two filters should be the same. The largest ripple has a peak of
-0.012 which occurs over an arc of constant radius, spanning u,v = -94/32, -3%/32 to -3w/32,
On/32.

Table 6-3 below shows the crror valucs along the diagonal u=v for u=nw/32 for n € {1,2,3,...,16}.

The crrors shown by this mcthod are of the samec magnitude, but not identical to those found by
the diagonal frequency domain method. In both measurcs involving transfer functions the error in
the approximation was found to be at most 0.012 ( out of 1.000) and this maximum ecrror tended to be
at or near u>+v2 = 82/32, which is also the pecak frequency, w,, of the band-pass filter at band-pass
level 1.

The conclusion formed from these experiments was that the scaling approximation was accurate
enough for the finite filters formed using R = 4, a = 4.0, to permit its use in devcloping a
description technique based on the Sampled DOG transform.

12‘Outsid:: this region the reflection of the center lobe in the auto-convolved filter will dominate the difference as seen in
figure 6-10.
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Figure 6-10: Transfer Function of E\/-Z-{go(x,y)} - 8,(x,y) * g,(x,y)

n 1 2 3 4 S 6 1 8

- HAEs{e}-(g*g)} 0000 0001 0002 0005 0008 0011 0012 0.010

n 9 10 1 12 13 14 15 16

FEs{gl-(g*g)t 0005 0001 -0.005 -0.007 -0.007 -0.004 -0.001 0.000

Table 6-3: Values Along Line u=v in Transfer Function of E\/f{g} -
(g*g)

6.5 The Band-Pass Filters

This chapter comes to a close by showing the impulse responses and transfer functions for the
smaller filters. Given below are the coefficients for the band-pass filters at levels 0 and 1, and plots of

the transfer functions of the Ievel 1 and level 2 band-pass filters.

6.5.1 Size of Positive Center Radius

The scale or sizc of forms to which cach filter in a sampled DOG transform is sensitive depends on
the size of the positive center lobe of the impulse response. We have observed by examining the
cocfficients of the impulse responses that for the Sampled DOG transform based on a Gaussian low
pass filter with a radius. R, = 4.0, and a shape parameter of a = 4.0, the radius of the zcro crossing

of this pusitive center Jobe, Rk 4+ atalevel, k, may be predicted by the following formula.




(6.5)
R, »V5(VI¥)

Tliis formula is based on the observations given in table 6-4 below. The radii of the positive center
lobes in this table were measured by finding the distance from the center point to the furthest ( and
smallest ) positive coefficient The filters tend to be most sensitive to objects whose width is
2R +t 1. Note that as the radius increases there are more coefficients near the zero crossing, and
thus the accuracy to which the zero-crossing radius can be determined increases.

Level Radius of Center L obe
1 V5 = 223606
2 VTO = 31622
3 V20" = 44721
4 VAl = 64031

Table 6-4: Radii of Center Lobes
. As measured by Distance to Furthest Positive Coefficient

6.5.2 Relative Size of Filters and Their Transfer Functions

Since the filters are circularly symmetric, it is possible to visualize each filter impulse response and
transfer function from the values along a line which passes through the center of the filter or its
transfer function. Figure 6-11 shows plots of the coefficient values along the X axis of the band-pass
filters for levels 1 through 4. Note that the size of each filter increases by a factor of VT from the
previous filter and that the maximum response (at the center) decreases by a factor of 2 from the
previous filter. ’

The following figure shows the transfer functions for the band-pass filters from levels 1 through 4.
The transfer function values from the u axis (v = 0 ) from 0< u <_m are shown. The spatial
frequency values are shown as integers from 0 to 32 because the transfer function wes evaluated over
a64 x 64 grid. (Note that u = 2f = 2?rk/64).

6.5.3 Filter at Band-Pass Level O

We start with figure 6-13 which shows the filter which givesthe high passresidue, 3Bo. Thisfilter is
the lowpass filter go(x,y) with its center coefficient subtracted from 1 and all other coeficicnts
subtracted from zero.
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Figure 6-11: Coefficients Along X Axis for Filters from Levels 1 Through 4

6.5.4 Filter at Band-Pass Level 1

Next is figure 6-14 which gives the coeficients for the band-pass filter at level 1. The formula for
this filter is:

by(x.y) = go(x.y) = (8.(x.y) * g4(x.¥))

The values for this filter are shown in two scctions so that they fit on a page. The first section is
columns -8 to 0, and the sccond is columns 1 to 8.

Figure 6-15 shows the transfer function. B,(u,v) for the level 1 band-pass filter. The pcak response
is 0250 at Vul+v% = w/A. '

Figure 6-16 shows a logarithmic plot of Bl(u.v). This plot spans -40 dB. The scale at the left marks
off drops of -10 dB3 in response. This relatively large ripple is not a concern because the level 1
band-pass image is not resampled.

(o]
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Figure 6-12: U Axis Of Transfer Functions for Band-Pass Filters from
Levels 1 Through 4. u = 27k/64

-.001488
-.003150 -.006669 -.008564 -.006669 -.003150
-.003150 -.010996 -.023278 -.029890 -.023278 -.010996 -.003150
-.006669 -.023478 -.049280 -.063276 -.049280 -.023478 -.006669
-.001488 -.008564 -.029890 -.063276 91752 -.063276 -.029890 -.008564 -.001488
-.006669 -.023478 -.049280 -.063276 -.049280 -.023478 -.006669
-.003150 -.010996 -.023278 -.029890 -.023278 -.010996 -.003150
-.003150 -.006669 -.008564 -.006669 -.003150
-.001488

Figure 6-13: Filter for High Pass Residue, B,
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-.000002

-.000009 -.000020 -.000025

-.000010 -.000051 -.000131 -.000226 -.000271

-.000020 -.000111 -.000367 -.000798 -.001257 -.001460

-.000010 -.000111 -.000508 -.001461 -.002978 -.004512 -.005172
-.000051 -.000367 -.001461 -.003949 -.004609 -.004849 -.004560
-.000009 -.000131 -.000798 -.002978 -.004609 -.003962 .001282 .004904
-.000020 -.000226 -.001257 -.004512 -.004845 .001282 .017072 .026734
-.000002 -.000025 -.000271 -.001460 -.003684 -.004560 .004904 .026734 .039788
-.000020 -.000226 -.001257 -.004512 -.004849 .001282 .017072 .026734
-.000009 -.000131 -.000798 -.002978 -.004609 -.003962 .001282 .004904
-.000051 -.000367 -.001461 -.003949 -.004609 -.004849 -.004560
-.000010 -.000111 -.000508 -.001461 -.002978 -.004512 -.005172
-.000020 -.000111 -.000367 -.000798 -.001257 -.001460

-.000010 -.000051 -.000131 -.000226 -.000271

-.000009 -.000020 -.000025

-.000002

-.000020 -.000009
-.000226 -.000131 -.000051 -.000010
-.001257 -.000798 -.000367 -.000111 -.000020
-.004512 -.002978 -.00146i -.000508 -.000111 -.000010
- -.004849 -.004609 -.003949 -.001461 -.000367 -.000051
.001282 -.003962 -.004609 -.002978 -.000798 -.000131 -.000009
0170672 .001282 -.004849 -.004512 -.001257 -.000226 -.000020
026734 004904 -.004560 -.003684 -.001460 -.000271 -.000025 -.000002
w 017072 .001282 -.004849 -.004512 -.001257 -.000226 -.000020
001282 -.003962 -.004609 -.002978 -.000798 -.000131 -.000009
- -.004849 -.004609 -.003949 -.001461 -.000367 -.000051
-.004512 -.002978 -.001461 -.000508 -.000111 -.000010
-.001257 -.000798 -.000367 -.000111 -.000020
-.000226 -.000131 -.000051 -.000010
-.000020 -.000009

Figure 6-14: Impulsc Response of Level 1 Band-Pass Filter
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Figure 6-15: B, (u,v), The Transfer Function
of the Level 1 band-pass Filter
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Figure 6-16: 20 LogmlBl(u,v)], The Transfer Function
of the Level 1 Band-Pass Filter Plotted in dB
Scale, shown at left in increments of -10 db, spans -40 dB




6.5.5 Filter at Band-Pass Level 2

The impulse response of the filter at band-pass level 2 requires a 32 column by 32 row table to
cnumerate. Rather than fill two pages with these coefficients we show its transfer function in figure
6-17 below. The formula for this filter is

bi(x%.Y) = go(x.¥) * 8o(%.y) = Ey/5{8,(x.9)} * go(x.y) * g,(x.y)]

Figure 6-18 shows a plot of Bz(u,v) in dB, with a scale spanning -80 dB.

Figure 6-17: Bz(u,v), The Transfer Function of the Level 2 band-pass Filter




Figure 6-18: 20 Log, [B,(u,v)]. The Transfer Function
of the Level 2 band-pass Filter Plotted in dB
Scale, shown at left marks increments of -10 dB to -80 dB




Chapter 7

A Symbollc Representation Based
on the Sampled
leference of Gaussian Transform

. The previous two chapters described techniques which could be considered within the domain of
digital signal processing. In order to demonstrate the usefulness of these techniques, it is necessary to
show that the filtered image signals can be used to construct a structural representation of an image.
This chapter will describe such a technique. These agorithms were developed to demonstrate the
usefulness of the sampled DOG transform, and to explore and develop the principles for using the
transform to form a structural representation of gray scale images for object recognition and stereo
matching.

The algorithms described below were designed to belocal As with the transform itsdf, they can
be implemented in parallel. Rather than try to develop a single monolithic process that would
construct the description, the process was broken down into a series of stages, and a number of
competing ideas were evaluated for each stage.

The process was broken into the following stages:

1. Identify and link ridge points (P-nodes) and local peaks (M-nodes) at each band-pass
level;

2. Remove small loops and fix short broken connectionsin the P-paths at each level;
3. Connect together peaks at adjacent levels (M-paths);

4. Use 2-D ridge points (P-nodcs) as candidates to find 3-D ridge points (L-nodes) in the
three dimensions (X,y,k);

The result of thisprocess is a tree-like graph which contains four classes of symbols:
* P: Points which arc on aridge at alevel.
* M: Points which arc local maximaat alevel.
* L: Points which arc on aridge across levels (i.e. in the three space (x,y,k)).

» M*: Points which arc local maxima in the three space.
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Every uniform (or approximately uniform) region will have one or more M*’s as a root in its
description. These are connected to paths of L’s (L-Paths) which describe the general form of the
region, and paths of M’s (M-Paths) which branch into the concavities and convexities. The shape of
the boundaries are described in multiple resolutions by the paths of P's (P-Paths). If a boundary is
biurry, then the highest resolution (Iowest level) P-Paths are lost, but the boundary is still described
by the lower resolution P-Paths.

Before launching into a discussion of how the values from the Sampled Difference of Gaussian
(SDOG) transform may be mapped into symbols, a word about one of the terms used below. The
SDOG transform produces values at discrete points in a finite space (x.y.k). Each point in this space
has the potential to contain a symbol. When a symbol is assigned to a point, a certain amount of
additional state information is encoded at the point. To avoid confusion between the words point
and pointer, cach point in the space (x,y,k) will be referred to as a sample, when speaking of only the
band-pass value, or as a "node” when describing the various labels, flags and pointers assigned at a
sample point.

7.0.1 Information Stored at Each Node

In the implementation that is described in this chapter, nodes were subdivided into the fields
shown in table

Filter Value 8 bits
Direction 8 bits
EBS,*LMP 1 bit flags
P Pointers 8 one bit pointers
Label, U, D 6 bit Symbol ID,
Pointer bits Straight up and down
UP ( to k+1 level) pointers " For L and M paths
(8 Bits, 1 for cach neighbor)
Pointers to SAME level For L and M paths
DOWN (to k-1 level) For L and M paths

Table 7-1: Ficlds of a 64 Bit Node

The first 8 bit sub-ficld holds the valuc from the Sampled DOG transform. The direction sub-field
contains the result of a dircctionality measur¢ that was employed in carly versions of the
representation.  This number is between 0 and 179 degrees. Next arc scven 1-bit flags whose
mcanings are discussed in the sections 7.2, 7.4, and 7.5. 'The next subficld contains the 8 pointer bits
for connecting P nodes. Each pointer corresponds to once of the adjacent 8 neighbors. The neighbor to
the right is pointed to by the pointer at bit 0. Neighbor numbers increase in a counter-clockwise
direction. ( A number of the algorithms below do module 8 arithmetic on the P pointers.) The next
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subfield is a 6 bit symbol ID that is assigned based on the configuration of ridges around the node.
There are then two 1-bit fields which act as pointers for the L and M paths. The U field can be set to
point to the neighbor directly above if that neighbaor exists. The D bit can be set to point to the
neighbor directly below (at the k-1%t level). The "UP" ficld contains the pointers for the L and M
paths that can point to the 8 neighbors at the k+ st level. The "SAME" ficld contains pointers for L
paths that can point to any of the adjacent 8 neighbors at the k" Jevel. The "DOWN" subfield points
to the 8 neighbors below (at the k-1st Ievel) for representing L and M paths.

7.0.2 Meaning and Purpose of Peaks and Ridges

Section 3.1 showed that a 2-D sampled correlation is equivalent to a 2-D sequence of inner
products between the filter and the neighborhoods centered at the sample points. An inner product
has its largest possible value when the two functions are identical. It is also a good measure of how
similar two functions are. For cxample, in communications theory an inner product is used to tell
how much of the energy in a received signal is described by a basis function [Wozencraft 65}. Thus a
local pcak in a band-pass image indicates a local point where the image signal most resembles the
impulse response of the band-pass filter.

It is possible for a two dimensional signal to maintain a large amplitude along a line or a curved
path such that all of the neighboring values are smaller. When this happens in the band-pass images
from a DOLP or SDOG transform it means that the impulse response of the band-pass filters are a
best fit to the gray-scale form in the image at a sequence of points. Such a sequence of points is
called a ridge. A ridge could be loosely defined as a 1-D sequence of points in a 2-D signal along
which the function value is larger than any neighboring points.

Both ridges and peaks occur in each of the band-pass signals produced by a DOLP transform. This
chapter shows that the appcarance of an object in an image can be represented by encoding the ridges
and peaks from all of the band-pass images from a SDOG transform. To the extent to which the
band-pass signal can be reconstructed from knowledge of the position and magnitude of the peaks
and ridge paths, this encoding is approximately reversible. This chapter also shows that the concepts
of pcak points and ridge paths can be extended to the third (or k) dimension, that is between
band-pass levels. These peak points and ridge paths in the (x,y.k) spacc provide sufficient
information to uniquely represent descriptions of the 2-D appearancces of objects. Chapter 8 shows
how this a representation can be used to cfficiently match 2-D appearances, despite changes in size,
2-D orientation, or position of the object relative to the camera.
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7.1 Phenomena in Each Band-Pass Imége

This scction describes the manner in which peaks and ridges occur in each band-pass image of a
SDOG transform. Section 7.4 describes peaks and ridges in the 3-D space (x,y k). The phenomena
described in these sections are illustrated with filter output from uniform intensity rectangles. These
artificial shapes have simple descriptions and yet illustrate the principles on which this representation
is based. Examples of the descriptions of the images of real objects are presented in later sections and
in the next chapter.

7.1.1 The SDOG Band-Pass Impulse Response

In the following discussions, it is helpful to recall the form of the impulse response of the band- |
pass filters implemented by the sampled DOG transform. The zero crossings and the center row of
this impulse response are illustrated below in figure 7-1. The impulse response is circularly |
symmetric. The cocfficient along any line passing through the origin will resemble the cross-section |
shown on the right in figure 7-1. The impulse response consists of a positive center lobe, surrounded
by a negative side lobe. The sum of the coefficients is zero. The response at any point may be (
thought of as the sum of the weighted points under the center lobe minus the sum of the weighted
points under the cutside side lobe.

0.039

III lll

Zero Crossings Impulse Response

(Center Row)

Figure 7-1: Impulsc Responsce of Band-Pass Filter
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7.1.2 Edges of Large Regions

Let us start by considering the response of the band-pass filters at the boundary of a much larger
uniform region. Consider a square whose side length is much larger than the diamcter of the
band-pass filter, and whose picture clements are of a larger value than the surrounding background.
Let us examine the response of the filter along a line which is perpendicular to the side of the square
and passes through the center. This response is illustrated in figure 7-2.

20 +
o el
wd A
|e—'11 ﬁ’ — 11 —-4 20
Response
Path Across Square (Level 1)

Figure 7-2: Responsc Across Center of a Square

When the filter support is totally in the uniform background region the responsc is zero. As the
filter’s negative side lobe begins to overlap with the square, the inner-product becomes negative. As
the edge of the positive center lobe reaches the edge of the square, the inncr-product reaches a
ncgative minima. The responsc climbs through zero as the positive center lobe overlaps with more of
the square. Just before the positive center lobe completely overlaps the square, the response will
reach a positive maximum and begin to drop. The drop continues until the filter is completely within
the squarc and the responsc has tapered to zero. Thus the edges of the squarc result in a pair of peaks
of opposite sign, on cither side of the edge. The distance of the pcaks from the edge can depend on
how sharp the edge is, and will occur at approximately 2/3 the filter radius on cither side of the cdge.
If the cdges are blurred at the resolution described by the filter, the amplitude of the peaks will be
decreased, the width will be increased, and the peaks will tend to be a little further apart.

The fact that a negative responsc occurs outside of the square is interesting. Any approximately
uniform region will have a negative ridge surrounding it. Artists refer to a similar phenomenon in the
human visual systcm as "negative shape”.
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7.1.3 Convex Protrusions: The Corner

The filters tend to respond to concave and convex protrusions by producing a peak. When linked
between levels, these peaks form an M-path which describes the shape of the protrusion. As an
example of a convex protrusion, consider the uniform square described in the previous section.
Consider the response aong a line which is paradld to and about half the filter radius below the
upper edge of the square as shown in figure 7-3.

40 - | o
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T 20 4+ e

Path Across Square 30 -+ Response .
a0 - (Level 1)

i

T R S,
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Figure7-3: Response at Corner of a Square

As before, the filter response is initially zero. As the negative sidclobc moves over the corner of
the sgquare, the response will go negative until aminimum isreached. The amplitude of this negative
peak will be smaller than for the negative edge at the center of the square. This is because less of the
negative side lobe is overlapping with the square. As the positive center lobe comes over the square,
the response will rise through zero to a postive maximum. The amplitude of this peak will be
approximately twice the amplitude of the podtive pesk at the center of the square. Again, this is' L
because | ess of the negative side lobe overlaps with the square. To the right of the positive maximum,
the response will decrease to about half of its maximum value. These points arc aong the positive .
ridge that is inside the boundary of the square. The response is symmetric about the middle of the
square.

T T s

Peaks, such as the one described above, will occur whenever there is a protrusion. Protrusions .
which have sharp straight edges appear the same over a range of scales. For such protrusions the sl
height of the peaks a several adjacent band-pass levels will be approximately the same. If the '
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protrusion does not have sharp straight edges, then there will exist levels at which the peak is larger
than the peak at adjacent levels. An example of such a shape would be a square in which the corners
are rounded.

7.1.4 Across a Long Thin Rectangle

Let us consider the responsec of a filter along a line crossing a rectangle (or bar) whose width is
approximately the same as the radius of the filter’s positive center lobe. This situation is illustrated in
figure 7-4.

T

N 0 L

oL 1

l(—ﬁ—-ll - | 20 -
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(Level 1)

Path Across Rectangle

Figure 7-4: Rcsponsc of Filter Across a Rectangle

As with the first square cxample, the responsc starts out as zero, and falls to a negative peak as the
side lobe overlaps with the rectangle. However, since the side lobe passes beyond the rectangle as the
center lobe comes over the bar, the positive response will risc faster and rcach a peak which is
approximately twice that of the positive cdge of the squarc. The responsc is symmetric about the
center of the rectangle. What is important about this cxample is that the response of the filter whose
positive inner lobe is the same width as the rectangle will be larger than the response for filters which
are larger or smaller. Such a ridge results in a path of L-nodcs; that is, a ridge between band-pass
levels. The index of the level at which the L path occurs gives an cstimate of the width of the
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7.1.5 At the Ends of the Rectangle

Let us now consider the response of the same filter along the long axis of the same rectangle. This
is illustrated by figure 7-5.
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Figure 7-5: Response of Filter Along a Rectangle

The negative minimum that occurs as the filter comes over the end of the rectangle will be smaller
than the the negative minimum beside the rectangie, because less of the negative side lobe will be
over lapping with the rectangle. As the positive center lobe comes over the end of the rectangle, the
response will rise 10 a positive maximum which is even larger than for the center of the rectangle.
This is because at the end of the rectangle, only about a quarter of the negative side lobe overlaps
with the rectangle, whereas in the conter almost half of the negative side lobe overlaps. Thus at the
ends of a rectangle, a local peak occurs. For the filter whose center lobe most closely fits the
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rectangle, the amplitude of this peak will be larger than for filters that are smaller or larger. Such a
peak will be detected as a peak between levels, and labeled as an M*. The levels below it will contain
an M path which splits into two parts, one for each comer. Above it another M-path will lead to the
center of the rectangle. This M-Path may or may not join with onc from the other cnd of the
rectangle, depending on both the Ilength to width ratio, and the difference in gray level between the
rectangle and the background.

7.1.6 A Square Which is Smaller Than the Filter

As a final illustration, let us consider the response of a filter to a square whose size is approximately
the same as the positive center lobe of the filter. This is illustrated by figure 7-6. :

| | b 1
s —3 Wt

Path Across Square - Response
(Level 4)

Figure 7-6: Rcesponse of Filter To a Square

As with the carlicr cxamples, there is a negative ridge surrounding the square. As the center of the
filter moves over the squarc the responsc riscs to a strong pcak. The height of the peak will be
approximately four times the amplitude of the necgative ridge outside the square. The peak that
occurs for the filter whose center lobe just covers the squarce is the largest responsc to the square
which any of the filters will have. This peak is detected as an M* point, and serves as a root for the
graph which represents the square. An M Path will extend above this peak for several levels. Below
the peak an M Path will split into four parts, onc for cach comner.
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7.2 Peak and Ridge Path Detection at Each Band-Pass Level

Detecting a local peak in a band-pass level from the SDOG transform is simple because of the
smoothness given by the band-pass impulse response. Unambiguous detection of the path of a ridge
with an algorithm that may be implemented in parallcl has proved to be a more difficult problem.

It was originally believed that the detection of points on a ridge would require measuring the
direction of lcast change (local directionality) and then finding the local ridge by scanning
perpendicular to that dircction. Several techniques for measuring local directionality were
investigated. A particularly reliable and efficient measure based on a 4 point DFT of the inner-
product from 1-D filters at four directions will be described in a separate report.

The simplest measurc of local directionality at a point is to compare the filter output at each of the
8 neighbors. At any point, the directions at which the largest neighbors exist is the most likely
dircction of the nearest ridge. By dcfinition, the largest ncighbors of points on a ridge are also points
on a ridge. This simple principle serves as a basis for the ridge detection algorithm described below.
Because it is not based on a costly directionality measurement function, this algorithm is simpler to
program and exccutes faster than any of the other algorithms for ridge detection that were
investigated.

None of the algorithms that were developed for detecting and linking ridge path points always
produced unbroken paths. The problems with these algorithms is that the data consists of fixed point
numbers which exist at discrete locations. While the algorithm described below was sufficient for the
purpose of demonstrating this thesis, there is room for further research.

7.2.1 Detecting Local Peaks

Local peaks ( positive maxima and negative minima) at a band-pass level are casy to detect. A local
peak (M) is defincd as any sample in a band-pass level for which none of the adjacent 8 neighbor
samples has a value of the same sign and larger magnitude. Note that this definition allows adjacent
samples with the same value to both be detected as peaks. This situation occurs because of the fixed
point quantization and is handled by interpreting adjacent peak points as part of a single peak. 1f two
samples have the same valuc, and only one of them has an adjacent neighbor with a larger value, then
ncither sample is labeled as a peak.

By this definition, an area of uniform filter output is composed of all pcaks. Only a constant signal
will produce a uniform response over an arca in a band pass image. and the valucs in this response
arc zero. Such arcas arc casily detected and excluded. 1t is possible to have small regions of width <4
which have a constant value if the amplitude is very small (c.g. < 3). This is because of quantization
with fixed point numbers. This problem is avoided by not allowing a point where the magnitude is
less than 10 to be labeled as a peak.

It is mentioncd above that a situation can occur where two adjacent samples have the same value,
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and only one of the samples has a larger ncighbor. An cxample of this occurs in figures 7-8 and
7-9 below at row 54 column 142. Such false peaks arc climinated by setting the E flag for any
M-node which has an cqual valued neighbor. A second pass is made through the image during which
the M and E flags are cleared for any M-node which has its E flag sct and is not adjacent to another
M-node.

Thus peaks are dctected by comparing a value to its neighbors, and to the quantization threshold.
If implemented by itself, this algorithm requires 8 references to the image array for each sample. This
simple detection procedure is easily implemented as part of the more complex ridge path detection
procedure described below.

7.2.2 Detecting Ridge Paths at a Band-Pass Level

This section describes an algorithm for detecting samples which are on a ridge in a 2-D band-pass
image. This algorithm is bascd on the principle that the largest neighbors of a point on a ridge are
also on the same ridge. Thus any pair of samples which point to each other as largest neighbors are
on a ridge ( detected as P-nodes).

The algorithm for detecting ridge path nodes consists of two stages and rcquires 8 "pointer” bits.
The following is an informal cxplanation of this algorithm: The cight ncighbors of a point are
assembled into a circular list, with the nodcs of the opposite sign marked as zcro. This list is then
scanned looking for local maxima. For each local maxima, the corresponding pointer bit is set. After
this process has been exccuted for every node in the level the second stage commences. At this stage,
at each node, any neighbor for which the pointer has been set is tested. If the neighbor has its
corresponding pointer (pointing back) sct, then both points are labeled as ridge nodes, and marked
by setting a P flag. By dcleting all' unanswered pointers, the ridge nodes are left with a two way linked
list giving the path of the ridge. '

This algorithm consists of the following steps:
¢ Stage 1: At cach node:

1. Make a circular list of the absolute value of the 8 ncighbors.

2. For any ncighbor where the sign of the value is different then the center node, enter
a zero.

3. Scan the list (A finite state process works nicely here). For any list clement for
which there is no larger adjacent valuc, sct a pointer for that neighbor.

4. Store the pointers for the next stage.
o Stage 2: For cach point:

1. Scan the pointers. For cach pointer that is set, get the pointer of that ncighbor that
points back.
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2. If this pointer is also set, mark the node as a P. Otherwise delete the pointer.
The two way linked list of pointers is used in later processes.
This process is illustrated by the examples shown in figures 7-7 through 7-9 below. Figure
7-7 shows the raw values filter values from level 2 of the piston rod test image, columns 141 through

152, rows 47 through 57. Note that this data is on a V2 sample grid.

Values for nodes - Level 2 rod.dat raw data
141 142 143 144 145 146 147 148 148 150 151 152

47 13 7 -3 -6 -11 -12
48 -2 -9 -15 -18 -20 ~-19
49 -5 -18 -19 -17 ~18 -18
50 -18 -14 -7 -3 -1 -3
51 -186 -11 1 11 14 14
52 -3 8 13 15 17 15
53 0 14 15 8 1 1
B4 14 7 -9 -18 -19 -16
85 12 1 -20 -29 -36 -38
56 o -28 -38 -38 -39 ~-43
67 ] -27 -37 -29 -24 -23

Figure 7-7: Valucs at Level 2 of rod.swf

Figure 7-8 shows the pointers that are created by the first stage of the ridge path detection process.
The pointers are marked by the symbols { /7 ! \ - }. Also shown is the symbol M wherever a peak has
been detected.

The result of the second stage is shown in figure 7-9 below. At this stage the ridge path points have
been marked with a P and only answered pointers are not deleted.

7.2.3 Eliminating Small Loops

In most cascs the algorithm described above produces a unigue path of largest values.
Occasionally two poimts occur with the same value such that the direction between them is
perpendicular to the ridge path. This occurs because a continuous ridge is represented by fixed point
numbers at discrete sample points. This phenomenon becomes more likely as the signal intensity

Such small loops complicate the programming for later stages of the process. Fortunately, they are
casily detected and climinated by deleting one of the sub-paths.

The set of all such loops involving 3 or 4 points may be divided into three classes by grouping
together those that are rotational oquivalents. These classes are listed in figure 7-10 with the cqual
samples shown as "F” and the other samples as "P”. Note that in classcs ] and 2 the loop on the right
isona V3 sample grid
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e Val ues for nodes - Level 2 rod. swf poi nters
141 142 143 144 145 146 147 148 149 150 151 152

47 13 7 -3 -6 -11 -12

47 \ / \ / \

56 0 .26 E -38 -38 -39 _43

Figure 7-8: Pointers From First Stage of Ridge Path Detection Procedure

The possible presence of such aloop is signaled by a sample having a pair of pointers in adjacent

- directions. When such an adjacent pair of pointers is detected the node is marked by setting its S
flag. A second stage process then makes a test of the directions of the pointers in the next sample in

.. the path. Loops are broken by deleting the P flag and the pointers of one of the equal valued
. samples. The sample that is deleted is chosen such that path length is kept as short as possible and as

straight as possible. When these two criteria are not sufficient to choose an equal valued point to be
removed, the more clock-wise sample ischosen arbitrarily.

Figure 7-11 shows a path that includes a small loop. The nodes with adjacent pointers arc marked
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Class 1:
E . . E
/ 0\ / \
P-E-FP . P-E
Class 2:
E P
7/ | /
P -E E |
/
P - E
, Class 3:
E-P
/ /
P -E
Figure 7-10: Classcs of Small Loops
Values for nodes - Level 3 rod. swf Ridge Path
49 51 53 55 57 59 61
61 !
61 -26 -22 -16 -5 8 24 37
61 P
61 !
63 \ !
63 -29 -28 -24 -18 -7 11 23
63 P-- P P
63 \ !
65 \ !
65 -18  -25 -29 -24 -15 1 16
65 S P PB
65 [N
67 o ! \
67 2 -17 -29 -29 -20 -4 10
67 P P
67 \ !
69 \ !
69 20 -4 -25 -33 -22 -6 9
69 S MP
69 !
71 ! -
71 26 3 -23 -32 -25 -8 8
71 P
71 !

Figure 7-11: Ridge Path Containing Small Loop

7.2.4 Unterminated Ridge Paths

In most cases a ridge path will tcrminate at both cnds at an M node. There are, however, several
situations where this docs not occur. In the following scctions we describe these situations and how
they are treated.

Whencver a node has only one P pointcr, a flag, called the B flag (for Broken) is sct. A B node can
occur for the following rcasons:
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Values for nodes - Level - 3 rod.swf Small Loops Removed "
49 51 53 55 57 59 61 e
61 ! .
61 -26 -2z -16 -5 8 24 37 L -
61 P e
61 !
63 \ !
63 -29 -28 -24 -18 -7 11 23
63 P-- P P
63 \ !
65 \ !
65 -18 -25 -29 -24 -15 1 15 - -
65 P PB L
65 \
67 \
67 2 -17 -29 -29 -20 -4 10 <
67 P
67 1
69 1
69 200 -4 -25 -33 -22 -6 9
69 MP
69 !
71 ‘ ! .
71 26 3 -23 -32 -25 -8B 8
71 P
71 !
Figure 7-12: Path After Removal of Small Loop
1. When a ridge path is broken, usually because of an abrupt change in the ridge amplitude. . )
Such cases are an error and are handled by attempting to extend the path as described in
section 7.2.5 below. 5 o=
2. A "Spur™: This is an extra point which occurs to the side of a ridge path, usually .
connected to an M node. Spurs are deleted only when they are a single node and not ’
connected to an M node, as described by section 7.2.7.
3. A Fading Rid@‘ This can legitimately occur for some patterns. For example, when a bar
ends by fading into the background, or when a large area has square wave "'neem”ma(are
k}ﬁm theyarew:de.
mcanbcﬁmmkofamﬂimgwnwhmh mdesmb@dmlowcrie‘wismd
 at this level, or it can occur at a saddle point along a ridge.
The action which is taken at a B node is first detern medbyﬂmnumbmofpmnm which the
nccted neighbor of the B node has. The following situations occur: .
1. One pointer: This signals an Isolated Pair.
2. Two pointers: This usually indicates a idge path, although a fading path or e ®
a long spur might be the causc. Mamwﬂmmﬂmmemm;nwbymuﬂgm -

cxtend the path as described in section 7.2.5 below.

3. Three (or more) pointers: The B node is a spur.
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7.2.5 Repairing Broken Paths

Under some conditions the amplitude of a ridge can make a sharp increase or decrease. Such a
rapid transition can result in a ridge path point not being detected or in a pair of pointers not being
formed along a ridge. An example in which this occurs in 4 places is shown in figure 7-13. The
pointers are used in the process for detecting the L-nodes. Thus it is necessary to correct such broken
paths.

A one pass process is exccuted for each node with its B flag set which is connected to a node with 2
pointers. This process attempts to extend the ridge path for up to 2 samples. If it is possible to close
the path with samples of the same sign, and without creating an adjacent pointer condition (as
defined above), then the path is closed. The algorithm runs as follows:

1. Determine the direction of the single pointer.

2. For the opposite direction. and the two directions adjacent to the opposite direction, get
the neighbor node.

3. If any of these neighbors are also a P-node and have the same sign, and linking to that
node will not create an "adjacent pointers” condition (see exception below), link to the
P-node with the largest magnitude and quit.

4. If none of these three nodes are P nodcs, choose the largest of them (with the same sign)
and repeat steps 2 and 3. Use the direction between the starting point and the chosen
neighbor for choosing the next set of three neighbors.

5. Steps 2 and 3 are repeated twice if the largest neighboring node is always found in the
same direction. Otherwise. steps 2 and 3 arc only repeated once to avoid creating small
loops.

Exception: At step 3, an adjacent pointer condition does not inhibit linking to a node if the
adjacent pointer points to a B-node. In such a case the the link is made and the B-node is deleted.

Figure 7-13 shows the inner oval region from a piston rod at band-pass level 3 before it is
processed by the algorithm to connect broken ridge paths. Figure 7-14 show the result after the
extension algorithm. This figure also illustrates that the extension algorithm has a preference for
connccting to the adjacent node that has the largest value. The procedure also deleted the B-nodes
that remained as spurs after the linking.

7.2.6 Isolated Pairs

The configuration of two P nodes with only 1 pointer (i.c. connected only to cach other) is a rare
but troublesome one. It usually occurs in arcas where the signal is weak, and if extended can often
causc a spur of length 2 or 3. It has been observed that when the amplitude of a ridge makes a dip
this configuration will occur. In this case, the broken path on cither side of the pair of isolated



Val ues for nodes -

67
67
67
67
69
69
69

69

71
71
71
71
73
73
73
73
75
75
75
75
7
7
77
77
79
79
79
79

81
81
81
83

83
35
85
85
85

P-nodes will extend to the P-nodes, thus connecting the broken path. Thus these points are not
extended. Ifthey both remain as B nodes after the extension process they are deleted.

7.2.7 Deleting Spy re

Occasiondly the algorithm for detecting ridge nodes will leave a node which is adjacent to, but hot
on the path df, the ridge marked as a P*node. Such P-nodes, which are referred to as "'spurs' are
eadly detected. Spur nodes have only one pointer, and they are connected to a node with 3 pointers.
When a spur P-node is detected, if the node to which it points is not an M node, it's P flag and
pointer arc deleted- A spur which pointsto an M point is retained asa potential point on an L-path.
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Figure 7-13: Example of Broken Ridge Paths Before Extension

R dge Paths +




114

Val ues for nodes - Level » 3 R dge Paths After Extension
39 41 43 45 47 49

67
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67 /B
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69 w — P

69 / \

71 / \
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71 ! f
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73 | 1
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Figure 7-14: Example of Repaired Ridge Paths After Extension

7.3 Phenomena Between Levels in the Transform Space

In this section we review some of the structuresthat occur in the sampled 1X)G transform of some
common forms. We first describe the chain of M-nodes (the M-path) that result from non-elongated
fonns, ends of elongated forms and corners. We then describe the chains of L-nodcs (the L-path)
that result from elongated forms and edges. This section describes the purpose and principles behind
the algorithms for forming M-paths and L -paths that are described in the next section.



7.3.1 Connectivity of Peaks: M-Paths

In our firg experiments with the band-pass detection functions[Crowley 78b] we observed a
phenomenon which has proved fundamental to constructing a Size invariant representation of gray
scde forms from a SDOG Transform. This phenomenon is. Any non-elongated gray scale form will
cause apesk at approximately the same location in severa adjacent band-pass levels. Furthermore,
except for certain degenerate cases, the magnitude of the peaks will rise monotonically acrosslevelsto
amaximum and then decrease.

These peaks may be detected individually at each level as described above in section 7L The
peaks may then be linked by starting at each and examining its neighbors in the next upper level for a
pesk of the same sign. The largest peak may be found during this linking process by comparing the
vaues of the peaks as they are linked. This process, which is called "flag stealing”, is described in
section 7.4.

To sec why this connectivity occurs, let us consider the Sampled DOG Transform of a uniform
intensity 11 x 11 square. Each band-pass filter will respond most strongly to a uniform region which
just fills it positive center lobe. However the response of a filter fdls off gradualy as the size of a
uniform region grows larger or smaller. We have observed ihat the response will decrease by about a
factor of 2 for a factor of 2 increase or decrease in the width of asquare. Since die filters are scaled by
afactor of V2" alocal peak occurs within several adjacent band-pass levels. The band-pass signals for
an 11 x 11 square are shown below in figure 7-15. In this figure we have plotted the values dong a
line which pass through two corners of the square for the band-pass levels 6 through 1. The largest
peak occurs for the filter at level 4, which has a positive center region of diameter 2 V20 + 1 (See
equation (6.5)) or diameter of approximately 9.9 samples.

In fact there are distinct types of M-paths that occur in a DOLP transform. The following three
sub-sections examine the three most common classes of M paths. Each of these classes has been
given aname. These names, "spots’, "bar-ends’, and "comers', are not intended to imply that these
pesks only occur in patterns which an English speaking human would call a spot, bar, or corner.
These are merely labels with which we can refer to these classes. These labels could just as easily be
labeled with numbers (asindeed they are in our programs).

In this subsection we are concerned with regions-of pixels in which the values are approximately

uniform. ITiesc regions must have a background which is predominantly darker or lighter than the
region for these resultsto hold

73J.1 "Spots" or Non-Elongated Forms

Let us consider such a region which is not more than twice aslong asit is wide. We refer to this
cassof gray scde formsas"spots'. The square in figure 7-15 is an example of a form that includes a

spot M-path,

A spot will result in M-nodcs at a set of adjacent levels of a DOLP transform. These M-nodes will
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Figure 7-15: Responseto an 11 x 11 Square Across Diagonal for Levels 1 Through 7
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be located at the sample at each Tevel closest to the center of the form. As a result, these M’s will tend
to be almost dircctly under one another. An example of such a sequence of peaks is shown in levels 7
through 3 in figure 7-15.

These M-nodes may be detected individually at each level. They may then be linked together by a
quite simple process to form a two-way linked list. We call such a linked list of M nodes an M-path.
The magnitude of the values of the M nodes along such an M-path will rise to a maximum and then
drop off. The level at which the maximum occurs provides an estimate of the size of the spot. This
estimate may be obtained from the formula for the radius of the positive center lobe of the level k
band-pass filter. This formula is given as equation (6.5) in chapter 6.

In most cases cach peak in the spot M-path will be surrounded by a ridge path of the opposite sign
at a distance of 3 to S samples. One way to classify a peak as part of a spot M-path is to detect such an
opposite signed ridge at all directions within a distance of 6 samples. We have employed a process
which scans at multiples of 45° searching for such opposite signed ridges to classify individual peaks
with satisfying results. The classification accuracy can be improved by combining the result of such a
scan from the peaks within several levels of the largest, or M* peak. This provides a label for the M*

peak.
7.3.1.2 "Bar-end”: The Ends of an Elongated Form

If a gray scale form is more than twice as long as it is wide, a sequence of peaks will occur at several
adjacent levels at the ends of the form. This is illustrated by figure 7-16. This figure shows one end
of a uniform intensity rectangle. Circles are drawn over this rectangle to represent the locations
where difference of gaussian filters from an SDOG transform best fit the rectangle. Each circle has a
radius which is that of the zero crossing of the inner positive center lobe of the corresponding filter.
The circles are centered at legal sample points from the level of the SDOG transform of the filter
which they represent.

To the right of the partial rectangle is a tree of M-nodes. Each symbols corresponds to one of the
circles on the left and represents the location of a peak in the SDOG transform of the partial
rectangle. The largest circle corresponds to the top symbol, the second largest circle corresponds to
the second symbol, ctc. The labels "Bar-End” and "Corner” are those which were assigned on the
basis of the out side negative ridge. The labeling process employed a search scan in 8 dircctions that
returned one of three states: no ridge, same-signed ridge, or opposite-signed ridge. The base three
number was then used to index into a wbie of labels. The table was constructed by a training process.
This labeling procedure will be described in a report.

The position of these peaks will move from the center toward the ends of the form as the level
index, k, decreases. As with a spot M-path, the magnitude of the peaks will rise to a largest value and
then fall off. This largest value, which is labeled an M*, corresponds to the filter whose positive
center lobe best fits the ends of the form.

At cach level, the peaks at the end will be connected by a ridge path of the same sign. The entire
configuration will be surrounded by a ridge of the opposite sign. For bar-cnd M-Paths a scan of its
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. ' M <Bar-End>

\
M <Bar-End>

' \
> M* <Bar-End>

M <Cornsr>
M <Corner>
M <Corner>
/ M <Corner>
M <Corner>

M <Comer>
v Figure 7-16: Examples of Bar-End M-Paths

: neighbors to a distance of 6 samples will show this opposite signed ridge spanning an angle of
; . approximately 270°. This fact, and the presence of the single ridge of the same sign can be used to
:;? e label the peaks as "bar-ends". As before, alabel may be assigned to the M* peak on the basis of the
‘f labels of the other M's in the M-Path.

7.3.L3 "Corners" and Other Protrusions

A comer or a sharp protrusion will also result in a sequence of peaks at several adjacent levels.

However, if the edges of this corner or protrusion are straight, then we have a shape which is the

same at severd resolutions. In this case the magnitude of the peaks will tend to be constant (In fact,

smal fluctuations can cause spurious M*'s to be detected.) If the protrusion is rounded, the value of

the peaks will rise to a maximum and then diminish as k decreases. The M-Path may even end before

the lowest (k = 1) level. In this case there will likely be alargest M node. For a peninsula that is

. more than twice as long as it is wide, this M-path will be a bar-end. Both of these situations are

- illustrated in figure 7-17. '

In most cases, comers will have two ridges (P—péths) of the same sign connected to them, usudly at
L right angles. Also, within a distance of 6 samples there will be an ridge of opposite sign spanning an
arc ofabout 180°.
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These largest ridge nodes ( called L-nodes ) can be dctected from the ridge nodes ( P-nodes ) at
each level by a process which is similar to the "flag stealing” process uscd for detecting the largest
M-node on an M path. Unforwnately this detection process is somewhat more complex because of
the directional naturce of ridges and the difference of sample rates at different levels. Once the
I.-nodes have been detected they can be linked into a two-way linked list call an L-path.

In the following paragraphs we will examine the patterns of ridges that occur for uniform width
bars, bars of changing width , and edgcs of regions.

7.3.2.1 Ridge Paths for a Uniform Bar

Consider the uniform rectangle which was used as an example in figure 7-5 above. The response at
levels 6 through 1 of the Sampled DOG transform along a line through the center of the rectangle is
shown in figure 7-18 below. At level 2, an M* occurs at both c¢nds of this rectangle. Bctween these
M*-nodes there is a ridge node that is larger than the ridge nodes above and below it. This ridge
node is detected as an L node by the process described in the next section. This rectangle produces a
graph as shown in figure 7-18. We can abstract all of the M* nodes and L-paths in this graph to
obtain a description of a class of forms that resemble this bar. This class of forms is defined by the
presence of the symbols:

M*-L-M*

If we held the width of the rectangle constant and increased its length the number of L-nodes
between the M* nodes would increase. We can define the class of bars as those forms which have a
pair of M* nodes connccted by some number of L-nodes between them, and then encode the
cartesian distance between the M* nodes (measured in samples at some reference level) as an
attribute of the form.

7.3.2.2 Bars of Changing Width

Suppose. instead of a rectangle, we have a four-sided form which changes in width by a factor of 2
along its Iength. Such a form is shown in figure 7-19. As the width of the form decreases, the level of
the filter which best fits the form decreases. As a result the M* nodes occur at different levels, and
the [.-Path changes levels. We can dcfine a class of bars that includes bars that change width, by
collapsing the I_-path into a single symbol. The L-path should retain the attributes of its length
(Mcasured in number of samplcs at some reference level) and the change in levels between the M*
nodecs that it conncects (Ak).

7.3.2.3 Fdges of Regions

A straight linc cdge of a uniform region will result in a sct of ridge paths at several levels in which
the valucs are approximately the same. If the edge is blurry, then the value along these ridge path will
decrease with decreasing k. If, on the other hand, the figure is washed out, the valucs along the ridge
path will be largest at some level, and will be detected as L-nodes.
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Figure 7-19: An Elongated Form That Changes Width

The fact that an L node is part of an cdge can be detected by the same scan procedure described
above for labeling M-nodes. An L node or P-node which is part of an edge will have a single ridge of
opposite sign running parallel to it within a distance of 6 samples. It may or may not have a same
signed ridge parallel to it in the opposite direction within 6 samples, depending on how wide the form
is. An L-path which is part of a "bar” or other clongated form will have opposite signed ridges
running parallel to it on two sides. Figures 7-2 through 7-6 show examples of the ridge points and
opposite signed ridge points that occur for an edge. These figures show the responsc along a line at
onc level. Figure 7-4 shows an example of a ridge point which is an L. node and detected as a bar
with ridge points of the opposite sign on both sides. Both of these cascs are illustrated with a piston
rod image shown in figures 7-26(a) through 7-26(h) and 7-27(a) through 7-27(h) at thc cnd of this
chapter. Figure 7-27(h) is a good 2-D example of the ridges that occur on both side of an edge.
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7.3.3 Connectlvity of L-Paths and M-Paths

One of the properties that permits us to construct 'a representation of an image using only loca
operationsis the property that L-paths will amost dways terminate at an M-path.

An L-pah follows the length of an dongated form. As the form widens, the L-path moves
upwardsin the k dimension. As the form narrows, the L-path moves downward in the k dimension.
At the ends of an elongated form the response of a DOLP (or SDOG) transform increases due to the
presence of more background area in the negative side-lobe of the band-pass filter. This increase
results in an M-node. Unless the form fades into the background very gradually there will be an
M-node &t its end, and thus the L-path will terminate at an M-path. Because the same band-pass
filter will best respond to the width of a form both along the form and at its ends, an L-path will
usudly terminate within one level of an M* node.

7.4 Connecting Peaks Between Levels

» This section describes a process which links peaks (M nodes) which are a adjacent levels in the
DOG trandform to form M-paths. This process also detects the largest M nodes in a path and labels
these as M* nodes. An M* node is an M node which is part of an M-path and which has a larger
vaue than the adjacent M nodes in the M-path.

7.4.1 Linking NTs

The principle behind the process for linking M nodes is smple. Starting at the highest level, K, at
eech level k each M node looks at the nodes withfti alocal neighborhood above it, at level k+1. A
2-way pointer ismadeto dl M nodes that arc found within this neighborhood.

This process proceeds as follows. For each level k, from K through 1, eech M node at leve k
examinesthe nodes which are adjacent to it at level k+1. There may be cither 4 or 9 such adjacent
nodes-due to the VT sampling. The nodes which arc adjacent to these nodes at level k+ 1 are aso
examined. Thus either 25 or 16 total nodes arc examined. Ifany of the adjacent 4 or 9 nodes at level
k+1 are M nodes and have a value of the same sign, then a2-way pointer is formed. This pointer is
formed by setting the appropriate down pointer of the node at level k+1 and setting the up pointer
corresponding to that upper neighbor in the node at level k. See table 7-1 and section 7.1 for an
explanation of the up and down pointer bytes. :

If any of the neighbors of the neighbors at level, k +1 arc an M node an indirect 2-way pointer is
made. An indirect pointer goes through the adjacent neighbor™s pointer, |lie set of possible indirect
paths arc illustrated in figure 7-20. The fact that a pointer is indirect may be determined by
examining the L and M flags of anode. If both these arc zero then any pointers for L and M paths are
indirect pointers.
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Figure 7-20: Possible Set of Indirect 2-Way Pointers for M-Paths

7.4.2 Detecting M*'s

M* nodes arc detected by a process which we refer to as "flag steding”. When an M node detects
another M node at level k+1, it compares values. If the M node at level k has a vadue of smaller
magnitude it clearsits own * bit Ifthe M node at leve k has a value of larger magnitude it clears the
* flag of the node at level k+ 1 and setsits own * flag. If more than one M node is detected at leve
k+ 1 they must dl be smaller for the node at level k to setit's* flag. Ifno M nodes are found at level
k+1 then the * flag is cleared; This prevents any isolated M nodes from becoming M* nodes. [f
more than one node at level k link to an M node at k+1 any of them will clear the * flag of the node
at level k+ 1 if they have alarger value. Thus * flags propagate down an M-path until they reach a
node with the latest magnitude.

7.4.3 Example

Figure 7-21 shows the M-paths and the M* node that occur at level 7 through 1 for a uniform
intensity square of width 11 pixels, and grey level 96 on a background of 32.

7.5 Detecting Ridge Nodes in {x,y,k) Space

~ This section describes the processes for detecting ridge nodes (L-nodcs) in the 3-D SDOG

transform space. The section starts with a discussion of the approach which is used and a description
of some of the problems that complicate such detection. A description of the 'search procedure for
P-nodes within two neighborhood sizes above each P-node is then given. A discussion of the "flag
stealing" process that is used and modificationsto this processis then presented.
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7.5.1 Problems and Approach

Ridge nodes in the (x.y, k) space produced by the SDOG transform are detected with a form of flag
stealing process. As with detection of M*-nodes from M-nodes, the P-nodes which have been
detected as ridge points at each level are used as candidates for L-nodes.

These P-nodes examine the P-nodes within a neighborhood at the level above them. This
cxamination occurs during a two stage scarch procedure. Initially a small neighborhood at level k+1
is examined above cach P-node at level k. If no P-nodes are found in this small ncighborhood, then
the nodes within a larger neighborhood are searched for P-nodes. This second scarch is inhibited for
dircctions within 45° of any P-path pointers in the P-nodes at level k to prevent a P-node at level k
from stcaling the L-flag from a P-node at level k+ 1 over a different part of the ridge. .

The situation is more complicated than with detection of M*-nodes, because:
e Ridge paths (L-paths) arc directional and may travel through as well as along the levels. o F
¢ Ridge paths that describe an edge tend to move sideways toward the cdge as the level

decreascs. This creates situations where cach P-node at level k+1 is examined by scveral
P-nodcs at level k.
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» Two connected P-nodes at level k may, because of VT resampling, have a P-node at level
k-1 between them, as illustrated by upper part-of figure 7-22. In this figure, the larger
squares represent die P-nodcs at level k + 1, and the smaller squares represent die P-nodes

at level k. Which of the nodes at level k+1 should the node in the center at level k
compare itsvalue to?

The problem illustrated by figure 7-22 is even more severe when the P paths at adjacent levels are
displaced side-ways as shown in the lower part of figure 7-22. This situation is handled by a
modification to the flag stealing process described in section 7.5.3. This modification is based on the
principle that an L-flag is stolen only if dl its lower P-node neighbors have alarger value.

Overlapping Ridges at Adjacent Levels

Displaced Ridges at Adjacent Levels

Figure 7-22: Two Configurations of Ridge Paths at Adjacent Levels

7.5.2 Search Paths

At each P-node at a level k» the upper neighborhood at level k+ 1 is searched for P-nodes. The
P-node at level k from which the search originatesis refcred to as the "source" node.

A source node at (X, y, k) can have two possible neighborhoods at leve k+ 1 depending on
whether a sample exists at (%, y, k+1). 'ITice two neighborhoods arc illustrated in figure 7-23. In
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this figure, circles represent sample points at level k while boxes represent sample points at level
k+1. The source node has a cross through it. If k is even (i.c. on a V2 sample grid), these two
neighborhoods are rotated by 45°,
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Figure 7-23: Two Possible Upper Neighborhoods

" There are two search procedures that are used to detect P-nodes at an upper level, depending on
whether the source node at (x, y, k) has a sample directly above it, i. e. at (x, y, k+1). The test which
tells whether a sample exists at (x, y, k+1) is used to determine which search procedure is used. That
is, if:

xmod 2¥ = y mod *=1
is true then the source node at (x, y, k) has a sample direcly above it.

_If a sample exists above the source node, then it is tested to see if it is a P-node. If it is a P-node,
then only this node is cxamined. )

If no sample exists above the source node, or the sample above the source node is not a P-node,
then a two stage scarch procedure is employed. The first stage examinecs the .ncarest 4 upper
neighbors. If no P-node is found in this first stage. a second stage searches for P-nodes in an cnlarged

ight ighborhoods examined by these scarch algorithms are illustrated in figure
7-24. In this figurc the samp%c points at level k which have no neighbor arc illustrated with a circle.
Points where samples cxist at both levels are indicated by a 1, or a 2. Those points with a 1 are
examined in the first stage, thosc with a 2 are examined in the sccond stage if no P-nodes are found in
the first stage.

The sccond stage search does not occur for any direction within 45° of a P-path pointer in the
source node. This helps prevent nodes from interfering with the flag stealing process at other points
on the P-path.
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Figure 7-24: Upper Search Neighborhoods for Stage 1 and Stage 2

7.5.3 The Modified Flag Stealing Process

The principles of "flag stealing™ were described during the discussion of detection of M*-nodes
given in section 7.4.2. This process must be modified to use with detecting L-nodes, because each
L-node at level k+1 is likely to be examined by several P-nodes at level k, some of which may be
displaced along the P-path ridge. Since the value can change along a 3-D ridge, nodes further along
the ridge might improperly clcar the L-flag of nodes above them, breaking the L-path. The
modification is basced on the principal that all of the lower neighbors must have a larger value, before
the upper P-nodes L flag will be reset.

Modificd flag stealing employs two temporary bits at cach node which denote whether any lower
neighbors have a smaller value ( flag T1) or a larger (or equal) value (flag T2). After flag stealing is
exccuted at level k, the L-nodes at level k+1 are examined, and any with node which has its T2 flag
sct and its T'1 flag clear has its L flag clcared.

A scarch ncighborhood which is of restricted duration along a ridge is also used. A larger

ncighborhood is needed for directions perpendicular to the ridge because of the lateral drift that can
occur with P-paths as the level decreases.

7.5.3.1 Modified Flag Stealing

If a source P-node at (x, y, k) has an upper neighbor at (x. y, k+1) which is also a P-node, then
only this ncighbor is cxamined by this source node.

If the source P-node at (x, y, k) has no upper ncighbor, or the upper ncighbor is not a P-node, then
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this process is applicd to the ncarest upper 4 neighbors. If no P-nodes are found in the nearest upper
neighbors, the scarch is applicd to an enlarged upper neighborhood. As mentioned above, the second
stage scarch is inhibited for all samples within 45° of a P-path pointer in the source node.

When a P-node is found at level k+1, its value is compared to that of the source node. If the value
of the upper neighbor is larger and the upper neighbor has its L flag set, then the T2 flag of the upper
neighbor is set to indicate that the upper neighbor has a lower ncighbor with a smaller value. If the
value of the source node is larger, then the L flag of the source node is sct. Also, if the L flag of the
upper neighbor is set, then the T1 flag of the upper ncighbor is set to indicate that the upper ncighbor
has a lower neighbor which attempted to steal its flag.

7.5.3.2 Resolving the T1 and T2 Flags

After the L node detection process has been run at level k, the L-nodes at level k+1 are processed
to resolve the T1 and T2 flags. At each L-node at level k+1, if its T1 flag is sct and its T2 flag is not
set, then all of its neighbors at level k are larger. In this case, its L flag is cleared.

This modified flag stealing process will permit two or more P-nodes at the same location in
adjacent levels to be L-nodes. This can occur when an clongated form has a sudden decrease in
width. For such a form, the L-path can travel straight down through the levels. An example of this
occurs with in the Piston Rod images and can be scen at column 41, rows 97 to 109 in levels 7 and 6
of the Piston Rod description shown in figures 7-27(d) and 7-27(e). The L-nodes at the upper level
are inhibited from losing their L-flags, because other P-nodes at in the lower level P-path have
smaller values. and thus set their T1 flag.

7533 Linking L-nodes

After the T1 and T2 flags have been resolved, a process is executed to form two way pointers
between all adjacent L-nodes. This process runs as follows. Each L.-node at level k + 1 examines all of
its neighbors at Jevel k+2 within its 2°? stage neighborhood and all neighbors at level k+1 for which
it has a P-path pointer but no L.-path pointer. If any of these neighbors are an I.-node, an M-node, or
an M™-node a two way pointer is made by setting the appropriate pointers in the UP, SAME and
DOWRN pointer bytes of the neighbor and the source L-node.

7.6 Examples

This section shows some examples of M*'s, M Paths. 1. Paths and P Paths. These<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>