

For 1 -ence

Not to t* sstesn ftwn inte room

THE CARNEGIE ATLAS OF GALAXIES

THE CARNEGIE ATLAS OF GALAXIES

Volume II

by

ALLAN SANDAGE

The Observatories of the Carnegie Institution of Washington
and

JOHN BEDKE

Computer Sciences Corporation at Space Telescope Science Institute
and formerly of the
Carnegie Institution of Washington

CARNEGIE INSTITUTION of WASHINGTON
with
THE FLINTRIDGE FOUNDATION

WASHINGTON, D.C.
1994
(1996 REPRINTING)

CARNEGIE INSTITUTION OF WASHINGTON PUBLICATION 638

Library of Congress Catalog Card Number: 93-71702
ISBN 0-87279-667-1

3 00-Line-Screen Plates and Printing by Allen Press, Inc., Lawrence, Kansas
Binding by BindTech, Binding Technology, Inc., Nashville, Tennessee Composition by AlphaTechnologies, Mechanicsville, Maryland

Design by FTM Design Studio, Bethesda, Maryland
Printed on S. D. Warren 100\# Lustro Dull

OX
Copyright © 1994, Carnegie Institution of Washington

CONTENTS

volume I

preface vii
hapter i. CLaSSIFICATION IN SCIENCE1
hapter il galaxy classification 5
CHAPTER III. SUMMARY OF THE CLASSIFICATION 11
E GALAXIES (PANEL SI) 11
e/So, SO/E GALAXIES; SO GALAXIES; SO/a, SO/Sa (PANEL S2) 14
a GALAXIES; Sab GALAXIES (PANEL S3)18
Sb GALAXIES (PANEL S4)22
Sbc GALAXIES; Sc GALAXIES (PANEL S5) 24
cd GALAXIES; Sd, SBd, Sm, SBm, AND Im (PANEL S6 28
SBO GALAXIES (PANEL S7); SBO/a, SBO/SBa GALAXIES32
BARRED SPIRAL SEQUENCE. SBa, SBab, SBb, SBbc, SBc 35
barred spirals of THE (S) SUBTYPE (PANEL S8) 38
barred Spirals of the (r) SUBTYPE (PANEL S9) 40
NCREASING STAR-FORMATION RATE IN Sbc(s) (PANEL S10) 42
Variation of bulge size along the sequence (panel si 44
rogressive change of the mas pattern (Panels S12, S13)
MORPHOUSGALAXIES50
AMORPHOUS GALAXIES 52
CHAPTER IV. THE MEANING OF THE CLASSIFICATION 53
CHAPTER V.THEATLAS Panel
he e Classification section 1
25
he e/so Classification section25
HE SO CLASSIFICATION SECTION30
the sbo classification section 54he sa Classification section61
HE SBO/SBa CLASSIFICATION SECTION89
He SBa Classification section 91
the sab classification 108
THE SBab CLASSIFICATION SECTION 120
the sb CLASSIFICATION SECTION124
CHAPTER V. THE ATLAS (continued)
The SBb CLASSIFICATION SECTION L54
The Sbc CLASSIFICATION SECTION 171
The SBbc Classification section 199
The Sc Classification section 213
the sci subclass 213
THE Sell SUBCLAS 235
THE SCII-III SUBCLAS 259
THE Sail SUBCLAS29
be Clisbed Classification section 314
THE Sd/SBd CLASSIFICATION SECTION 321
the Sm/SBm/Im CLASSIFICATION SECTION 325
THE AMORPHOUS SECTION 333
REFERENCESrage
INDEX INDEX 731

Codes used in the short tables accompanying the illustrations throughout the atlas are summarized on pages 8-9. Notations employed in the classifications of galaxy type are treated in chapter 3 (e.g.. pp. 14, 18).

The endpapers depict the several telescopes where most of the images printed in this atlas were obtained. At the front of Volume I are vieivs of the 100-inch Hooker Telescope, Mount Wilson Observatory, California. At the back of Volume I are scenes showing the 60 -inch telescope at Mount Wilson. (The solar toiver telescopes are also seen in the outdoors print.) Shoivn at the front of Volume 11 is the 200-inch Hale Telescope at the Palomar Observatory, California. At the back of Volume 11 are scenes at the Carnegie Institution's Las Campanas Observatory: close vieivs are provided of the 2.5-meter du Pont Telescope and the 1.0-meter Sivope Telescope.

The galaxy shown on the cover of Volume 1 is NQC 5746. Depicted on the cover of Volume II is NGC 2997.

This second (1996) printing of the atlas is identical to the first printing except for a small number of incidental corrections.

University Libraries

The SBb Classification Section

NGC 1300	SBb(s)L2	HA, p. 45
PH-75-H		panel S8
Oct $14 / 15,1950$		

Oct 14/15, 1950
103 aO
0 min
NGC 1300 is the prototype for the spiral pattern where the arms spring from the ends of the bar. Most galaxies of this spiral-arm subclass (s) have grand design arms rather than a filamentary, multiple-armed MAS pattern where the arms generally begin tangent to an almost-complete ring (which defines the (r) subclass). The arms in NGC 1300 are tightly wound but not as tightly as in NGC 3185 (Sa; panel 99) where they nearly overlap after each arm unwinds by half a nearly overlap after each arm unwinds by half a
revolution to form an almost-complete inner ring.
$\operatorname{SBb}(\mathrm{s})$ galaxies like NGC 1300 have several distinctive features characteristic of the class. (1) The bar is well formed and prominent. (2) In most $\mathrm{SBb}(\mathrm{s})$ types two straight dust lanes exist within the bar, each on the outside of the otherwise smooth bar: the lanes are on symmetrically opposite sides of the central amorphous center In every case, the dust lanes are on the sides of In every case, the dust lanes are on the sides of he bar that lead the rotation, the direction of the rotation being judged from the sense of the
spiral pattern. (3) Recent star formation is spiral pattern. (3) Recent star formation is
generally most robust in the arms near the ends generally most robust in the arms near the ends
of the bar. The increased star-formation rate of the bar. The increased star-formation rate
near these two points is clearly evident in the near these two points is clearly evident in the
arms and outer tips of the bar in NGC 1300. arms and outer tips of the bar in NGC 1300.
shown by the many bright knots that are probabshown by the many bright knots that are probab-
ly small IIII regions. None of the candidate Mil ly small I1II regions. None of the candidate regions resolve at 1300 is $v_{0}=1526 \mathrm{~km} \mathrm{~s}^{\prime 1}$.

These several characteristic features have been reproduced in a series of theoretical studies concerned with the hydrodynamic response of the gas in the disk to the presence of the rotating bar. Following pioneering work by Prendergas (1962), detailed bydrodynamica] models of th velocity field and the presence of shocks in the gas in the neighborhood of the bar have been made. The early papers that predict the velocity field in detail are by Huntley (1978). Huntley Sanders, and Roberts (1978), Roberts, Huntley and van Albada (1979), Peterson and Huntley (1980). and Huntley (1980). A review up to 1983 is given by Prendergast (1983)

The comparison of tile calculated models with the observed features in NGC 130(1 is generally so close that it can be said that the straight dust lanes in $\mathbf{S B b}(\mathbf{s})$ types and the enhanced star-formation rate at the ends of the bar are both understood. The features are related to the shock properties of the gas at these points

In viewing the SBb galaxies in this section and in the SBc section later, it is useful to keep in mind the three conclusions ol Prendergast (1983):
(I) Weak bars give open spïral patterns which extend throughout the gas; stronger bars give spirals which emerge at sharp angles to the bar. [added here: as in NGC 1300]
(2) The gas response leads the bar. by an angle which is greater the weaker the bar.
(3) Strong bars favor the ap pearance of strong shocks within the bar. When they occur, they lie near the leading When they occur, they lie near the leading edge, which is just where they should be if the rect.

$\underset{\text { L }}{7}$

L he four galaxies on this panel are of luminosity class I; the spiral pattern is very well defined, i.e., the geometrical entropy is very low. In every case the arms start near the ends of the bar, as in NGC 1300 , rather than tangent to an almost-complete internal ring, although close inspection is required in NGC 3992 (lower right) to avoid an incorrect first impression that the form here is more (r)-like than (s)-like.
GC 2935
SBb(s)I. 2

CD-815-S
Feb 26/27, 1979
$103 \mathrm{aO}+$ GG385
15 min
The bar in NGC 2935 is weaker than in NGC 1300 , being a central oval rather than a strong straight bar. Consistent with Prendergast's second point quoted on the preceding page, the spiral pattern of the outer arms is more open than in NGC 1300.

Two principal dust lanes exist in the inner oval, each curved into a tight spiral pattern. The underlying luminosity distribution in the oval is smooth; no large current star-formation rate exists there.

Robust star formation is occurring in each of the outer arms along their entire length. The largest HII regions resolve into disks at the 1.5 F level. The redshift is $v_{0}=2003 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.

NGC 2633
PH-7705-S
PH-7705-S
Feb 11/12, 1980
103 aO
12 min
The bar in NGC 2633 is an oval within which the current star-formation rate is high. The luminosity distribution is neither amorphous, as in the bar of NGC 1300, nor smooth over most of the oval, as in NGC 2935, above. The pattern is similar to that in NGC $210(\mathrm{Sb}$; panel 124), which itself could be classed an SBb if its central disk were an oval rather than an inclined circular disk.
$\begin{array}{lll}\text { NGC 6951 Sb/SBb(rs)I. } 3 & \text { HA, p. } 46 \\ \text { PH-5374-S } & \\ \text { Sep 11/12, } 1969 & \\ \text { 103aO + GG13 } & \end{array}$
min
The relative straightness of the two opposite dust lanes within the central disk of NGC 6951 identifies the central region as an oval rather than simply an inclined circular disk. However the bar (the oval) is weak; the spiral pattern is open, and there is no enhanced star formation a the ends of the bar.

The HII regions in the arms are unresolved at the 1 " level. The redshift of NGC 6951 is $v_{o}=$ $1710 \mathrm{~km} \mathrm{~s} \sim$.

NGC $3992 \quad \mathrm{SBb}(\mathrm{rs}) \mathrm{I} \quad$ Racine wedge
PH-8027-S
Feb 3/4, 1981
103 aO
12 min
The spiral pattern in NGC 3992 is among the most regular known in the sky. Before it fragments, one of the two principal arms can be traced for nearly a complete revolution from its start near the end of the bar. The opposite arm fragments into three segments after unwinding for only about 90°.

The arms do not begin at the tips of the bar but rather at a position about 10° upstream from these ends, i.e., in a direction opposite the direction of rotation (inferred from the sense of the spiral pattern). One of the several calculated hydrodynamical models of Huntley (1980, Fig. 4) reproduces the pattern.

The largest of the many HII regions in the arms resolve into disks at the $1^{\prime \prime}$ level. The redshift is $v_{o}=1134 \mathrm{~km} \mathrm{~s}^{-1}$.

CD-1587-S/Br
Aug 11/12, 1980
15 min
The same original plate was used to make the two prints of different contrast of NGC 7552 offered here. The low-contrast print shows the detail of the intricate dust pattern in the oval, which is the weak bar. The high-contrast print shows the generally low-surface-brightness spiral pattern of the (s) type, where the arms begin at the end of tin^{1} bar (the oval here).

The two straight dust lanes characteristic of SBb types are best seen in the low-contrast print, which shows the center well. These lanes, as in NGC 1300, start from opposite sides of the nucleus and are straight almost to the end of the oval. They are not as well defined as in \GG 1300 but are obviously present. It is well understood that these lanes are due to hydrodynamic shocks in the gas in response to the gravitational perturbation of the rotating bar. The stronger the bar, the stronger are the shocks, according to the calculated models (see Prendergast 1983 for a review).

Dust lanes, curved into spiral fragments exist in the central oval starting from the two straight lanes on opposite sides of the oval.

The outer luminous arms shown in the high contrast print start from the ends of the oval. On one side the principal arm branches into three fragments, the inner of which nearly overlaps the other principal arm, which starts from the opposite side of the oval. This arm remains single for the half-revolution over which il can be traced.

Only a few IIII regions exist in the arms, the largest oi which resolve at about the ' 2 " level. The redshift is $v_{Q}=1565 \mathrm{~km} \mathrm{~s}^{\prime}$.

| NGC 3504 $\quad \mathrm{Sb}(\mathrm{s}) / \mathrm{SBb}(\mathrm{s}) \mathrm{MI}$ | HA, p. 46 |
| :--- | :--- | :--- |
| PH-1169-S | panel 169 |
| Dec 14/15, 1955 | |
| 103aO | |

03aO

30 iiiin
NGC 3504 is similar in its general features o NGC 7552 on the preceding panel.

The oval is the weak bar from which the two major luminous arms begin at opposite rim edges. The two characteristic dust lanes beginning at the nucleus can be identified in the low-contrast print, where the detail in the interior of the oval is well seen. One of the lanes is straight for its entire length to the edge of the oval: the other is entire length to the edge of the oval: the other is straight over about half the size of the oval
hich it curves into a spiral dust fragment
Two main low-surface-brightness arms begin at opposite ends of the oval, nearly overlapping after each reaches about half a revolution. Very little current star formation is occurring in the smooth outer arms. The places having the highest current star-formation rates are at the ends of the oval where the two outer spiral arms begin.

The largest HII regions resolve into disks at
ut the 2 " level. The redshift of NGC 3504 is $v_{n}=1480 \mathrm{~km} \mathrm{~s}$ \}

 this panel art' similar to the SBb galaxies on preceding panels, but the spiral patterns are more complex.

NGC986 \quad SBb(rs)I-II panels 169, 170 CD-2007-Bedke/Gregory
Oct 23/24, 1981
103aO + GG385
' 15 min
In NGC 986 in the top row, the short-exposure print shows that the bar is strong, li is narrow in its central, high-luminosity part, along which, on either side, the two characteristic, straight, well-defined dust lanes exist. Two sets of straight, well-defined dust lanes exist. Two sets of set spring from the bar at a sharp angle, similar to the pattern in NGC 1300. These nearly overlap alter half a revolution, forming an almostcomplete inner ring, seen best in the middle print.

The two grand design outer arms also begin at the ends of the bar at the same place as the inner arms. They emerge from the bar at a shallower angle than the inner arms. They are brightest for about one-eighth of a turn from their beginning, after which the surface brightness becomes much fainter. The highest star-formation rate occurs near the ends of the bar and in the parts of the outer arms nearest the bar. The pattern is well reproduced in many of the model calculations described on panel 154 in the commentary on NGC 1300.

NGC 1433 SBh(s)I-II panels 169, 170 CD-153-S
Feb 3/4, 1978
103aO + GG385

45 nin

The short-exposure print of NGC 1433 shows the strong bar and the two "shockproduced" dust lanes on each of the two leading edges of the bar (i.e., leading in the sense that we
know the direction of rotation from the sense of the spiral pattern). Two bright grand design, lightly wound, inner spiral anna begin $a \backslash$ the ends of the bur. similar to the pattern in NGC 1300 . The star-formation rale is high in the two inner arms where they nearly overlap at the ends of the bar. 'This overlapping seems, on first inspection of the middle print, to form an inner ring, hut the pattern is simply one of overlapping, tightly wound spiral arms

After slightly more than half a revolution, these inner arms branch hi form two sets of lower-surface-bright ness outer arms. Nole the high degree of symmetry of the four- outer arms. The set closer to the broken "'ing are only two fragments which unwind for only about 30° before they can no longer be traced.

The small 1111 regions in the inner arms do not resolve at the $L^{\prime \prime}$ level. The redshifl of NGC 1433 is $v_{k,}-923 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}$ '.

G
 laxies on the preceding five panels are of the (s)

subtype, have very ordered spiral structures (all are of highluminosity class), and have spiral arms of the grand design type. Grand design arms almost always occur in the (s) subtype.

The galaxies on the next five panels are of the (r) subtype. The spiral pattern is invariably of the fragmented, mul-tiple-armed-spiral (MAS) type.
$\mathrm{SBb}(\mathrm{r})$ galaxies of luminosity class I are illustrated on the next three panels. Less-regular galaxies (which by definition have a lower luminosity class) are shown on the panels following them.

NGC $1999 \quad$ SBb(rs)I panel S9
CD-1835-HB
April 1/2, 1981
45 min
NGC 4999 is the prototype of the very regular (high-luminosity class) multiple-armed spiral (MAS) type where the arms begin tangent to an almost-complete internal ring. Again, to emphasize what is often described in these notes, this ring represents the near overlapping of separate arms springing from opposite ends of the bar and approaching one another after each has unwound by half a revolution. The pattern is well seen in NGC 4999. although the near-ring is very nearly complete because the first wrap o the arms is so tight: the separate arms nearl intersect after each has unwound by half a revolution

The bar is strong. The arm pattern is multiple and fragmented. The arms are thin; the geometrical entropy is low.

$\stackrel{T}{I}$
I. be four galaxies on this pane] have so regular an arm pattern that they are classed as luminosity class 1. All hut NGC 5985 have prominent bars. All have multiple spiral arms, beginning from an almost-complete internal ring. This pattern defines the (r) spiral subtype.
NGC $2523 \quad \mathrm{SBb}(\mathrm{r}) \mathrm{I}$
PH-850-S
Nov $2 / 3,1954$
103 aO
30 niin
\quad The arms in NGC 2523 are narrow. One ol

The arms in NGC 2523 are narrow. One ol he two main arms that would form a grand design pattern branches into two narrow arms starting at about 30° around the ring from the termination of the bar on the ring. The other main arm begins near, but not on, the ring at the place where the bar terminates on the ring. This arm can be traced in its bright part for only about one-fourth turn from its origin at the end of the bar.

The HII regions are unresolved. The red shift of NGC 2523 is $v_{o}=3638 \mathrm{~km} \mathrm{~s} \sim^{\prime}$
$\begin{array}{ll}\text { NGC 5406 } & \operatorname{SBb}(\mathrm{r}) \mathrm{I}\end{array}$
PH-8100-
Feb 6/7, 1981
103 aO
12 niin
NGC 5406 is a MAS type although the arm are quite well defined. The bar is strong. The central lens containing the bar is smooth, indicating an old stellar population.

The many evident HII regions do not resolve at the 1 "level. The redshifl of NGC 5406 is high for a Shapley-Ames galaxy, at $v_{o}=5241 \mathrm{~km} \mathrm{~s}^{-1}$

NGC $1832 \quad \operatorname{SBb}(\mathrm{r}) \mathrm{I}$
PH-70-II
Oct 13/14, 1950
03aO
0 niin
NGC 1832 is nearly a grand design spiral except that the second principal arm (at the top in the print here) does not exist as a separate arm but consists of fragments starting at progressive places on the nearly complete bright internal ring.

The spiral-arm fragments are all narrow. They are weil defined, explaining the bright uminosity class. Each arm is studded with HII regions, the largest of which resolves at the $2^{\prime \prime}$ level. The redshift of NGC 1832 is $v_{0}=$ L855 km s ${ }^{1}$. At this redshift (in the absence of noise in the Hubble flow), the angular size of the largest 1111 region corresponds to a linear size of 360 pse (// 50), which agrees well with the calibration of Sandage and Tammann (1974a).

NGC 5985
SBl,(r)I
PH-7273-S
uly $22 / 23,1976$
$103 \mathrm{aO}+\mathrm{GG} 13$
25 min
The multiple-arm pattern is especially evient in NGC 5985. The arms are thin and well defined, requiring the highest luminosity classification. A few large HII regions exist in parts of the image. They do not resolve at the 1 " level. The redshift of NGC 5985 is $v_{n}=2694 \mathrm{~km} \mathrm{~s} \sim$.
NGC 3347

D-191-S
Fob 7/8, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
-15 rain
NGC 3347 is a two-armed spiral of the grand design type despite the fact that the spiral subclass is (r) because of what appears, at this ing inclination angle, to be an internal ring

The two principal arms have high surface brightness. They are studded with small, general y unresolved HII regions. The redshift of NGC 3347 is $v_{n}=1201 \mathrm{~km} \mathrm{~s}^{-}$.

NGC 5792
SBh(rs)I. 3
CD-1436-S/Br
March 26/27, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
45 nún
NGC 5792 is a highly inclined, well-formed barred spiral with an evident almost-complete inner ring from which the grand design two armed spiral pattern emerges. The redshift is v_{o} $=1889 \mathrm{~km} \mathrm{~s}^{11}$.

NGC $1512 \quad \mathrm{SBb}(\mathrm{rs}) \mathrm{I}$ pe
CD-184-S
Feb 7/8, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
45 inin
NGC 1512 is an almost-normal $\operatorname{SBb}(\mathrm{r})$ where interaction with NGC 1510 distorts the outer thin arm pattern. Description of the features of this encounter are given by Kinman (1978), and by Sandage and Brucato (1979).

The nearly complete inner ring in NGC 1512 is composed of two closely overlapping bright, tightly wound spiral-arm segments, which begin at the ends of the bar. This near-ring is of very high surface brightness. Star formation evidenced by the many HII regions, is mos robust in one of the spiral fragments at one end of the bar, seen well in the low-contrast print a the bottom right. The smooth nature of the bar and the single straight dust lane are seen best on the side of the bar where the HH-region density is highest in the associated arm that starts there

Very faint outer arm fragments exist, as sociated both with the inner arm structure of NGC 1512 and the perturbing companion, NGC 1510. Parts of these arm fragments are seen in the high-contrast print at the top right but are seen better in the photograph by Kinman (1978) where the pair is also described.

The separation of the pair is 4.9^{\prime}. The redshift of NGC 1512 is low, at $v_{0}=760 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}$. At the redshift distance of 15 Mpc the projected linear separation of NGC 1512 and NGC 1510 is small at 21 kpc , supporting the suggestion that a close encounter is in progress

OlBb galaxies of luminosity class I-Tl (along with a few of class II) are shown on this and the next lour panels. Although the spiral arms are well defined, the arms arc thicker in these galaxies than in luminosity class I galaxies and, as a consequence, the inter-arm regions are more cluttered with spiral-armlike matter.

NGC 1902
CD-1842-HB
April 2/3, 1981
103aO
75 min
The apparent internal rin $\{i$ in NGC '1902 is the overlapping of two very bright arms of the NGC 1300 type which begin at opposite ends of the bar. Sets of other outer arms also exist, the brightest of which is semi-detached from the bright main inner arm (at the bottom of the print on the facing panel).

Many 1111 regions exist in the bright parts of the several arms and the arm fragments.

NGC 4902 is kinematically associated with a loose group thai includes NGC 4899 (Se; panel 232), 34' to the north. NGC 4891 (SBbc; panel $205\}, 64$ ' to the north, and several other probable members listed in the RC2. The redshifts are $\mathrm{ti}_{0}(4891)=2418 \mathrm{~km} \mathrm{s"'} . \mathrm{u}_{0}(4899)=2437 \mathrm{~km}$ $\mathrm{s}^{-} \backslash$ and $\mathrm{n}_{\mathrm{o}}(4902)=2426 \mathrm{~km} \mathrm{~s}^{-} \backslash$ At a mean redshift distance of $48 \mathrm{Mpc}(/ /=50)$ the redshift distance of 480 kpc and 903 kpc for NGC 4899 and NGC 4891. respectively. This aggregate, then, lias a size nearly the same as the Local Group.
T. he four galaxies on this panel continue the illustration of SBbl-II barred spirals of the (r) and (rs) subset. The arms are generally multiple (MAS type), although NGC 5850 also has features of a grand design spiral.

NGC 7329
CD-1586-S/Br
Aug 11/12, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
45 mill
The almost-complete inner ring in NGC 7329 is very tight, lint the overlapping spiral ams that compose it can be traced. The arms omposing the ring do not begin at the end of the bar. as in NGC 1300. but rather about 15° lownstream (relative to the direction of rotation) from these ends. The pattern is reproduced in from these ends. The pattern is reproduced in
some of the calculated models of Huntley (1978, 1980).

Multiple fragments of arms exist outside the nner ring.

The redshift is $v,=3043 \mathrm{~km} \mathrm{~s} \sim$.

NGC5850

CD-1417-S/B
CD-1417-S/B
103aO + GG385
45 min
The pattern of an almost-complete inner ing in NGC 5850 is similar to that in NGC 7329 above. One of the overlapping inner arms hat forms the ring begins about 15° downstream from one end of the bar. The star-formation rate is high there. Again, this pattern is reproduced in some of the models calculated by Huntley (1978, 1980) and others cited in the description to NGC 1300 (panel 154)

The fragmented outer arms are extensions of the two tightly wound inner arms, which form he- ring after they nearly meet after half a revolution. HH-region candidates indicate a moderate current star-formation rate, especially in the inner arms.

A faint straight dust lane along the outside edge (in the direction leading the rotation, as inferred from the sense of the spiral pattern) is present along one side of the smooth straight bar

The redshift is $r^{2}=2.130 \mathrm{~km} \mathrm{~s}^{-1}$

NGC2642
 CD-1325-S/Br 1980
 $103 \mathrm{aO}+$ GG385

45 min
The bar in NGC 2642 is strong, and the The bar in NGC 2642 is strong, and the
inner arms spring from its ends, as in NGC 1300 . The arms branch into multiple fragments soon thereafter

Two weak, straight dust lanes exist along the outside of the smooth bar, as usual in the direc tion that leads the rotation.

The arms are filled with bright HII regions, the largest of which resolve at the 1.5 " level. The redshift of NGC 2642 is $v_{n}=4262 \mathrm{~km} \mathrm{~s} \sim$
NGC 7723 SBb(rs)I-II pair

PH-78-H
$\mathbf{S B b}(\mathbf{r s}) \mathbf{I}-\mathrm{II}$ pair
Oct 15/16, 1950
103aO
NGC 7723 forms a pair with NGC 7727 (S NGC 7723 forms a pair with NGC 7727 (S pec; panel 83) that is about 40 northwest. Th redshifts are $\mathbf{u}_{\mathbf{o}}(7723)-1976 \mathrm{~km}$ s~ and
${ }_{<0}(7727)=1973 \mathrm{~km} \mathrm{~s}^{-1}$. The projected linear «o $(7727)=1973 \mathrm{~km} \mathrm{~s}$. The projected linear
separation of the pair is 460 kpc using a redshift distance of $39 \mathrm{Mpc}(/ /=50)$

The characteristic straight dust lanes exis The characteristic straight dust lanes exit leading the rotation. The lane on one side is smooth on the other it is slightly broken. Th internal ring from which the MAS spiral pattern begins is almost complete.

$\stackrel{\Gamma}{ }{ }_{I}$ he six galaxies on this panel continue the illustration of SBb galaxies of high (1-1T) to moderate (II) luminosity elass; the well-formed arms show minimum disorder in the spiral pat tern.

NGC 5347
eb $6 / 7,1$
103 aO
12 min
The bar in NGC 5347 is straight, similar to the bar in NGC 1300, but it is not as luminous. The two characteristic straight dust lanes exist in he bar, but they are weak

The arm pattern is of the NGC 1300 type, where two grand design arms spring from the ends of the bar. They are tightly wound in NGC 5347, giving the incorrect impression at first glance of a complete inner ring. The type is unmistakably $\operatorname{SBb}(\mathrm{s})$, but this ease shows the need for high spatial resolution when classifying galaxies of small angular size

The reclshift is $\mathrm{i}_{0}=2394 \mathrm{~km} \mathrm{~s}^{\prime \prime}$.
NGC 3681
SBb(r)I-II
CD-1841-HB
April 2/3, 1981
103 aO
75 niin
The bar in NGC 3681 is a central oval, no well-defined feature as in NGC 1300. The classification in the RC2 is that of a transition type between barred and ordinary spiral, denoted $\operatorname{SABbc}(\mathrm{r})$.

The arm type is multiple (MAS) and frag mented. A set of high-surface-brightness inner arms exists, together with a set of low-surface brightness outer arms.

HII regions occur in both arm sets. They are unresolved at the $1^{\prime \prime}$ level. The redshift of NGC 3681 is i,,$=1135 \mathrm{~km} \mathrm{~s}^{\prime \prime}$ '

NGC 5156
CD-2141-S
March 22/23, 1982
$103 \mathrm{aO}+\mathrm{GG} 385$
30 min
The bar in NGC 5156 is well formed and ends on the rim of one of the best-defined almostcomplete rings in the RSA. The arms do not start exactly from the ends of the bar as in NGC 1300, but instead begin from about 50° downstream from each bar tip. This large downstream position (see previous descriptions of this phenomenon in this section) cause different arm segments to nearly overlap, creating the impression of a complete inner ring. The pattern is reproduced in some of the models of Huntley (1980) by changing the fraction of the total mass that is in gas.

NGC 782
$\mathrm{SBb}(\mathrm{r}) \mathrm{I}-\mathrm{II}$
CD-1999-Bedke/Gregoi
Oct 22/23, 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
46 niin
The pattern of the almost-complete inner ring in NGC 782 is nearly identical to that in NGC 5156, above; the same description applies.

A set of three faint outer arms exists, starting at different points on the almost-complete inner near-ring.

NGC 5757
SHh(rs) 11
CD-I $171-\mathrm{Hr}$
Aug 23/24, 1979
103aO + GG385
45 mill
The spiral arms in NGC 5757 are not well defined. They are thick ami somewhat chaotic They primarily spring from the ends of a bar in the general style of NGC 13011. bill are less well defined.

The several Illl-regiou candidates are un resolved at the $1^{1 \prime}$ level. The redshift of NGC 5757 is $u_{0}=2598 \mathrm{~km} \overline{\mathrm{~s}}$ \}

NGC $4639 \quad$ SB1)(:)II
 VCC 1943

CD-818-S
Feb 26/27, 1979
$103 \mathrm{aO}+\mathrm{IVr} 2 \mathrm{c}$
45 min
NGC 4639. a member of the Virgo Cluster, has a redshift of $u_{0}=860 \mathrm{~km} \mathrm{s"'}$. Many of ils 1111 regions are concentrated in the spiral arms, where they begin at the ends of the liar. The largest of these regions resolves into disks at the 3 " diameter level.

I hree of the lour galaxies on this panel combine
features of (s) and (r) subtypes of spiral arms. All are of highluminosity class I-II because of the regularity of the spiral pattern.

NGC 2712	SBh(s)I-II
PH-7955-S	
Nov 8/9, 1980	
103aO	

NGC 5135 SBbpe
CD-2179-S
March 28/29, 1982
$103 \mathrm{aO}+\mathrm{GG} 385$
15 min
The dust lanes in the bar of NGC 5135 are hemselves curved into a spiral pattern similar o, but not as extreme as, the famous case of NGC 4314 (SBa; Hubble Atlas, p. 44: panels 95, 106 here). The faint spiral arms begin in an (s)-type NGC 1300 pattern from the ends of the bar. The brightest 1111 region candidates occur in one of the arms close to its beginning near the end of the he arms close to its beginning near the end of the bar. The largest of these resolves into a disk at $v_{o}=3906 \mathrm{~km} \mathrm{s"'}$.

The absolute magnitude of the galaxy is bright, at $M_{B}=-22.5 \quad(/ /=50)$.

NGC 4394	SBb(sr)I-II	VCC 857
PH-425-MH	HA, p. 47	

PH-425-MH
HA, p. 47
April 16/17, 1952
103 aO
The bar in NGC 4394 is strong, but absent are the straight dust lanes along the leading edges seen in other SBb galaxies having strong bars. Instead there is a series of dust lanes close to one of the leading edges of the bar. (The leading edge on the other side may be on the far side of the image: a symmetrical pattern in the dust that may exist is undoubtedly hidden behind the bulge, similar to the pattern in other galaxies.)

The dust lanes near the bar on the assumed near side have a pitch angle to their spiral pattern quite different from the pitch angle of the outer Luminous spiral arms. This pattern in the dust may outline the vectors of the velocity field near the bar that is determined by thi hydrodynamic response of the gas to the rotating bar. The pattern seen here closely resembles the velocity maps near the bar that have been calculated in some of the models cited in the description of NGC 1300 (panel 154).

The spiral pattern of the luminous arms in NGC 4394 is intermediate between the (s) and the (r) subtypes, noted here by the mixed designation of (rs).

NGC 4394 is in the region of the Virgo Cluster north of the center of subcluster A ${ }_{-1}^{\text {around NGC 4486. Its redshift is } u_{o}=853 \mathrm{~km}}$ -1

NGC 5728
CD-226-S
IV!) $13 / 14,1978$
$103 \mathrm{aO}+$ GG385
15 miii
The bar in NGC 5728 is weak, is a light oval, and lias considerable internal structure in dust.

Two sets of spiral arms exist. The very-high surface-brightness inner set spring from the end of the l>ar. as in NGC 1300 , and arc \er! Light!) wound, nearly overlapping out* another after half a revolution. The impression of near-overlap is enhanced here because of I he hijili inclination angle to the line of $\mathbf{s i}^{\wedge} \mathbf{b l}$.

Two straight dust lanes exist on each of the eading edges of the bar. One lane is than the other, presumal) because of the different projection effects It lie normal asymmetry of dust patterns) on the near and the far sides. Besides the straight dust lanes on the lead ing bar edges, spiral dusl lanes exist within th bar oval, as seen on the near side in the low-con trast print

111 regions are present in the inner arms near their beginnings at the end of the bar

A set of very-low-surface-brightness regular outer arms exist, also beginning at the ends
bar. seen only in the high-contras! print
The redshift is $\left.v_{Q}=2 \mathrm{KOI}\right) \mathrm{km} \mathrm{s}^{\prime \prime}$. The absolute magnitude of the galaxy is bright at $. \mathbf{W}_{\swarrow}=$ -22.5 .

NGC 613
SBb(rs)II
CD-443-Rose
Aug 9/10. 1978
$\mathbf{1 0 3 a 0}+\backslash Y r 2 c$
$103 a 0$
90 min
The bar in NGC 613 is a strong (high-sur-face-brightness) oval. The characteristic two straight dust lanes on opposite sides of the oval are evident. Each lane is on the leading edge of lie oval as judged from the direction of rotation determined by the sense of the spiral pattern. Other dust lanes at the outer boundary of the oval are curved into spiral patterns at sharp pitch angles which differ from the pitch angles of the outer spiriil arms. 'The various patterns of inner luminous arms and inner dust lanes have a striking resemblance to maps of velocity fields based on calculations of the hydrodynamic response of gas to the rotating bar (or oval) gravitational potential, as cited in the description of NGC 13110 (compare Huntley 1980 with earlier references).

The high surface brightness of the arms and Ilie man) 1111-region candidates show a moderate-to-large current star-formation rale. The largest 1111 regions resolve at the $3^{\prime \prime}$ level. The redshift of NGC 613 is $v_{o}=1534 \mathrm{~km} \mathrm{s"'}$ The absolute magnitude is bright, at $M \%=-22.2$ $\backslash H=50 \mid$.

be five galaxies on this panel arc of later luminosity class than most of the previous galaxies in this section. The arm pattern is generally less well defined, the arms arc thicker, and the inter-arm region is more lieavih filled with spiral-arm material.

NGC 5383	SBh(s)II	HA, p. 46

PH-8099-S

Feb 6/7, 1981
103 aO
niin
High- and low-contrast prints of NGC 5383. shown here anil below, arc made from different original plates, one with the Palomar Hale 200inch and the other with the Mount Wilson 60inch telescopes.

The most prominent feature of NGC 5383 is the characteristic two-lane dust pattern along the bar. One o(the lanes is very straight; the other has curves in its passage from the center to the end of the liar.

The arms that begin in an (s)-type NGC 1300 -like pattern are brightest near their junction with the ends of the bar. Low-surface-brightness fragments of arms exist as branches (twigs?) inside (i.e.. (loser to the bar) the positions of the two major arms.

The redshift is $v_{, n}=2322 \mathrm{knn}^{-1}$.

NGC 5383	$\mathrm{SBb}(\mathrm{s}) \mathrm{II}$	HA, p. 46

S-195-Pease
April 3/4, 1913
probably
The Mount Wilson plate used here was taken by the legendary astronomer Francis Pease, engineer extraordinary, who designed the Mount Wilson 60 -inch and 100 -inch reflectors and did much of the early design of the Palomar 200-inch elescope.

The nature of the dust pattern in the center of NGC 5383 is well seen in the low-contrast print here of the central regions. One lane passes in front of the nucleus, the other behind it. This form may he present in all SBb galaxies having straight dust lanes, but is seldom seen with the clarity that is provided by the particular viewing aspect given us with NGC 5383. The detail is also well seen in the Hubble Atlas print, made from the same Mount Wilson 60 -inch plate used here.

NGC 3351	SBb(r)II	HA, p. 48
PH-315-S		panel 170
Jan 8/9, 1953		
103aD + GG11		
30 miii		

NGC 3351 is seen almost lace on. The details of the nearly complete inner ring are wel ${ }^{\wedge} v r n$ at this viewing angle. The two main inne arms spring from the end of a very strong bar They nearly meet after each has turned by 180°, giving the impression ol' a true ring, yet the structure is clearly broken, being composed oi two separate spiral segments.

The outer arms, of low surface brightness, are multiple and are branched into separate frag ments, none of which can be separately traced for more than about one-quarter revolution.

Star formation is only moderate in these outer arms. The IIII regions are few and are small. The redshift of NGC 3351 is small, ill v_{0} $=641 \mathrm{~km} \mathrm{~s}$. yet the stellar content is not well resolved.

The high-surface-brightness inner arms forming the usual near-ring pattern are well seen in the Hubble Atlas print where, however, the extensive low-surface-brightness outer arm pattern is largely invisible, it is well seen in the print here.

NGC 4725

$\mathrm{Sb} / \mathrm{SBb}(\mathrm{r}) \amalg$
HA, p. 21

H-2156-H

Jan 2/3, 1941
Cr-Hi-Sp-Sp
80 niin
The bar is not well defined in NGC 4725. It is a region of enhanced luminosity but still of low surface brightness, elongated across the centra lens. (See the print in the Hubble Atlas for good detail of this region.)

The inner, high-surface-brightness spiral pattern forms one of the most complete nearrings of any galaxy in tin ${ }^{1}$ RSA. Star formation is high in this near-ring. Many bright UII regions exist, as well as a number ol faint small ones. A few of these in the outer faint-surface-brightness few of these in the outer faint-surface-brightness
arms resolve into disks at the $3^{\prime \prime}$ level. The redshift of NGC 4725 is $v_{o}=1167 \mathrm{kms} \sim$)

Very-faint-surface-brightness outer arms are branched. The principal one of these arms is an extension of a bright inner arm that forms part of the nearly complete inner ring. 'Phis arm branches into two, which then travel together for another 200° of unwind.

NGC $6300 \quad$ SHh(s)II pec
CD-1479-S/Rr
May 1 1/12, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
15 miii
NGC 6300 is in low galactic latitude $\{b=$ -14°), ami ma) have Galactic dust silhouetted against its face.

The original plate from which the print here is made was obtained in poor seeing, clearly seen from the size of the stellar images.

The bar is ill defined bul evidentl) is straight. The arms spring from opposite sides of outer regions, far from the nucleus and. evidently, from the ends of a bar

Dust is evident, but. again, some of what is seen may lie of superposed Galactic origin. The arms are branched, one alter about half a rev olu tion from its origin on the bar. The other arm branches twice, once after about 15° of unwind and again after about a one-quarter additiona turn. Outer, low-surface-brightness fragmented multiple arms are extensions of the bright inne arms.

NGC $5691 \quad \mathrm{~S}(\mathrm{~B}) \mathrm{b}$ pee III:
CD-1391-S/Br
March 21/22, 1980
L03aO
75 miii
The classification of NGC 56 V 1 is uncer tain. There is a suggestion of a bar in a region ol enhanced luminosity buried in the disk: hence the $\mathrm{S}(\mathrm{B})$ tentative classification is given. A weak spiral pattern exists together with dust patche and knots which are presumed to he 1111 regions The chaos is high; hence the low luminosity class, by definition, is assigned. However, the absolute magnitude is still moderately bright at $M_{f i}=$ -20.3 . The redshift is $v_{0}=176 \mathrm{~K} \mathrm{~km} \mathrm{~s} \sim$!

SUMMARY OF THE SBb CLASSIFICATION SECTION (PROTOTYPE EXAMPLES)
T_{JL} he galaxies on this and the following panel are illustrated as summaries of similarities in the basic forms of outer arm structure (this page) and characteristics of strong bars (next panel). Four of the five galaxies shown on these two panels have been illustrated in previous panels of this SBb section.

The images of all four galaxies on this page have been overprinted to show the structure of the faint-surface-brightness grand design outer arms; the central barred regions are mostly burned out but are shown on the next panel.

The outer arm pattern in all four cases here is highly symmetric on reflection of any part of the pattern through the center.

The two main outer arms can each be traced for about a half revolution, at which point they come close to, but are slightly outside, the point on the bar where the opposite arm begins, forming an almost-complete outer ring. The closest to a completed outer ring occurs in NGC 3504 , at the upper left.

NGC 3504	$\mathbf{S b}(\mathrm{s}) / \mathbf{S B b}(\mathrm{s}) \mathrm{I}-$	$\begin{aligned} & \text { HA, p. } 46 \\ & \text { panel } 157 \end{aligned}$	NGC 1433	$\mathrm{SBb}(\mathrm{s}) \mathrm{I}-\mathrm{H}$	158, 170
PH-1169-S			CD-177-S		
Dec 14/15, 1955			Feb 6/7, 1978		
103 aO			$103 \mathrm{aO}+\mathrm{GG} 385$		
30 niiii			45 niin		
NGC 986	SBI)(:s)I-II	panels 158, 170	NGC 4548	SBb (is)I-III	VCC 1615
CD-2007-Bedke/Gregory			CD-756-S		HA, p. 48
Oct 23/24, 1981			Feb 4/5, 1979		panel 170
$103 \mathrm{aO}+\mathrm{GG} 385$			$103 \mathrm{aO}+\mathrm{Wr} 2 \mathrm{c}$		
+45 mill			50 min		

$=*$	$*$
0	\cdot

Egch of the four galaxies on this last panel of the SBb section have strong bars from whose ends the outer spiral pattern begins. There are no true complete inner rings in any of these four galaxies, although the near-overlapping of the first set of high-suriace-brightness inner arms in NGC 3351 and NGC 1433 in the right-hand column gives such a first impression. Yet close inspection shows that each set of inner arms begins from the ends of the bar in the manner of NGC 1300 (panels 154, S8).

The characteristic straight dust lanes at the two leading edges (relative to the direction of the rotation determined
by the sense of the spiral pattern) of the bar are well seen in NGC 986, at the upper left. Similar. $1>111$ less pronounced and less straight lanes exist in NGC 4548 (lower left) and NGC 1433 (lower right). Only one such lane exists in NGC 3351 (upper right), and it is less regular than in the other galaxies here.

Calculated models ol the hydrodynamical response of the gas to a rotating bar, cited in the description of NGC 1300 (panel 154), reproduce well with the patterns of the dust lanes, the central oval around the bar, and the outer spiral arms.

NGC 986	SBIi(is)W1	panels 158, 169	NGC. 3351	$\mathrm{SBb}(\mathrm{r}) \mathrm{II}$		HA, p. Hi
CD-2007-Be<lke/Gregory			PH-314-S			panel 168
Oet23/24, 1981			Jan 8/9, 1953			
$103 \mathrm{aO}+\mathrm{GG} 385$			$103 \mathrm{aO}+\mathrm{WG} 2$			
45 mill			15 mill			
NGC 4548	SBh(is)I-II	VCC 1615	NGC. 1433	$\mathrm{SBb}(\mathrm{s}) \mathrm{I}-\mathrm{D}$	panels	158, 169
CD-756-S		HA, p. 48	CD-177-S			
Feb4/5,1979		panel 169	Fcl) 6/7, 1978			
$103 \mathrm{aO}+\mathrm{Wr} 2 \mathrm{c}$			$103 \mathrm{aO}+\mathrm{GG} 385$			
50 mill			45 min			

The Sbc Classification Section

${ }_{\mathrm{J}}^{\mathrm{J}} \mathrm{n}$
J_n this section we show the Shapley-Ames examples of the intermediate class of Sbc, defined simply to be later than Sb and earlier than Sc in the size of the central bulge, the openness of the arms, and the current rate of recent star formation therein.

The galaxies on this and the following pages show spiral arms of the grand design type. They are ordered by
luminosity class (geometrical entropy). The Sbc galaxies with filamentary arms are set out on panels 184-192, again ordered by luminosity class. The section closes with Sbc galaxies having interesting dust, or that are nearly on edge, or that comprise interacting pairs or multiples.

NGC 1566	Sbc(s)1.2	Dorado \#53
CD-1662-S	panel S5	
Dec 30/31, 1980		
103aO + GG385		

Dec 30/31, 1980
1030 + GG385
45 min
NGC 1566 is an awesome sight. No written description is adequate to convey the scene when the galaxy is viewed through an eyepiece at the focus of a telescope rather than on an electronic screen.

The inner two grand design arms (seen in main print) are of very high surface brightnes and are studded with HII regions. Each arm can and are studded with HII regions. Each arm can e traced at high surface brightness for half ides on the rim of the central bulge. Dust lane be traced closer to the center Dast lane it the linas ng position of the luminous arms.
Sets of Iow-surface-brightness outer arms with fragmented branches exist outside the two main grand design inner arms. The pattern of the wo outermost of these faint arms is highly sym metric; each can be traced for another hal revolution.

The resolution of the arms into individua stars and HII regions occurs at a slightly brighter evel than in the giant spirals of the Virgo Cluster NGC 1566 is the brightest galaxy in th Dorado Group (Ferguson and Sandage 1990) The adopted mean redshift of the group is $\left\langle v_{o}\right\rangle=$ $1056 \mathrm{~km} \mathrm{s"}$ '. The redshift of NGC 1566 itself is «,, $=1305 \mathrm{~km} \mathrm{s"'}$.

NGC 519:1/5195	Sbc(s)I-II	HA, pp. 26, HI
PH-201-MH	SBOi pec	M51
May 14/15, 1950		panels 55, 177
103aO		
20 min		

20 min
NGC 5194 (MSI) is similar Lo NGC 1566 on the preceding panel. The surface brightness of the two principal grand design arms is high, seen best in the print on the right. 'This lighter print shows the intricate but well-organized dust lanes inside the two major inner arms. Dust is also present in the inter-arm region, well silhouetted against the background disk lijihl at the rim of the bright central bulge where the short dus lat ald for before breaking into the general spiral pattern.

The heavy print on the Left shows the smooth luminosity lhat envelops the companion whose classification is outside the classification system, although it has variously been classified as SBO pee and Amorphous. The dust lanes from one of the branched arms of M5 1 are silhouetted against the companion, which obviously is behind the arm that sweeps across its image.

The strength of the. spiral pattern is well shown in the composite photographs given by Zwicky (1955), where the dust pattern is also particularly well seen. The prevalent dust lane particany bulge close to the nucleus are in the central bulge close to the nucleus are on page 31 of the Hubble Atlas.

The distance to M5 1 is considerably smaller than the distance to the Virgo Cluster, as judged by the ease of resolution into brightest stars and HII regions. The redshift of M51 is $v_{0}=541 \mathrm{~km}$ s^{-1}. This value is consistent with the distance modulus of $\boldsymbol{m}-M=30$, estimated from the ease of resolution into stars

This agreement shows that any random (non-cosmological) velocity is near zero within the distance of 10 Mpc from the Local Group This conclusion follows because the velocity-dis tance ratio (i.e., the local value of the Hubble constant) for M5 1 itself is $\mathbf{5 4} \mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$ using the M51 distance modulus of $m-\mathrm{i} / \mathrm{l}=30(\mathrm{D}=10$ Mpc). and noting that this local ratio is the same as the global value of the Hubble constant (Sandage and Tammann 1990).

NGC $3338 \quad$ Sbc(s)I-II
CD-1711-S
Jan 6/7, 1981
103 aO
75 min
The spiral pattern of NGC 3338 is inter mediate between that of a grand design and filamentary (MAS) type. The galaxy is shown here in the grand design section because of its similarity to NGC 1566 (panel 17 1) and M5 (preceding panel). When viewed more face on (by tipping the print along the minor axis and viewing the page almost edge on) the similarity becomes apparent. There are two major arms, which specify the grand design, but as in M51 the specify the grand design, but as in M51 the
inter-arm regions also contain spiral fragments.

The arms in NGC 3338 are thin and well ordered: hence the early luminosity class is indi cated. The largest of the many HII region resolve at the 2" level. The redshift of NGC 3338 is $v_{o}=1171 \mathrm{~km} \mathrm{~s}^{-1}$.

I. be spiral patterns of the four galaxies on this panel are of the grand design type; each has two major spiral arms that can be well traced for an unwind of more than a half revolution.

NGC 2713
CD-1292-S/Br
March 10/11, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
The two outer arms in NGC 2713 are very thin, regular, and are not branched into fragments. They can be traced into the center in a ightly wound pattern. A few bright, unresolved HII regions exist in each of the outer arms. The redshift of NGC 2713 is $v_{0}=3690 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.
NGC 5248
$\mathrm{Sbc}(\mathrm{s}) \mathrm{I}-\mathrm{II}$

HA, p. 33 PH-209-MH
May $15 / 16,1950$
03a0
0 min
The two major spiral arms dominating the nner disk of NGC 5248 have high surface brightness, similar to the pattern in NGC 1566 (panel 171) and M51 (panel 172). The spiral pattern breaks into three fragments of very low surface brightness beyond the rim of the inner disk. The two main spiral fragments of this outer pattern are well defined and can be traced outward for another half revolution.

Resolution into individual stars occurs at apparent magnitude of about $B=22$, which is about I mag above the plate limit. The largest of the numerous HII regions resolve at the $3^{\prime \prime}$ level. The redshift of NGC 5248 is $v_{0}=1049 \mathrm{~km} \mathrm{~s}^{-1}$

NGC 4536
CD-2139-S
March 22/23, 1982
103aO
50 min
NGC 4536 is one of the largest spirals in the Virgo Cluster region. It is located about 6° smith of the center of Virgo subcluster H around NGC 4472 , and is near the beginning of what was once called the southern extension of the Virgo called the southern extension of the Virgo
Cluster, now known as the Virgo Cluster envelope Cluster, now known as the Virgo Cluster envelope
along the supergalactic plane. The redshift of along the supergalactic plane.
NGC 4536 is $y, \ldots=1646 \mathrm{~km} \mathrm{~s}^{\prime 1}$.

The spiral pattern is dominated by the two principal spiral arms, clearly of the grand design type. Many HII regions exist in the arms, the type. Many HII regions exist in the arms, the
largest of which are resolved into disks with core diameters of about 3 "

NGC 7124
$\mathrm{Sbc}(\mathrm{rs}) \mathrm{I}-\mathrm{U}$
CD-1554-S/Br
Aug 8/9, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
NGC 7124 is one of the most distant galaxies in the Shaplcy-Ames Catalog, having a redshift of $u_{0}=4957 \mathrm{~km} \mathrm{~s}^{-1}$. The spiral pattern is highly organized into the grand design type; there are two principal spiral anus that can each there are two principal spiral anus that a half
be well traced for slightly more than be well traced for slightly more than a half
revolution. The HII knots in the arms arc unrevolution. The ${ }^{\text {resolved at the } 1 " \text { level. }}$
NGC 7038 \quad Sbe(s)1.8 \quad Indus $\mathbf{G r}$,
CD-1157-Br
Aug 22/23, 1979
103aO + GG385
15 niin
Based on the redshift of $v_{o}=4785 \mathrm{~km} \mathrm{~s}^{-1}$,

Based on the redshift of $v_{o}=4785 \mathrm{~km} \mathrm{~s}^{-1}$, 7014 Indus Group, whose mean redshift is $\left\langle v_{o}\right\rangle$ $=4934 \mathrm{~km} \mathrm{~s}^{-1}$ (Sandage 1975b): the galaxy is one of the more distant in the RSA

NGC 7038 is illustrated here in the grand design section because the number of arms is small compared with the many fragments present in galaxies of the filamentary (MAS) type, shown later in this section (panels 184-192)

The arms are narrow and are well formed, with only sparse arm material in the inter-arm region explaining the early luminosity class Much recent star formation is evident in the rms. The numerous HII regions are unresolved at the 1" level, consistent with the large redshift distance of $96 \mathrm{Mpc}(H=50)$.

NGC 5592

CD-1470-S/Br
May 10/11, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
45 niin
NGC 5592 has one prominent, thin, high surface-brightness arm and the beginning of a symmetrical opposite arm that fragments into a series of low-surface-brightness arm fragments of the filamentary type soon after its beginning near the center.

The redshift is $v_{0}=4190 \mathrm{~km} \mathrm{~s}^{\prime \prime}$. The several brightest HII regions in the bright arm are unresolved at the $1^{\prime \prime}$ level.
$\begin{array}{ll}\text { NGC 6814 } & \text { Sbc(rs)I-II } \\ \text { PH-236-B } & \end{array}$
HA, p. 20
Sep 11/12, 1950
$103 \mathrm{aO}+\mathrm{GG} 1$
30 niin
The spiral pattern in NGC 6814 has feaures of both grand design and multiple-armed MAS) types. However, the arms are quite well defined as separate entities unlike the arms in pure MAS galaxies, such as NGC 2841 (panels 142, S4, S12). Here the main arms can each be ace for about half a revolution before the branch and become multiple.

The redshift is $v_{o}=1643 \mathrm{~km} \mathrm{i}^{-1}$,

NGC 7531

CD-550-S
Oct 2/3, 1978
103aO + GG385
5 mill
Two main outer arms are each attached to the rim of a high-surface-brightness inner disk, within which a tightly wound luminous spiral pattern also exists. Numerous HII regions ar present in the disk arms and in the outer arms as well. The largest of the HII regions resolve at the $2^{\prime \prime}$ level. Theredshift of NGC 7531 is $v_{o}-\mathbf{1 6 0 7}$ mm s

If seen more face on, NGC 7531 would resemble NGC 3031 (M81; panels 129, 332) but it is of slightly later type because the central bulge in NGC 7531 is smaller.

Monst of the galaxies on this panel are classed as grand design types despite giving a first-glance impression of a multiple pattern. On second inspection, each of the six galaxies here has two principal arms, which can be traced for at least half a revolution (from their beginning in the central region) before they branch into well-defined fragments continuing outward. That the branched outer arms are progeny of the two inner grand design
arms is definite. The ability here to identify the parenthood of the outer-arm fragments differs from the case in a pure MAS pattern, such as that of NGC 2841 (panels 142, S4, S12) and INCC. 488 (panels I 15, 116 , S3, SI 2), where the arms fragment so completely thai their parenthood close to the center cannot be determined,

NGC 3200

CD-810-S
Feb 25/26, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
45 niin
The spiral arms in NGC 3200 are very thin and well defined. The pattern is similar to that in NGC 3031 (panels 129. 332) except that the central bulge and smooth inner disk in NGC entral bulge and smooth inner disk in NG classification sequence.

The very early luminosity class is due to the reat regularity of the spiral pattern. The red shift of NGC 3200 is $v_{o}=3313 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}$. The bsolute magnitude based on the redshift dis tance of $66 \mathrm{Mpc}(I I=50)$, is $M_{B}=-23.0$, which among the brightest galaxies in the Shapley Ames Catalog (see Fig. 5 of the RSA)

NGC $4939 \quad$ Sbc(rs)I
H-1812-H
May 3/4, 1937
Imp. Eel.
0 niin
The two principal outer arms in NGC 4939 re remarkably thin. They can each be trace nward in a nearly continuous way for abo $1 / 4$ revolutions, which is unusually large. Th arms are very regular and are well formed, requiring, by definition, the very early luminosity class.

The redshift is $v_{o}=2903 \mathrm{~km} \mathrm{~s}^{-1}$, giving edshift distance of 58 Mpc . The apparent mag itude, corrected for absorption, is $B p=11.0$, hich gives the bright absolute magnitude of M^{\prime} $=-22.8$, similar to that of NGC 3200 above

The pitch angle of the arms is close to 0° i.e., if NGC 4939 were viewed face on the spiral pattern would appear nearly circular, as in NGC 488 (panels 115, 116, S3, S12).

GC 4603
 CD-2168-S
 March 27/28, 1982

5 min
Two principal arms can be traced in NGC 4603 starting as Luminous segments at the rim ol he inner disk. These can also be traced farther inward as dust lanes.

Branching occurs as the luminous arms are raced outward; the outer spiral pattern appears mildly multiple. Particularly interesting is the "third" principal outer arm, which begins as two branches connected to nothing in the intermediate disk on the left side of the major axis ere, meeting as they wind outward into a single uter fragment.

The redshift is $v_{o}=2073 \mathrm{~km} \mathrm{~s}^{*}{ }^{1}$. The galaxy is on the western edge of the rich Centaurus Cluster. It is listed as entry 120 in the master catalog of Dickens, Currie, and Lucey (1986)

NGC 3430
Feb 2/3, 1981
$103 a 0$
The spiral pattern in NGC 3430 is intermediate between the grand design and the MAS types. The arms are thin. The high-surfacebrightness segments can each be well traced for t least half a revolution.

The redshift is $u_{o}=1555 \mathrm{~km} \mathrm{~s}^{-1}$

GC $7171 \quad$ Sbc(r)II-H CD-1585-S/Br
 Aug 11/12, 1980
 103aO + GG385
 5 mill

The two principal arms of relatively high urface brightness begin at the rim of the inne disk in NGC 717 . They can be traced for aboul balf a revolution before disappearing. Multiple am fragments ol lower surface brightness exis twen the two principal arms

The 1111 regions lire generally unresolved. The redshift of NGC 7171 is $v_{0}=27 \mathrm{~s}!\mathrm{S} \mathrm{km} \mathrm{s}{ }^{\prime \prime}$

NGC 7721
$\mathrm{Sbc}(\mathrm{s}) \amalg .2$
PII-7691-S
Sep 26/27, 1979
103 aO
0 min
NGC 7721 is of later luminosity class than he other galaxies on this panel; the arms are hicker and less well defined. The pattern is of the grand design type.

The many bright 111 regions in the prin cipal arm are unresolved at about ihe $1.5^{\prime \prime}$ level. The redshift of NGC 772 I is $, \ldots, 2191!\mathrm{km} \mathrm{s"'}$

GC 5194/5195-Sbc(s)I-1

PH-3922-S SBO| pec
March 30/31, 1962 panels 55, 172 $103 \mathrm{aE}+\mathrm{Ha}$ interference
20 iiiin
The Ilot interference filter image of NGC $5194 / 5195$ on the facing page illustrates why the piral pattern of tHis galaxy is of the grand design, despite the superficial appearance of mul iple arms in the deep prints on panel $] 72$. Th numerous MM regions outline the two principa arms, which can each be traced for nearly a whole revolution

The most unusual feature of the pattern oncerns the arm that begins near but not on the rim of the inner disk on the right-hand side of the mage here (the opposite side of the major ax from NGC 5 195). This principal arm is deLached from the rim, in contrast to its opposite mate which can be traced continuously inward until it meets the rim

The largest HII regions have cores that resolve at the $10^{\prime \prime}$ level. This is consistent with the calibration of HII lineal" core sizes in luminosity class I-II late-type spirals (Sandage and Tarn mann 1974a), putting M5 1 at a distance of 10 Mpc . as described earlier (panel 172).

NGC 3433
$\mathrm{Sbc}(\mathrm{r}) 1.3$
CD-2109-S
March 19/20, 1982
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
The two principal arms in NGC 3433 are of the grand design type. They have relatively high surface brightness compared with the outer arms that branch from them. The HII region knots are few, faint, and unresolved. The redshift of NGC 3433 is $v_{, 2}=2566 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 3344
PH-7959-S
Nov 8/9, 1980
103 aO
12 min
The two principal arms in NGC 3344 from which other arms branch begin as an almost-complete inner ring which, however, as usual, is the overlapping of tightly wound opposite spirals connected by dust lanes to the central region.

The redshift of NGC 3344 is small, $v_{o}=627$ $\mathrm{km} \mathrm{s}^{-1}$, yet the HII regions do not resolve into large-core disks, as in M5 1, which has a smaller edshift of $v_{o}=541 \mathrm{~km} \mathrm{~s}^{-1}$. The data are, however, consistent with the fainter absolute magnitude of NGC 3344, $M_{B}=-20.3$, compared with $\mathrm{Mg}=-21.6$ for M 51 , calibrated elsewhere (Sandage and Tammann 1974a)

NGC $6780 \quad$ Sbc(rs)I-II
CD-924-HB
May 3/4, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
NGC 6780 may be an outlying member of the NGC 6769 Group (Sandage 1975a), whose the NGC 6769 Group (Sandage 1975a), whose mean redshift is $\left\langle v_{0}\right\rangle=3953 \mathrm{~km} \mathrm{~s}{ }^{-1}$: the redshift NGC $6780 \mathrm{is} \nu_{0}=3381 \mathrm{~km}$ s \sim. The grand similar to that of M5 1 at the upper left.

Note that both principal arms begin at detached positions relative to the central bulge, similar to the situation in barred spirals. But if a luminous bar is present in NGC 6780 it is weak to the point of invisibility here

NGC $3981 \quad$ Sbe(s)I-II(tides?)

CD-1672-S
Dec 31/Jan 1, 1980/1981
103aO
The two well-defined principal arms of the rand design type in iNGC 398 I have high surace brightness. They can lie traced for about Haifa revolution outward from their origin near the center until they abruptly decrease in surface brightness, become more open, and exhibit a smooth appearance. It is the plume-like appearance of the very faint outer "arms" that gives the notation (tides?) in the classification, although no companion is present. The designaalthough no companion is present. The designa-
tion simply describes the morphology not the cause, which probably is not interaction via an encounter but rather is endemic to the galaxy.

The heavy main print shows faint 1111 regions in the outer extensions of the inner arms and in a separate outer arm not connected with the two main inner arms. This third faint outer arm can be faintly seen as a straight segment along the major axis (at the top of the facing print) which then sweeps at a large pitch angle to the right in the orientation of the image here.

The redshift is $v_{n}=1554 \mathrm{~km} \mathrm{~s}$

NGC 2369

CIM36-S
Jan 31/Feb I, 1978
103aO + GG385
15 niin
NGC 2.iff $<$ J is similar to NGC 3981 al the left except that the bright inner- arms arc not a well defined and their outer extensions as smooth arms have a higher surface brightness. The pal
tern is clearly of the grand design
The redshift of NGC 2369 is $v_{0}=:!()!6 \mathbf{k m}$

Sbc Classification Section (continued)

NGC3631
 Sbc(s)II

PH-8052-S
Feb4/5, 1981
$103 a O$
12 min
The grand design nature of the arms in this triking spiral is evident, as is the larger disorder higher geometrical entropy) of the pattern compared with previous Sbe galaxies of earlier uminosity classes on the preceding eight panels. NGC 3631 is the prototype of this later SbcII luminosity class.

The two principal spiral arms begin near the center and become evident as luminous structures at the rim of the central, high-surfacetures at the rim of the central, high-s undace
brightness disk. Secondary arms of lower surface brightness branch outward from these two principal inner arms.

Bright IIII regions are present in all the arms: the rate of recent star formation is moderate-to-high. The largest HII regions coalesce at this angular resolution and have a combined core diameter at the $3^{\prime \prime}$ level. The redshift of NGC 3631 is $v_{\nu}=1238 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.

NGC 4051	Sbc(r)II \quad Racine wedge

PH-8056-S
Feb4/5, 1981
L03aO
2 niin
NGC 405] is one ol the original six emis-sion-line galaxies used by Seyferl (1943) in his discussion of Moiml Wilson spec Ira anil dirce plates of a class of galaxies known initially In Ilmnason. to Minkowski. and lo llulible to have star like (unresolved) nuclei and very broad emis sion lines in their spectra.

The beginning of the modern work on Seyfert galaxies and related objects, now called active galactic nuclei (AGN). was made in a semi nal paper by Woltjer (1959). Seyfert galaxie and quasars are the most prominent examples of this class. Quasars are maxi-Seyferts.

Short-exposure plates of iNGC 405] and direct visual inspection at a large telescope show an intense slarlike (unresolved) nucleus which is a mini-quasar at the center ${ }^{1}$ of the galaxy-

The outer spiral structure is nearly of the grand design type, having only several major arms rather than a series of fragments as in the MAS type

The largest of the many HII regions in the several arms resolve (core plus halo) at about the $4 "$ level. The redshift of NGC 405] is $v_{0}=746$ km s

Secondary Racine wedge images are below and slightly to the left of the brightest stars in the frame and also of the center of NGC 4051 . The Racine wedge image of this starlike center is see here below and slightly to the left of the center of the central region. NGC 4051 clearly has a AGN (a mini-quasar) nucleus.

Sbc Classification Section (continued)
 brightest stars in the frame.

NGC 1187
CD-1548-S/Br
Aug 7/8, ! >>)! !
$103 \mathrm{aO}+(;<;:$ i
15 min
The light print on the riglil shows that Ilit* inner-arm pattern is composed of three high-aur-face-brightass grand design spirals. Each begins near the small central nucleus, which itself is of very hi^h surface brightness and which has a starlike irna^${ }^{\wedge}$ at the center aI I lie $0.8{ }^{\prime \prime}$ resolution of the available plate material. The two principal arms of the* inner triad pattern ran \mathbb{K}^{*} traced lor about three-quarters of a revolul inn outward before they abruptly decrease in surface bright ness; beyond that point, lower-surface-brightness arm fragments exist, shown best at Ihe left.

This pattern-bright. well-defined inner ms, abrupt surface-brightness change, anil fragments beyond the point of change-is common, and has been seen earlier in ibis section She examples are NGC 1566 (panel 171), NGC 5248 (panel I 74), NGC 7171 . NGC 4603. and NGC 3430 (panel 176), NGC 3433 (panel 177). NGC 2369 and NGC 398] (panel 178), and NGC 3726 (panel 18 1)

The largest of the numerous 1111 region everywhere in the arms resolve at the 2 " level The redshift of NGC 1187 is $u_{n}=1424 \mathrm{~km} \mathrm{~s} \sim$.

CD-1860-HB
103aO
75 rain
NGC 4995 at redshift $v_{o}=1645 \mathrm{~km} \mathrm{~s}^{-1}$ may form a kinematic pair with NGC 4981 (SBbcII; panel 2 10) at $u_{0}=1492 \mathrm{~km} \mathrm{~s}^{-1}$ at an angular separation of 65^{\prime}. At a mean redshift distance of $31 \mathrm{Mpc}(H=50)$ the projected linear separation of the pair is 586 kpc , similar to the separation of our Galaxy and M3 1

The luminous spiral pattern of NGC 4995 is intermediate between the grand design type and the MAS filamentary-arm type, although the grand design is more evident. Three high-sur-face-brightness principal arms define the pattern. The inter-arm regions are bright, providing a good background against which the spiral dust lanes are silhouetted throughout the underlying disk

NGC 6984
$\mathrm{Sbc}(\mathrm{r}) 1.8$
CD-1595-S/Br
Aug 12/13, 1980
$103 \mathrm{aO}+$ GG385
45 inin
The two principal arms in NGC 6984 begin on the rim of an almost-complete internal ring which, as usual, is itself the near-overlapping of the tightly wound spirals near the center.

One of the two principal outer arms is thick near its beginning, although it is detached at this point from the inner near-ring much like one of the principal arms in M5 1 (panel 177).

The redshift of NGC 6984 is one of the larger in the RSA at $v_{0}=4435 \mathrm{~km} \mathrm{~s} \sim^{1}$. Nevertheless, the two largest fill regions in the thick arm resolve at the $1^{\prime \prime}$ level, consistent with core plus halo diameters of 450 kpc in luminous galaxie (Sandage and Tammann 1974a).

NGC $3583 \quad$ Sbc Racine wedge PH-8075-S
Feb 5/6, 1981
103aO
12 min
The inner arms of very high surface brightshange abruptly in luminosity after only about a half revolution as they develop into the about a half revolution as they develop into the outer arm pattern. This characteristic is the same as has been discussed for other galaxies in this compare NGC 1187 on the preceding panel).

The redshift of NGC 3583 is $v_{n}=2184 \mathrm{~km}$ s^{-1}.

NGC 3596
CD-2101-S
March 18/19, 1982
$103 \mathrm{aO}+\mathrm{GG} 385$
52 min
Two principal arms emerge from the rim of the inner disk. Their spiral patterns can be wel traced, each for half a revolution of unwind. After this point one of the principal arms breaks into a broad pattern that continues to wind outward, nearly overlapping the opposite inner arm after nearly a whole revolution.

The several bright HII regions are unresolved at the $1.5^{\prime \prime}$ level despite the small redshift, $v_{n}=1072 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}$ '

NGC 2608
PII-7990-S
Feb 2/3, 198
103aO
The arm pattern is clearly of the grand ign type. Two principal arms that start at the center dominate the pattern.

The redshift is $v_{o}=2112 \mathrm{~km} \mathrm{~s}^{-1}$.
NGC 3162
Sbc(s) 1.8
NGC 3162
H-5 5 -S
Feb 5/6, 1956
$103 \mathrm{aO}+$
20 min
The inner arm pattern in NGC 3162 has a high surface brightness that abruptly decreases after slightly more than half a rotation, forming at that point the very faint outer arm pattern.

The redshift is $v_{n_{1}}=1223 \mathrm{~km} \mathrm{~s}^{\prime \prime}$.

yree of the (Our galaxies on this panel have mixed characteristics of both the grand design and the multiple-armed-spiral (MAS) types. They would define an intermediate position in the 12 -step arm classification system of Elmegl'een and Elmegreen $(1982,1987)$ that spans the range from grand design to filamentary, to chaotic. The arm systems in three of these galaxies are highly multiple, not of the classic morphology with two principal arms of a pure grand design pattern

The arms in all four galaxies are highly regular. requiring an early luminosity classification.

NGC 6699
CD-1540-S/Br
Aug 7/8, 1980
45 niin
\square
Four principal arms can be traced in NGC 6699. found by counting the number of arm crossings in a cut across the major axis of the mage. The numerous Mil regions in each arm are like heads on a string, similar to the two-arm pattern in M5 1 (panels 172,177)

The redshift is $v_{0}=3357 \mathrm{~km} \mathrm{~s} \sim^{\prime}$
NGC $3486 \quad$ Sbc(r) $1.2 \quad$ panel S13
PH-8022-S
Feb $3 / 4,1981$
103 aO
12 min
Many of the spiral fragments in NGC 3486
can be traced for only short distances before
their surface brightness becomes so low that the
outer features are lost. In these outer regions, the
till region content that defines the path of the
spiral substantially decreases.
The overall spiral pattern is very regular.
The pattern starts at the rim of a high-surface-
brightness inner ring. The nucleus is exceedingly
bright, appearing Dearly starlike by visual in-
spection at a large telescope.
The several largest III I regions resolve at
the 4" level for the core plus halo diameter. The
redshift is low. $v,=636 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 4947
CD-915-III5
April 30/May I, 1979
03aO + GG385
-10 niin
The arm pattern in NGC 4947 is of the grand design type. Two principal arms exisl beginning at the center as dust lanes and becom ing luminous at the edge of the inner disk. Th HH regions are numerous.

The redshift is $\mathrm{r}, \mathrm{=}=2222 \mathrm{~km} \mathrm{~s}^{11}$.
NGC 5351
Sbc(rs) 1.2
PH-8096-S
Feb 6/7, 1981
103aO
2 min
The inner arms are of high surface bright ess. The faint outer arms branch from them and form a multiple-arm pattern. The i-eilslift of NGC 5351 is i , $=3663 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}$
T spiral patterns, consequently are assigned to the earliest luminosity classes I or I-II. All six are of the multiple-arm variety.

	(r)I-II
PH-7819-S	
Sep2/3, 1980	
103aO	
12 mill	
The two brightest arm fragments in NGC	
214 start from the edge of a high-surface-brightness disk close to the center. Some of the faint outer multiple arms branch from these two main inner arms, hut others exist throughout the moderately high surface brightness intermediate disk, similar to the earlier pattern in NGC 2841 (panels 142, S4, S12).	
The IIII regions are unresolved at the $1^{\prime \prime}$ level. The redshift of NGC 214 is $»,=4757 \mathbf{k m}$ s^{-1}.	
NGC 6925 Sbc(r)I-II	
CD-2020-Bedke/Gregory	
Oct 26/27, 1981	
103aO + GG385	
15 min	
The M but later tha tern in NGC in NGC 28 luminous ar than in NGC	ern in NGC 6925 is similar to prototype multiple-armed patanels 11 ä, 116 . S3, SI 2) and nels $142, \mathrm{~S} 4, \mathrm{~S} 12$). Also, the somewhat better defined here
	of the IIII regions are smaller hift of NGC 6925 isu $_{o}=2780$

NGC $5324 \quad$ Sbe(r)1.3
 H-2388-H
 Feb 21/22, 1947
 103aO

30 min
The MAS spiral pattern in NGC 5324 is later version of the Sab prototype NGC 488 and an earlier version of the prototype Scl MAS galaxy NGC 1232 (panels 216 , SI3). The red shift of NGC 5324 is $v_{n}=2853 \mathrm{~km} \mathrm{~s}^{11}$.

NGC 3963 Sbe(r)1.2 Racine wedge PH-8112-S
Feb7/8,1981
$103 a 0$
12 min
The plate used here for NGC 3963 wa taken through clouds and gives a false impression of the true surface brightness of the galaxy; the sky was thick, decreasing the surface-brightnes contrast between the galaxy and the night sky glow.

The plate was taken with a Racine wedge The secondary images are faintly visible for (1) the brightest star in the field, superposed on one of the arms below and to the right of center, and (2) the nucleus, which is almost starlike upon visual inspection at the telescope, evidenced here also by the secondary image made by the wedge

The spiral pattern is of the grand design rather than of the multiple-armed type. Only two principal arms exist; one, highly regular, can b traced for almost a whole revolution, while th other branches into two after half a revolution

The redshift is $v_{n}=3295 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 3720
CD-1426-S/Br
March 25/26, 1980
103aD + GG495
31 min
NGC 3720 forms a close pair with NGC 3719 (She) at an angular separation of 2.2^{\prime}. The near equality of the redshifts, at $\mathrm{u}_{\mathrm{o}}(3720)=$ $5804 \mathrm{~km} \mathrm{~s}^{11}$ and $v_{o}(3719)=5723 \mathrm{~km} \mathrm{s"'}$, assures a physical association. At the mean redshift distance of 1$] 5 \mathrm{Mpc}(/ /=50)$ the projected linear separation is small, at 74 kpc .

The nucleus is small and bright. The multiple arms are smooth at the resolution of the present plate material. The galaxy is clearly spiral. The classification as EO by van den Bergh based on 48 -inch Schmidt paper prints, is inap propriate.
NGC $3259 \quad$ Sbc(r)I
PH-8072-S
Feb 5/6, 1981
103aO
12 min
NGC 3259 is a multiple-armed spiral with a bright nucleus and a small angular diameter. Its redshift is $v_{n}=2005 \mathrm{~km} \mathrm{~s}^{11}$.

T,

 type. All arc of luminosity class [-II.| NGC 7392 | Sbc(s)I-H |
| :--- | :--- |
| CD-1127-Br | HA, p. 20 |
| Aug 20/21, 1979 | |
| 103aO + GG385 | |

$103 \mathrm{aO}+\mathrm{GG} 385$
45 niin
The main arms in NGC 7392 are narrow, and each can be traced as separate fragments for more than half a revolution outward. The largest HII region resolves at the $1.5^{\prime \prime}$ level; the others are unresolved. The redshift of NGC 7392 is v_{o} $=3035 \mathrm{~km} \mathrm{~s} \sim^{1}$.

NGC 3506
$\mathrm{Sbc}(\mathrm{s}) \mathrm{I}-\mathrm{II}$
CD-1853-HB
April 4/5, 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
Two principal high-surface-brightness arms begin near the bright center and wind outward for half a revolution, at which point they decrease in brightness. On one side, the arm fragments into four pieces of spiral arc with steeper pitch angles.

The HII regions are unresolved at the 1 level. The redshift is $v_{0}=6348 \mathrm{~km} \mathrm{~s}^{-1}$, which is one of the largest in the RSA (RSA, Fig. 2).

$$
\begin{array}{ll}
\text { NGC } 976 & \text { Sbc (r) I-II } \\
\text { PH-7548-S } & \\
\text { Nov 6/7, 1978 } & \\
103 \mathrm{aO} & \\
12 \mathrm{~min} &
\end{array}
$$

The thin, regular, multiple arms begin on he rim of a bright internal ring which is largely burned out on this print. Very lew Mil regions exist in the arms. The few faint candidates are unresolved at the $1^{\prime \prime}$ level. The redshift of NGC 976 is large for RSA galaxies, at $v_{o}=4550 \mathrm{~km}$ s^{-1}.

NGC 2347
Sbc(r)I-II
PH-7897-S
Nov 6/7, 1980
103 aO
12 min
NGC 2347 has the small angular diameter of 1.5 ' and a large redshift of $v_{0}=4 \mathrm{f}>92 \mathrm{~km} \mathrm{~s} \sim^{1}$. The spiral pattern is similar to that of NGC 976, above; the thin, easily traced arms begin on the rim of a bright internal ring.

IC 1788
$\mathrm{Sbc}(\mathrm{s}) \mathrm{I}$-II
CD-1599-S/Br
Aug 12/13, 1980
103aO + GG385
-1.5 min
The arm pattern in $1(!1788$ is similar lo (but later in un* classification sequence than) how NGC 488 would appear if viewed nearly edge on. The redshifl of IC I 788 is r, , $=3306 \mathrm{~km} \mathrm{~s}^{-}$; the HII regions are unresolved.

NGC $1625 \quad$ Sbc(s)I-H small group?
PII-7921-S
Nov 7/8, 1980
103 aO
12 min
NGC 1625 may form a physical group with NGC 1622 (Sa with exquisite narrow arms) and NGC 1618 (SBa?) at separations of 10.2^{\prime} and 17.6^{\prime}. respectively, but both are of unknown redshift. If the redshifts are the same as that of NGC 1625, $v_{o}=3033 \mathrm{~km} \mathrm{~s} " '$, their projected lineal- separations from NGC 1625 are 180 kpc and 310 kpc . respectively

NGC 1501	Sbc(s) II	VCC 1401
CD-756-S		M88
Feb 4/5, 1979		

Feb 4/5, 1979

+ Wr2
50 niin
NGC 4501 is a very-large-angular-diameter (D25 = 7') spiral, located 2° north of the center of Virgo subcluster A associated with NGC 4486 The galaxy is one of the largest spirals in the Virgo Cluster region. It is similar in angular siz Virgo Cluster region. It is slimilar in angular ander such as NGC 4192 (panel 135) and NGC 4216 (panel 149) of type Sb . and NGC 4321 (pane 213). NGC 4535 (panel 297), NGC 4303 (pane 2 13). NGC 4254 (panel 224). NGC 4536 (pane 174). and NGC 4654 (panel 302), of type Sc Images of these largest of the Virgo Cluste spirals are printed to a common angular scale in an atlas of Virgo Cluster galaxies given elsewhere (Sandage, Binggeli, and Tamuiann 1985a)

The many, well-organized dust lanes, sil houetted against the bright background disk, ar prominent in the multiple-armed spiral patter of NGC 4501 . The spiral morther patlen later version of that of NGC 488 (panels 115 $116, S 3, S 12$) if viewed at this inclination

The largest of the several HII regions may resolve at about the 2 " level, corresponding to a linear diameter of about 200 psc , adopting a distance of $21.8 \mathrm{Mpc}(\mathrm{m}-\mathrm{M}=31.7)$ for the Virgo Cluster. However, it is not established beyond doubt that NGC 4501 is, in fact, a member of the cluster. Its redshift is high, $v_{0}=2161$ $\mathrm{km} \mathrm{s}^{-1}$. which is near the upper limit for the arbitrary redshift range for Virgo Cluster in clusion. And further, the galaxy is away from the main concentration of member galaxies. However. NGC 4548 (SBbl-II), which has nearly the same angular size and which is close to NGC 4501 in the sky, has $v_{o}=366 \mathrm{~km} \mathrm{~s}^{-1}$, assuring its membership in the cluster and improving the circumstantial case for membership of NGC -150 1.

he four galaxies on lliis pane] arc good prototype examples of the Sbc morphology, having extreme filamentary spiral patterns at the intermediate luminosity class 11 or even as late as II-III. Three of the four galaxies have very low redshifts and, as a consequence, have well-resolved stellar contents.

NGC $3521 \quad$ Sbc(s)II HA, p. 15
CD-1748-S
Jan 12/13, 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
45 iniii
The central 1' (diameter) region of" NGC 3521 is a high-surface-brightness disk having spiral dust lanes but no luminous arms. Luminous arm fragments begin at the edge of this inner disk. They are interspersed with associated dust lanes and define the outer MAS pattern, which is of the NGC 2841-NGC 488 type

The moderately short exposure print in the Hubble Atlas, made from an original Mount Wilson 100 -inch plate, shows the bright central disk and a hint of a luminosity distribution above the plane, centered on this central region. In the Hubble Atlas print this appears as an overlay of uminosity in silhouette against the far side of the disk. In the print here from a deeper Las Cam isk. In the pis "cylinder" of light perp panas plate, this "cylinder of light perpenicular to the plane, concentric with the center, more evident. It can be traced in height until appears even beyond the image of the disk the far side, showing that the distribution is, in

The disk is resolved into individual stars. The largest HII regions have core-plus-hal diameters of 4 ", which, with a redshift distance of 12.5 Mpc based on the redshift of $v_{o}=627 \mathrm{~km}$ s^{-1}, is a linear diameter of 240 psc , consistent with the calibration elsewhere (Sandage and Tammann 1974a).

NGC $2268 \quad$ Sbc(s) 11
PH-7550-S
Nov 5/6, 1978
103 aO
The spiral pattern consists of an inner set of very-high-surface-brightness arms (partly burned out here) and an outer set of multiplefragment arms of lower surface brightness. The redshift of NGC 2268 is $v_{0}=2458 \mathrm{~km} \mathrm{s"'}$. No resolution occurs of tin ${ }^{1}$ HII regions or of individual stars.

NGC 4-800
PII-8032-S
Feb 3/4, 1981
103 aO
NGC ' 1800 is classed Sb here, in the RSA, and in the Hubble Atlas. It is shown in the She section here hi illustrate that the differences between Sb and Sbc classes are subtle and arbitrary; nevertheless it is clear from this print and the one in the Hubble Atlas that NGC 4800 is slightly earlier than NGC 3521 at the left. It has a larger and brighter central region, and its arms are less well resolved into stars and 1111 regions.

The redshift of NGC 4800 is $u_{0}=808 \mathrm{~km}$ s^{-1}.

NGC 6744
CD-1473-S/Br
May 10/11, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
$103 \mathrm{aO}+$
This very large (the angular diameter This very large (the angular I ${ }^{\prime}$). nearmeasured from the outermost arms is (8). near-
by spiral is at low galactic latitude $\left(k=-26^{\circ}\right)$ making foreground field contamination by Galac making foreground field contamination by Galac-
tic stars apparent and the identification of any - stars apparent and the identification of any particular

But the resolved HII regions are more easily identified. The largest of these have core-plus halo diameters of about $6^{\prime \prime}$. At the redshift dis tance of 13 Mpc . based on the redshifl of $v_{D}=$ $663 \mathrm{~km} \mathrm{~s}^{-1}$. this corresponds to a linear diamete of 385 psc . consistent with a calibration given elsewhere (Sandage and Tammann 1974a)

The arm pattern is clearly multiple. Th outermost arm, out of the frame of this print. overlaps the spindle Iml\ galaxy at the lowerright corner. This companion is highly resolved Its separation from NGC 6744 is 10.1 northwest (the orientation of the print here is north at the right, west at the bottom), corresponding to a small projected linear separation of 39 kpc .

NGC $470 \quad$ Sbc(s)II. $8 \quad$ Karachentsev 31 PH-273-Mi Nov 7/8, 1956
103 aO
NGC 470 forms a close physical pair with NGC 474 (RSO/a. panel 84) at a separation of $313^{\prime \prime}$. The redshifts are $K_{0}(470)=2643 \mathrm{~km} \mathrm{~s}^{-1}$ and $\mathrm{i} ; 0(474)=2596 \mathrm{~km} \mathrm{~s}^{-1}$. At the mean redshift distance of $52 \mathrm{Mpc}(H=50)$ the projected linear separation is small, at 80 kpc -roughly equal to the distance of the Magellanic Clouds from the Galaxy. The sharp rims in NGC 474 may be the Galaxy. The sharp rims in NGC 474 may be the
aftermath of a merger with yet a third galaxy, or may be due to some type of interaction with NGC 470.

However, no evidence exists of distortion in the morphological form of the companion NGC 470, shown here. The spiral pattern is regular It has broad, tightly wound arms that nearly overlap each other after each unwinds by 180°. The pattern is that of the grand design: the arms are thick with a moderate amount of disorder, giving the late luminosity class. Many HII regions exist in the arms, but none have diameters larger exist in the arms, but none have diameters larger than $1.5{ }^{\prime \prime}$. The mystery is how NGC 470 here can have so regular a spiral pattern if the peculia tidal encounter between the pair.

NGC 4094
Sbc(s)II
CD-244-S
Feb 14/15, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
NGC 4094 has multiple arms that are relatively thin but which can only be traced as frag ments. The largest HII regions resolve at about the $2^{\prime \prime}$ level. The redshift of NGC 4094 is $v_{0}=$ $1184 \mathrm{~km} \mathrm{~s}{ }^{\text {" }}$.

NGC 6221
CD-1582-S/Br
Aug 11/12, 1980
103aO
NGC 6221 forms an apparent physical pair with NGC 6215 (Sc; panel 251), based on the with NGC 6215 (Sc; panel 251), based on the redshifts of $v_{o}=1355 \mathrm{~km} \mathrm{~s} \sim$ and $v_{o}=1270 \mathrm{~km}$ \sim, respectively. The angular separation of 25^{\prime}
gives a projected linear separation of 190 kpc at gives a projected linear separation of 190 kpc at the mean redshift distance of $26 \mathrm{Mpc}(H=50)$.
The galactic latitude of the pair is small, at -9°.
The morphology of NGC 6221 is semihaotic, perhaps due to an encounter. Two symmetric heavy dust lanes start from the nucleus and thread through the middle of the opposite thick arms which begin at the center. These lanes are similar to the two straight dust lanes in prototype SBb galaxies, such as NGC 1300 panels 154, S8). Aside from this, the pattern is not strongly barred.

NGC 3646
Sbc(r)IIpec Karachentsev 281 H-2219-H Jan 6/7, 1946
03 aO
0 niin
The morphology of NGC 3646 is peculiar, as if the result of an encounter. The outer spiral pattern cannot be traced even as to the sense of direction, but the inner spiral pattern is regular.

NGC 3646 forms a physical pair with NGC 649 (SBa: not in the RSA) at an angular separation of 8^{\prime}. The redshifts from the catalog of Karachentsev (1987) are $\mathrm{i} 7_{\mathrm{o}}(3646)=4227 \mathrm{~km}$ $s^{\prime \prime \prime}$ and i$)_{o}(3649)=4322 \mathrm{~km} \mathrm{~s} \sim^{\prime}$. At the mean redshift distance of $85 \mathrm{Mpc}(\mathrm{H}=50)$, the projected linear separation is 200 kpc . However, there is no indication of morphological distortion in the spiral pattern of NGC 3649 . The peculiar outer ring structure in NGC 3646 here cannot be attributed to interaction with NGC 3649.

NGC 3649 is much smaller in angular diameter than NGC 3646 . The diameters are $80^{\prime \prime}$ for NGC 3649 and $260^{\prime \prime}$ for the outer ring of NGC 3646. Note that the inner part of NGC 3646 resembles a normal Sbc spiral of the same size as NGC 3649. The linear diameter of this inner part is 33 kpc -a normal value for most RSA spirals. However, the outer ring of NGC 3646 has a linear diameter of 107 kpc , which is abnormally large.

The fact that the inner image of NGC 3646 has a normal morphology and is of normal size suggests that the ring is a result of a dynamica process such as the dropping of one galaxy through another, as postulated by Theys and Spiegel $(1976,1977)$ and by Lynda and Toomre (1976) in other ring galaxies. The abnormal velocity field and an early comment on the large linear diameter of the ring are given by Burbidge, Burbidge, and Prendergast (1961)

THe six galaxies on this panel arc of intermediate-to-late luminosity class II or 11-111. Most have filamentary arm structure, although each has two dominant principal arms inside the filamentary fragments that are in the outer arm pattern.

NGC $150 \quad$ Sl)c(s)H pec
 CD-1588-S
 Aug 11/12, 1980
 $103 \mathrm{aO}+$ GG385

45 min
The spiral pattern in NGC 150 is of the grand design type although there are three high surface-brightness arms rather than only two in he reflection symmetry of grand design patterns. wo bright inner arms start from the center After half a revolution one of these (called here the first) nearly overlaps the second which, however, can only be traced for less than half a evolution; consequently it does not overlap th first. The third arm crosses the first (out of the first. The third arm crosses the first (out of the undamental plane?) after the first has made only quarter revolution outward. The third then decreases in surface brightness and continue wherd a for andion be traced for anoth prominent dust lane threads the middle of th first arm. Such a three-armed pattern is unusual but not unknown.

The redshift is $v_{0}=1620 \mathrm{~km} \mathrm{~s}^{-1}$
NGC 4219
Sbc(s)II-III
CD-1877-HB
April 11/12, 1981
$103 \mathrm{aD}+\mathrm{GG} 495$
45 niin
NGC 4219 has a small central bulge nucleus). Two main moderately ill-define minous arms with associated dust lanes begin mins arms wing begin a den ber fright fragmen The hid moderately high surfa with disk light),

The redshift is $v_{n}=1684 \mathrm{~km} \mathrm{~s}^{\prime}$.

NGC 7162
 CD-1584-S/Br
 Aug 11/12, 1980

103aO + GG385
45 inin
The spiral pattern in iNGC 7162 is multimed in thick fragments that begin at the center. NGC 7162 forms a physical pair with NGC 166 (SO: panel 34) at an angular separation of 11^{\prime}. The redshifts are $u_{0}(7162)=2169 \mathrm{~km} \mathrm{~s} \sim$ and $u_{0}(7166)=2376 \mathrm{~km} \mathrm{~s} \sim^{\prime}$. At the mean red hift distance of $45 \mathrm{Mpc}(I I=50)$ the projected linear separation is 145 kpc .

NGC 5376
PH-7644-S
$\mathrm{Sbc}(\mathrm{s}) \mathrm{II}$

03aO
2 mi
The disk of NGC 5376 is filled with moderately thin arm fragments and associated ust lanes.

The redshift is $v_{n}=2210 \mathrm{~km} \mathrm{~s}^{11}$.

IC 1783	Sbe(rs)II
CD-542-S	
Oct $1 / 2,1978$	
$103 \mathrm{aO}+$ GG385	

103aO + GG38
45 min
Two principal bright inner arms form an almost complete inner ring. Lower-surfaccbrightness, outer (fossil?) arms are relatively thin and well defined.

The redshifl is $v_{0}=\mathrm{H} 272 \mathrm{~km} \mathrm{s"}$ '.

NGC 1353
Aug 23/24, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
$4{ }^{4} 5 \mathrm{~min}$
The spiral pattern of NGC 1353 is nearly identical with those in NCC 7162 , NGC 5376 , and IC 1783 on this panel. Two bright, tightly wound inner arms have the grand design pattern Fainter outer arms, with many fragments, spread throughout the outer disk, giving the appearance that the disk is filled with arm segments similar to in NGC 2841. Hut NGC 1353 is later in the classification sequence.

The redshift is v, , $=1521 \mathrm{~km} \mathrm{~s}^{\prime \prime}$

NGC $5055 \quad$ Sbc(s)II-III	HA, p. 15
S-59-Ritchey	panel S5
March 9/10, 1910	
Seed 23 (blue)	
300 min	

NGC 5055 insert
H-93-Duncan
May 14/15, 1926
E33
180
180 min
The original plate used here as the main print was taken by Ritchey in 1910 with the newly completed Mount Wilson 60 -inch reflector, which many astronomers believe was the most productive telescope of all time. The insert negative print is made from the plate used for the reproduction in the Hubble Atlas, taken by John Duncan with the Mount Wilson 100 -inch reflecor in 1926.

The quality of the images shows the superior nature of both the 60 -inch and the 100 -inch telescope optics in their ability to resolve to the seeing limit of the Mount Wilson site (better than $0.4 "$ under the best conditions).

The spiral pattern of NGC 5055 is similar to those in four of the six galaxies on the preceding panel. The inner region has very-high-sur-face-brightness arms which thread throughout the disk. These filamentary arms can be traced as fragments almost to the center of the galaxy.

The surface brightness of the multiplearmed pattern decreases abruptly at radius 50 " $(2.7 \mathrm{kpc})$ from the center. The outer, low ${ }^{r}$ er-sur-face-brightness multiple arm fragments, together with their associated dust lanes, wind outward and cover the extended disk, similar to the patand cover the extended disk, similar to the pat-
tern in the earlier Sb prototype NGC 2841 panels 142. S4. S12).

Many small, generally unresolved IIII regions exist, the largest of which are less than I. $5^{\prime \prime}$ in diameter. The redshift of NGC 5055 is small at $v_{o}=550 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 6754 Sbc(s)IMII
 CD-528-S/Br

Sep30/Oct 1, 1978
103aO + GG385
45 niin
NGC 6754 forms an apparent pair with an anonymous SBO galaxy of unknown redshift at an angular separation of I.]/

The spiral pattern is not multiple, as in NGC 5055 on the preceding panel, nor is it as regular as in grand design spirals of earlier luminosity classes. One principal bright arm is easily traced, but the other, which begins on the far side of the center, is more difficult to follow; it breaks into fragments as it comes to the near side on the outside of the first principal arm. The asymmetry of the luminosity distribution of the dust silhouetted against the disk identifies the near and far sides.

No individual HII regions are easily identified. The redshift is $v_{0}=3207 \mathrm{~km} \mathrm{s"'}$

NGC 5313
 Sbc(s)II
 PH-8094-S

Feb6/7, 1981
103aO
12 nii
NGC 5313 forms an apparent pair with NGC 5311 (Sa, very early), of similar angular diameter but of unknown redshift at a separation of 9.4 . If the redshift of NGC 5311 is similar to that of NGC 5313, $v_{o}=2588 \mathrm{~km} \mathrm{~s} \sim 1$ the that of NGC $5313, v_{o}=2588 \mathrm{~km}$ s~ the projected linear separation of the pair would be kp.
The spiral pattern of NGC 5313 is of the grand design type. The luminosity class is II. There are only two principal arms, both of high surface brightness and tight piteli angles so that they nearly overlap in their outer regions after each has unwound by about half a revolution. A prominent dust lane exists on one side of the spiral pattern, silhouetted against the back ground disk

Visual inspection at the telescope shows the disk to be of very high surface brightness. There is an unresolved (starlike) nucleus.

Nov 21/22, 1932

Imp. Eel.

45 niin
The central oval forms a weak bar. The two principal arms spring from the ends of the bar's major axis. Fainter outer arm fragments exist.

The two largest of the many 1111 regions The two largest of the many 1111 regions resolve at about the $2^{\prime \prime}$ level; the others are $1707 \mathrm{~km} \mathrm{~s}^{11}$.

NGC 278
 Sbc(s)11.2

PH-12-S
Sep 25/26, 1951
103aO
5 miii
The surface brightness of the multiplearmed spiral pattern in NGC 278 is exceedingly high, although not as high as those of the two principal inner arms of the Seyfert galaxy NGC 1068 (Sb; panel 138), which are among the brightest arms in the RSA. Multiple exposures at short-exposure times also show a very brigh nucleus in NGC 278, which, however, is still diffuse at the $2^{\prime \prime}$ level rather than unresolved (starlike) as in many Seyfert galaxies. The print here is from a short-exposure, early 200 -inch Palomar plate, underexposed to show the multi-ple-armed pattern that begins at the center.

The redshift of NGC 278 is $u_{0}=\mathbf{9 3 2} \mathrm{kms}{ }^{\prime \prime}$ The two diffuse knots may be HII complexes; the largest has an angular diameter of about $5^{\prime \prime}$ corresponding to a linear diameter of 450 psc.

Faint luminosity exists outside the etlge of the bright disk. A spiral pattern exists in dust that is silhouetted against the envelope luminosity.

GC $4682 \quad$ Sbc(rs)II
 CD-1883-HB
 April 11/12, 1981
 L03aO

The principal arms in [NGC 4682 are narwa and are well traced for almost u whole evolution from their beginning near the center They branch and have a fainter surface bright ness in the outer regions.

The redshift is $v_{0}-2099 \mathrm{~km} \mathrm{~s}^{-}$.
NGC $3547 \quad$ Sbr(s)III-III pe
CD-1852-HB
April 4/5, 1981
$103 \mathrm{aO}+$ GG385
45 min
Spiral structure is present as segments ather than in a regular pattern. The surface brightness of the arms and the underlying disk i high. The redshift is $v_{o}=14\left(11 \mathrm{~km} \mathrm{~s}^{-1}\right.$

NGC1808
 CD-706-S

Jan 30/31, 1979
Jan 30/31, 1979
I03aO + GG385
103 aO
45 min
The central region of NGC 1808 provides what appears to he direct evidence of a galactic fountain composed of narrow dust lanes perpendicular to the plane. The shallow print on the tight shows a series of dust lanes cutting across the far edge of the disk, perpendicular to the najor axis. A short-exposure Mount Wilson 100 inch plate (not shown here) shows the far side of he disk to he heavily obscured within a 15° cone centered on the minor axis. The optical depth of the dust in the cone is ahout unity.

The cone originates in the plane at the cener of the galaxy where at least six very-high-sur-face-brightness (unresolved) knots exist, ace-brightness (unresolved) knots exist, evidently connected with the origin of the foun ain. Weaker dust lanes, also perpendicular to he plane, are silhouetted along about half the ength of the far-side image of the disk

Heavy dust lanes in the disk are evident in silhouette on the near side, most easily seen in the thin right-hand print

Two oppositely symmetrical, very-low-sur-face-brightness outer arms emerge from opposite ends of the major axis. Each can be traced for half a revolution before they overlap to form what at first glance would appear as a complete outer ring.

No Hll-region candidates are obvious. The redshift of NGC 1808 is low. $v_{o}=820 \mathrm{~km} \mathrm{~s}^{11}$.

laxies on this and the following panel arc seen nearly edge on. Their classification as She is. of course, uncertain because the spiral .structure is al best difficult to trace. The classification criteria used here are (1) the size of the central bulge (smaller than in SI) types shown on panels 149-154 and larger than in Sc's) and (2) good dust lanes and. where visible, a moderate rate of recent star formation, as judged by the number of Hll-region candidates and other signs of recent star formation.

NGC 134 Sbc(s)(II-III)
 CD-448-Rose
 Aug 10/11, 1978
 103aO + Wr2c
 90 niin

The innermost part of the disk is smooth over the first 50" (diameter) region. The multiple dust lanes that outline the arm fragments then begin at the rim of the disk.

Dust-lane asymmetry between the near and far sides is particularly strong in this galaxy. As the sense of the opening of the spiral pattern is also unambiguous in the image here, NGC 134 is another excellent ease for determining the sense of the rotation relative to the opening of the spiral arms (Hubble 1943; de Vaueouleurs 1958).

The redshift is $v_{o}=1594 \mathbf{k m ~ s}^{-1}$.

NGC 4666 SbcII. 3

CD-1411-S/Br
March 23/24, 1980
103 aO
NGC 4666 is in the busy area of the southern extension of the Virgo Cluster, at RA $=$ $12^{1,} 42^{\prime \prime}$, Dee $=-00^{\circ} 11^{\prime}$. It forms an apparent pair with NGC 4668 (SBc; panel 313), at a separation of 7.8^{\prime}. The redshifts are $u_{o}(4668)=$ $1530 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime \prime} "$ and $\mathrm{w}_{\mathrm{o}}(4666)=1474 \mathrm{~km} \mathrm{s"'}$. NGC 4632 (Sc: panel 288), with a redshift of $v_{o}=$ $1557 \mathrm{~km} \mathrm{s"'}$, is 46 distant from NGC 4666 . At a mean redshift distance of 30 Mpc for the apparent triplet, the projected linear separations of NGC 4668 and NGC 4632 from NGC 4666 are 68 kpc and 400 kpc , respectively.

NGC 1055
 PH-7700-S
 Sep 26/27, 1979
 103aO

12 min
The direction of opening of the spiral arms (clockwise going from the inside outward) and the identification of the near side is unambiguous in this galaxy. Note that the light from the moderate-sized central bulge can be seen above and below the near side of the disk.

The redshift is $v_{o}=1098 \mathrm{~km} \mathrm{~s}^{11}$.

NGC 4013
 H-1997-H

May 25/26, 1938
Agfa Blue

60 niin

The size of the bulge is the only classifica tion criterion for NGC 4013 ; the galaxy is nearly edge on.

NGC 4522	SWSb:	VCC 1516
CD-1352-S/ISr		panel 291
March 15/16. 1980		
103aO		
75 niin		

NGC 4522 here and NGC 4433, below, have almost identical morphologies outside the ridge-line of the classication system. (They are not down the midde \sim morphological box hut exhibit a classification dispersion perpendicular to that ridge-iine.) A single, high-surface-brightness arm fragment is visible on one side of the major axis. U a symmetrical arm exists on the other side it is hidden by dust. But the pattern of extreme asymmetry may indeed be in fact, not merely in appearance.

The redshift of NGC 4522 is $v_{o}=2186 \mathrm{~km}$
s^{-1}. The galaxy is listed as a cluster member in the Virgo Cluster Catalog (BinggeK, Sandage, and Tammann 1985).
PGC \mathbf{N}-1171-S
SbcIII

PH-1771-S ${ }^{\text {Dec 14/15, }} 19$
103 aO
30 min
NGC 4433 forms a physical pair with NGC 4428 (Se; panel 265), with angular separation of 7.2'. The n -dshifts are $v_{o}(4-42 \mathrm{H})=282 \mathrm{H} \mathrm{km} \mathrm{s}{ }^{\prime \prime \prime}$ and $u_{0}(4433)=277 \mathrm{I} \mathrm{km} \mathrm{s}^{1}$. Al a mean redshift distance of 56 Mpc , the projected linear separation is 117 kpc .

The morphology of NGC 4433 is similar In that of NGC 4522, above.
IC $750 \quad$ S(b) Karachentsev 313
CD-1544-S/Br
Aug 7/8, 1980
$103 a O+G G 38$
${ }_{4-5}^{103 a O}$ niii +
IC 750 forms a close pair with IC 749 (SBc; panel 306) at a separation of 3.3'. The redshifts are closely the same, $u_{0}(749)=827 \mathrm{~km} \mathrm{~s} \sim^{1}$ and $\mathrm{u}_{\mathrm{o}}(750)=742 \mathrm{~km} \mathrm{~s}^{\prime \prime} \mathrm{V}$ At the mean redshift distance of 16 Mpc , the projected linear separation is small, at $15 \mathbf{k p c}$.
The morphology of IC 750 is similar to that of both NGC 4522 and NGC 4433 on the preceding panel. The surface brightness of the central parts of IC 750 is very high, but the resolution into individual HII regions is not nearly as great as it is in the companion. The normal morphology of IC 749 shows no evidence of tidal perturbation, but, like the morphology of NGC perturbation, but, like the morphology of NGC 4522 and , outside the ridge-line of the classification se-
quence (i.e.. it is outside the middle line through quence (i.e... it is outside
NGC 2764 Amorphous or Sb pec panel 145 PH-7602-S
April 3/4, 1979
IllaJ + GG385
30 min
NGC 2764 has been discussed on pane
145, in the Sb section. It is shown here to contrast the sizes of the central bulge in $\mathrm{Sb}, \mathrm{Sbc}$, and Sc galaxies.
The redshift of NGC 2764 is $v_{n_{h}}=2636 \mathbf{k m}$ s^{-1}.

NGC 7090

CD-1544-S/Br
Aug 7/8, 1980
103aO +GG385
45 min
NGC 7090 is a large-angular-diameter, latetype galaxy, seen nearly on edge. The main body, hown well in the heavily printed image at the top middle, is 6^{\prime} in diameter. At the redshift distance of 15 Mpc from the redshift of $v_{0}=754 \mathrm{~km} \mathrm{~s} \sim^{1}$. the corresponding linear diameter is large, at 26 kpc.

The central bulge is small or nonexistent. There is no visible halo or bulge above the plane. The asymmetry of the luminosity distribution in the disk is the reason for the barred subtype. Based on these criteria, the (uncertain) classification here is SBc.

NGC 6835 Amorphous?
CD-911-HB
April 29/30, 1979
April 29/30, 10385
40 inin
The classification of NGC 6835 is uncer tain. From the asymmetry in the pattern seen in tain. From the asymmetry in the pattern seen in
the short-exposure image at the top right, one guesses the presence of spiral structure, similar to the case in the very early galaxies NGC 4425 (SBO or SBa; panels 57, 60) or NGC 4429 (SO/Sa; panels $60, \mathrm{~S} 2$) if that galaxy could be viewed more edge on. On the other hand, the asymmetry in NGC 6835 may simply be due to dust patches

No resolution into components of the stellar content is seen. The heavy print at the uppe right shows high-surface-brightness luminosity of the face: hence the Amorphous? classificatio is suggested.

The redshift is $v_{n}-1711 \mathrm{~km} \mathrm{~s}^{11}$.

NGC 3310 Sbe(r)(merger) Racine wedge PH-7982-S
Feb 1/2, 1981
103aO
12 niin
NGC 3310 is unusual because of the smooth outer plume thai surrounds half the image. 1 (is similar to plumes in NGC 7252 (panel 340) NGC 4038/4039 (panel 280). and others men tioned earlier in this seetion. Interpretation of these plumes and of the polar rings as merge events, by Toomre and Toomre (1972), Toomr (1977), Schweizer (1980, 1982, 1983. 1986) Quinn (1984), Schweizer, Whitmore, and Rubin (1983), Schweizer and Seitzer (1988), and others, may apply here as well.

That the feature may be a merger rather than a tidal plume due to encounter is suggested by two circumstances. (1) NGC 3310 is isolated there are no candidates in the nearby field for tidal companions. (2) Very short exposures on a plate taken with the Mount Wilson 60 -inch reflector show two nuclei buried in the high-sur-face-brightness image, separated by $2^{\prime \prime}$. Each nucleus is sharp, and each is surrounded by nucleus is sharp, and each is surrounded

The chaotic nature of the spiral fragments, with their many knots and their high rate of current star formation, may have been induced by the event.

The redshift of NGC $\mathbf{3 3 1 0}$ is $v_{0}=\mathbf{1 0 7 3} \mathbf{~ k m}$

NGC 5713 Sbc(a) pee
CD-1391-S/Br
March 21/22, 1980
$103 a O$
[NGC 5713 is the center of a group of latetype spirals that includes NGC $\mathbf{5 6 9} 1$ [$\mathbf{S}(\mathbf{B}) \mathrm{b}$ pec; panel $\left.168, v^{\prime \prime} 1768 \mathrm{~km} \mathrm{~s}^{\prime 1}\right]$ NGC $\mathbf{5 7 0 5}$ (Slid panel 168. $v_{o}{ }^{\prime \prime} 1768 \mathrm{~km} \mathrm{~s}{ }^{" 1}$], NGC 5705 (Slid. not in the RSA: $v_{0}=1660 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime \prime}$). NGG 5713 here ($\nu_{o}=1777 \mathrm{~km}$ a), and NGC 5719 (Sab?, not in the KSA; $v_{o}=1628 \mathrm{~km} \mathrm{~s}$). The mean redshift distance of the group is 34 Mpc . The angular and the projected linear separations of the galaxies from NGC 57 L 3 are 34.9 and 345 kpe for NGC. $5691.25 .8^{\prime}$ and $\mathbf{2 5 5} \mathbf{~ k p c}$ for NGC 5705 , and 11.4^{\prime} and 113 kpc for NGC 5719. The group defined by these four members is evidently smaller than the Local Group.

The inner arms of NGC S7 13 are chaotic and are of the MAS type rather than the grand design. They are of high surface brightness for half a revolution from the center, beyond which a single smooth, low-surface-brightness arm continues in a spiral pattern outward. Star formation is evident in the inner arm fragments, as judged from the knots that are HH-region candidates.

NGC 1531/1532	Amorphous
CD-2025-Bedke/Gregory	Sbc(s)(tides?)
Oct 27/28, 1981	panel 337

120 min

The unusual plumes in NGC 1532 suggest tidal distortion due to an encounter. The eviden candidate responsible for the perturbation is the amorphous companion NGC 1531, whose mor phology is of the same class as M82. The two phology is of he suysical pair: the redshifts galaxies form a physical pair: the redshifts are $\mathbf{u}_{0}(1531)=1053 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}$ and $u_{0}(1532)=110$ s^{-1}.
Three dwarf candidate companions form wider physical group centered on the bright pair The most interesting of the companions is at RA $(\mathbf{1 9 5 0})=4^{11} 10^{\prime \prime \prime} 56^{\mathrm{s}}$, Dec $(1950)=-33^{\circ} 07$ $36^{\prime \prime}$. It appears as a dwarf $\mathbf{S 0}(\mathbf{8}), \mathbf{N}$ on a yellow plate but as an Im with condensations on a blue plate, similar to the transitional (im-dE.N) case of NGC 4286 (panel 20) (Sandage and Hoffma 1991). The low ratio of the hydrogen mass total mass also suggests that the dwarf is in transition between Im and dE.N dwarf types (Sandage and Fomalont 1993)

The other two dwarf candidate companions are a high-surface-brightness SBO $(M=-19)$ at RA (1950) $=\mathbf{4}^{\mathrm{h}} \mathbf{1 0} \mathbf{0}^{\mathrm{m}} \mathbf{3 9}^{\mathrm{s}}$, Dec (1950) $=-32^{\circ} 56$ $33^{\prime \prime}$, and a prototype faint dEO N nucleate dwarf elliptical at RA $(1950)=4^{\text {h }} 09^{\prime \prime} 32^{\text {s }}$, Dec $(1950)=-32^{\circ} 59{ }^{\prime} 09^{\prime \prime}$

NGC 5426/5427 $\operatorname{Sbc}(\mathrm{rs}) 1.2$
CD-909-HB
April 29/30, 1979
$103 \mathrm{aO}+6 \mathrm{G} 385$

40 miu

Both NGC 5426 and 1 NGC 5427 have normal She morphologies. They evidently form a physical pair; the redshifts are $u_{0}=2455 \mathrm{~km} \mathrm{~s} \sim$ and $v_{o}=2565 \mathrm{~km} \mathrm{~s}^{-1}$. respectively. The angular separation of $2 . \therefore \prime$ corresponds lo a projected linear separation of $34 \mathbf{~ k p c}$ at the mean redshifl distance of $50 \mathrm{Mpc}(/ / I=50)$.

The only evidence for a close tidal encounter are the two thin straight strands of the multiple outer arms of NGC 5426 that overlap the outer thin spiral arms of NGC 5427 , where the spiral pattern is of the grand design. Otherwise, each galaxy has beautifully formed arms that are so regular that each is assigned the earliest luminosity class because of the small geometrical entropy. Evidently, close encounters at some phase in their action have had nearly negligible perturbative effects on the visible morphology.

NGC 7769/7770/777 I Sbc(s)(ticlea?) panel 8 PH-7545-S Nov 6/7, 1978 , SBa

030

2 min
The triplet evidently forms a physical group: the redshifts (Maytill, in $\mathbf{1 1}$ it mason Mayall, ami Sandage L956) tire $u_{o}=4565 \mathrm{~km}$ $\mathrm{s}^{-1}, v_{o}=4554 \mathrm{~km} \mathrm{~s}^{-1}$, and $v_{0}-4492 \mathrm{~km} \mathrm{~s}^{--}$for
NGC 7769 (She), NGC 7770 (Sa pec), and NGC NGC 7769 (She), NGC 7770 (Sa pec), and NGC
7771 (SBab pee), respectively. At the mean redshift distance of 9 I Mpc the angular separations of NGC 7771 from NGC $77 \mathrm{u}^{4}$) of $315^{\prime \prime}$ mid from NGC 7770 of 60 " correspond to the smal projected linear separations of 1)! kpc and 26 kpc , respectively

The morphologies of NGC 7770 and $N(A)$ 7771 suggest tidal interactions dm- to n close encounter. Roth have smooth luminous outer regions, which are either well-defined (tidal?) outer arms as in NG(! 777 I . or compose an outer envelope that has a broken symmetry, as in NGC 7770.

The SBbc Classification Section

NGC 1365 SBbe(s)I | FCC 121 |
| :--- |
| panel S8 |

CD-1668-S
Dec 31/Jan 1, 1980/1981
103a0

but intricate velocity field in the vicinity of the
bar appears to be well traced by the delicate
wisps of dust lanes that begin at the two strong
shock positions. Note that these delicate lanes are

PANEL
199
.

NCC 7479 SBbe(s)I-II panel S»
PH-152-H
Ocl 14/15, 1952
L03aO
30 min
The arms in [NCC TIT ${ }^{1}$) art- less regular Lhan in NCC 1365, They arc branched into econdary low-surface-brightness I ragmen Is on the inside of the Lwo main grand design principal arms thai spring from the ends of the bar.

The lwo characteristic nearly straight (hint anes in the bar continue into the two high-sur-face-brightness parts DI the principal arms. Tin* ane in what is taken to be the near side (From the asymmetry of the luminosity pattern by the usual argument; Hubble L943) is well silhouetted and is in the middle of that arm. The largest Mil region in the opposite arm resolves at the angular diameter (core plus halo) of $2^{\prime \prime}$. which is large ($5 \mathbf{1 0}$ psc: compare Sandage and Tammann 1974u) at the distance corresponding to the oliserved redshift of $v_{0}=2630 \mathrm{~km} \mathrm{~s}^{-1}$

H-2025-B
Oct 21/22, 1938
Agfa Blue
90 niin
The reproduction here is from the same original Mount Wilson 100 -inch plate that was used for the print in the Hubble Atlas. In the meantime the plate has suffered surface scratches that may not have been completely removed in tile reproduction here

The central region in NGC 1097 is an oval rather than a well-defined bar as in NGC 1300 (SBb; panels 154. S8). Nevertheless, the two straight dust lanes characteristic oi SBb spiral straight dust lanes characteristic oi SBb spis th present, presumably resulting from th shocks caused, as usual, by the response of field.

A tightly spiral pattern exists in the nucleus, similar to but not as well defined as in NGC 4314 (SBa: Hubble Atlas, p. 44: panels 95,106 here). The comple structure is shown by Sersic in Observatory (1958) and in the insert print here.

The outer arms are of low surface bright ness. The star-formation rate is low. The HII regions do not resolve at the 2 " level. The red shift of NGC 1097 is $v_{o}=1284 \mathrm{~km} \mathrm{i}^{-1}$

NGC 7678
 SBbc(s)I-I

PH-6547-S
July 25/26, 1973
098 + RG2
60 nủn
This distant SBbc spiral of the NGC 1300 type, with redshift $v_{0}=3756 \mathrm{~km} \mathrm{~s} \sim$, has massive star formation in one of its principal grand design arms. Note the two dust patches near the ends of the central oval, which is the bar Thes ends of the central oval, which is the bar. Thes patches occur near the beginning of the (s)-typ arms.

NGC $4123 \quad$ SBbc(rs)I. 8 Karachentsev 322 CD-1847-HB panel S8 April 3/4, 1981
103 aO
75 min
NGC 4123 forms an apparent pair with NGC 4116 (SBc; panel 306) at an angular separation of 14^{\prime}. The redshifts are $\mathrm{i} ?_{0}(4116)=$ separation of 14. The redshifts are i?o(4116) $=$ $140 \mathrm{~km} \mathrm{~s}^{\prime 1}$ and $\mathrm{u}_{0}(4123)=1157 \mathrm{kms}^{\prime \prime}$. The projected linear separation is 93 kpc using a mean redshift distance of $23 \mathrm{Mpc}(H=50)$. Note
that this separation is small, similar to the disthat this separation is small, similar to the dis-
tance of the Small Magellanic Cloud from the Galaxy.

Despite the closeness of the pair there is no evident distortion of the morphology of NGC 4123. The bar is moderately well formed. The characteristic nearly straight dust lanes on the leading edges of the bar are present. Star formation is profuse at the ends of the bar.

The two principal arms are of the grand design type, but a second set of arms, also of high surface brightness, exist. Each starts symmetrically near the start of the principal arms at the trict ends of the bar. The pattern is unusual trict ends of the bar. The pattern is unusual, eading to four principal arms, three of which are moderately well defined. Because of the outer set of arms that do not start from the ends of the bar, he arm subtype is (rs), although the pattern is unusual

NGC 4412 SBbc(s)I-II pec
VCC 921
H-1947-H
Feb 23/24, 1938
E40
50 min
NGC 4412 is listed as a Virgo Cluster member in the Virgo Cluster Catalog. A negative print, enlarged to a common scale with other Virgo Cluster galaxies, is shown in paper IV of the Virgo Cluster series (Sandage, Binggeli, and Tammann 1985a).

The two principal arms springing from the ends of a bar are of very high surface brightness.

e^{e}	e
e	R

NGC $5350 \quad$ SBbe(r)III
PH-7624-S
April 27/28, 1979
103 aO
8 niin
NGC 5350 forms a physical pair with NGC 5353 (S0/E7; panel 29) with a separation o 5.5'. The redshifts are $\mathrm{u}_{0}(5350)=2305 \mathrm{~km} \mathrm{i}^{1}$ and $\mathbf{u}_{0}(\mathbf{5 3 5 3})=2224 \mathrm{~km} \mathrm{i}^{-1}$. At a mean redshift distance of $45 \mathrm{Mpc}(\mathrm{H}=50)$ the projected linear separation is small at 72 kpc . The pair is in a group with NGC 5354, 5355, 5358. and perhaps 5371, several of which have been shown earlier on panel 29. INGC $5371(\mathrm{Sh})$ is shown on panel 126.

The arm pattern in NGC 5350 is intermediate between that of the grand design and MAS types. Two main arms start at the ends of he bar but are so tightly wound that they form an inner near-ring after each has unwound by half a revolution. Fragmentary secondary arms exist on one side of the pattern more strongly than on the other.

NGC 3145	SBbc(ra)l	HA, p. 21
CD-790-S		
Feb 23/24, 1979		
$103 \mathrm{aO}+\mathrm{GG} 385$		
•15 iuiu		
\quad The description in the Hubble Alias is:		

The thin multiple units of this salaxy are complex. The brightest arms in the galaxy are complex. The brightest arms in the
northwest quadrant appear to approach the northwest quadrant appear to approach the
nucleus at right angles (tangent rather than spiraling inward). There is a single faint arm spiraling inward). There is a single faint arm
in the .southwest quadrant which crosses one of the regular anus nearly at right angles. This is a very rare feature ofgalaxies and is particularly well shown here. A few dust lanes ran be seen near the crossover point.
The above language describes how the arms approach the nucleus at right angles instead of spiraling inward. It is. of course, an explanation of how arms in barred spirals start. iNGC 3145 is obviously a barred spiral not recognized in the Hubble Atlas because of the combination of an unfavorable inclination angle and the position of the line of nodes.

The arms are thin and are very well defined requiring typing as luminosity class I. The redshift of NGC 3145 is $v_{0}=3416 \mathrm{~km} \mathrm{~s}^{-1}$.

IT

_L he three galaxies on this panel have arms that are intermediate between those of the pure grand design and the MAS types. Also, in all three the arms begin at the edge of either a complete or an almost-complete inner ring.

NGC $7755 \quad \mathrm{SBbc}(\mathrm{r}) / \mathrm{Sbc}(\mathrm{r}) \mathrm{I}-\mathrm{II}$

CD-1165-Br
Aug 22/23, 1979
103aO + GG385
45 min
The possible bar in NGC 7755 is betrayed. if it exists, by the two thin, nearly straight dust lanes connecting the center with the almost-complete ring composed of the inner spiral arms. These two dust lanes are. as in all morepronounced barred SBb and SBbc galaxies, on the leading etlge of the bar. which here is the central oval.

The numerous HII regions are unresolved at the $1^{\prime \prime}$ level. The redshift of NGC 7755 is $v_{o}=$ $2969 \mathrm{~km} \mathrm{~s}^{-1}$.

A compact EO, possibly M32-like, candidate companion exists at an angular separation of 100 ". well visible on this print.

NGC 2545

PH-7899-S
Nov 6/7, 1980
103 aO
12 min
The inner ring in NGC 2545 is of very high surface brightness and appears to be nearly complete. A short-exposure plate shows that the surface brightness varies around the ring. The feature is related to the two positions on the ring where the faint bar terminates.

As in other barred SBb and SBbe types, the maximum star-formation rate occurs near the ends of the bar, continuing for about a quarter revolution along the arms. It is this feature that causes the surface-brightness variation around the seeming ring. But, as usual, the form is made by two overlapping, tightly wrapped separate arms. The morphology is similar to that of NGC 3081 (SBa: panels 99, 107), NGC 3185 (SBa panel 99), NGC 1326 (SBa: panel 100), and NGC 6902 (Sa: panel 69). The most extreme example of a near-perfect ring is NGC 7742 (Sa panel 66)

The redshift of NGC 2545 is $v_{n}=3312 \mathrm{~km}$
s^{-1}.
NGC 5905 SBbc(rs)
PH-7741-S
June 11/12, 1980
103 aO
12 min
The thin arms in NGC 5905 spring from the ends of the well-defined bar and are so tightly wound as to nearly overlap after each unwinds by half a revolution. Each becomes a thin outer arm of high surface brightness that can be traced for another half revolution outward, beyond which they continue but at much lower surface bright ness. Fragmentary secondary arms exist over th outer face.

The redshift is v,, $=3544$ Um s"'. The numerous HII regions are unresolved at the I level.

$\underset{\text { IT }}{7}$
I he two galaxies on this panel are ol luminosity class I or I-II because the arms are well formed with minimum chaos. Both galaxies are of the filamentary-arm type (MAS), and the arms in l>oth begin on the rim of an inner smooth disk al the radius where the bar terminates in the disk

SISI>c(r)I panel S 13	NGC 3953	SBbe(r)MI
	PH-7639-S	
Feb 11/12, 1980	April 28/29, 1979	
103aO	103aO	
12 ruin	12 mill	
At least eight major arm fragments can be identified in NGC 2336 , which is the prototype	The multiple arms in NGC 3953 are thicker than in NGC 2336: they cover more of the disk	
SBbc galaxy of the MAS type at early luminosity class.	and have a greater geometrical entropy; hencethe luminosity class is later than in NCC 2336.	
The numerous Mil regions in NGC 2336 are	The central region of NGC 3953 is more of an oval than a bar. The two characteristic thin	
not resolved at the $1 "$ level. The redshilt is v_{o} 2424 km s~'.	an oval than a bar. The two characteristic thin (shock-induced) dust lanes may he present in the	
	The la resolve at a	Mil regions e 3 " level.

1_ he four galaxies on this panel continue the ex-
amples of the intermediate arm type between the grand design and the filamentary (MAS) spiral patterns. As on the preceding panel, the galaxies here are of the earliest luminosity class. Three of the four galaxies are of the (r) subtype; one is of the (s) subtype.

GC 3124

CD-1665-S
Dec 30/31, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
40 nủn
The spiral pattern in NGC 3124 is highly regular. Each of the two principal inner arms begins slightly downstream from an end of the well-defined bar. Each of the tightly wound arms nearly overlaps the other after half a revolution. Subsequently, they spiral outward and branch into the outer fragments, which remain at high surface brightness for another half a revolution. The H11 regions are unresolved at the $1^{\prime \prime}$ evel. The redshift is $v_{0}=3307 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 2223
SBbc(r)I. 3
CD-146-S
Feb 3/4, 1978
$103 \mathrm{aO}+\mathrm{GG} 38$
45 min
The multiple arms in NGC 2223 are thicker and slightly less well defined than in NGC 3124, above, but the spiral pattern is similar. The redshift of NGC 2223 is v, , $=2529 \mathrm{~km} \mathrm{a}^{{ }^{11}}$. The 1111 regions air unresolved.

NGC 3054
CD-708-S
Jan 30/31, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
45 niin
The arm pattern in NGC 3054 is primarily of the grand design type but with branched fragments in the outer regions. A feature to be noted are the two thin, very-well-formed dust lanes down the middle of the two principal arms in their first half-turn from the place of origin on the inner disk. The central region is a diffuse bar or an oval.

The arms are symmetrical and well formed, requiring the luminosity class I.

The HII regions are unresolved. The redshift of NGC 3054 is $v_{a}=1923 \mathrm{~km} \mathrm{~s}^{11}$.

NGC $4891 \quad$ SBbe(r)I-II group CD-1468-S/Br
May $10 / 11,1980$
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
NGC 4891 forms an apparent loose physical group with NGC 4899 (Sc: panel 232) at a separation of 30^{\prime}, and with NGC 4902 (SBb; panel 162) at a separation of 64^{\prime}. The v_{o} redshifts are $2418 \mathrm{~km} \overline{\mathrm{~s}}{ }^{\mathrm{\prime}}, 2437 \mathrm{~km} \overline{\mathrm{~s}}^{\prime}$, and 2426 km s \sim^{\prime} for NGC 4891,4899 . and 4902, respectively. At the mean redshift distance of 48 Mpc ($H=50$) the projected linear separations from NGC 4891 are 420 kpc for NGC 4899 and 895 kpc for NGC 4902. Hence the size of this group is similar to that of the Local Group.

The spiral pattern in NGC 4891 starts with a grand design set of arms tangent to a very-high-surface-brightness internal ring (perhaps burned out in the reproduction here) which in reality, as usual, is an internal set of two tightly wound arms springing from the ends of the liar, as in NGC 1300 . The principal outer grand design arms fragment after half a rotation beyond the ring to form a regular exterior multiple-arm pattern.

The largest fill region may resolve at the I level

\because	0
θ	0

L his panel of six galaxies completes the early luminosity elass I-II. MAS spiral type, SBbc morphological class section.

NGC 3001	SBbc(s)I-II
CD-729-S	
Feb 2/3, 1979	
$103 \mathrm{aO}+\mathrm{Wr} 2 \mathrm{c}$	
45 min	

$103 \mathrm{aO}+\mathrm{Wr} 2 \mathrm{c}$

5 min

The arms in NGC 3001 begin at the center as two very thin, nearly straight (at first) dust lanes characteristic of the straight lanes on the leading edges of the bar in SBb and SBb galaxies. The spiral pattern has features of both the grand design and the MAS types. The bright arms branch into multiple fragments that remain well defined.

The I-III regions do not resolve at the $1^{\prime \prime}$ level. The redshift is $v_{o}=2171 \mathrm{~km} \mathrm{~s} \sim$.

Three Im candidate companions exist at angular separations of $10^{\prime}, 12^{\prime}$, and 12^{\prime}, which, at the redshift distance of 43 Mpc , are at projected linear separations of 125 kpc and 150 kpc . The andidate companions resolve into stars to the same degree as NGC 3001 itself, suggesting a common distance.
NGC $1640 \quad$ SBbc(r)I-II
CD-2010-Bedke/Giegory
Oct 23/24, 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
45 niin
The bar in NGC 1640 is smooth and well defined. Two stubby dust lanes exist near both ends of the bar, where luminous tightly wound spiral arms begin; the arms form an almost-complete inner ring when each has unwound by half a revolution. Low-surface-brightness outer arms begin on the rim of this almost-complete inner regn.

The largest HII region resolves at about $2^{\prime \prime}$ The redshift of NGC 1640 is $v_{0}=1600 \mathrm{~km} \mathrm{~s} \sim^{\prime}$

NGC $289 \quad$ SBbc(rs)I-U
CD-1578-S/Iir
Aug 10/1 I, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
The inner spiral pattern of NGC 289 is of the grand design type. Two arms of high surface brightness begin near, but no! a!, the ends of the bar. As in other eases that are similarly advanced toward the (r) spiral subtype from the pure NGC 1300 (s) type, each inner arm begins about 15° downstream from the ends of the bar. winding outward but missing the opposite arm after half a revolution. The inner arms in NGC 289 are not tightly wound. Consequently, there is no prominent almost-complete inner near-ring, as in earlier examples of the pattern such as NGC 3081 (SBa; panels 99. 107) and NGC 3185 (SBa; panel 99).

The inner arms cover a high-surface-brightness disk, outside of which the delicate, thin well-formed, very-low-surface-brightness, outer multiple-arm pattern exists.

These arms are fragments that cannot be individually traced for more than about a quarter revolution each.

The brightest knot in one of the inner arms has an angular diameter (core plus halo) of about $4^{\prime \prime}$. It may be a complex of several 1111 regions, unresolved at this resolution. The redshift of NGC 289 is r, ,= $1834 \mathrm{~km} \mathrm{~s} \sim$.

SBbe(r)I. 2

PH-7606-S
PH-7606-S
April 3/4, 1979
30 min
The multiple-arm pattern in NGC 3687 begins from an almost-complete inner ring that defines the end of the inner smooth disk. Th bright part of the bar terminates just before th inner edge of the internal ring.

The thin, regular spiral arms, which even tually divide into multiple fragments, wind out ward for a radius over the outer disk that is about twice the radius of the inner ring. The pattern is regular, requiring an early luminosity class.

The redshift is $u_{t)}=2456 \mathrm{~km} \mathrm{~s}^{-1}$. The galaxy that is superposed on one of the outermost arms is probably a distant elliptical associated with a cluster that can be seen over the extended field.

NGC $5921 \quad$ SBbc(a)I-II
CD-1539-S/Br
Aug 7/it, 1980
L03aO + GG385
15 mill
The two inner arms ol high surface brightness and of the grand design type, are beautiful examples of the NGC 1300 type, springing from he ends of a well-defined smooth bar within which are the two characteristic straight dus anes on the leading side of the bar. The arms ar very tightly wound, giving the impression of an nner ring.

The largest of the numerous 1111 regions esolve al the $l^{\prime \prime}$ level. The redshift of NGC 592 is $v_{u}=1428 \mathrm{~km} \mathrm{~s} \sim^{\prime}$

NGC 1241
SBbc(rs)I. 2
pair
PH-7917-S
Racine wedge
Nov 7/8, 1980
03aO
12 min
NGC 1241 forms a close pair with NGC 1242 (She; not in the RSA) at an angular separation of 1.6'. The redshift of NGC I 242 is unknown, but if it is nearly the same as that of NGC I $241 . v_{a}=4072 \mathrm{~km}{ }^{\mathrm{s}}$ '. the redshift distance of the paii- is $81 \mathrm{Mpc}(/ /=50)$ giving the small projected linear separation of 38 kpc . However, there is no evidence of morphological distortion in either NGC 1241 or NGC $12 / 12$ that would lie evidence ol ${ }^{\dagger}$ a close encounter; the pair may be optical rather than binary. (Rcrishifts are needed.)

The two high-surface-brightness inner arms begin at the ends of the central oval; the latter has the properties of a bar, signaled by the two characteristic dust lanes in the oval (bur) of prototype SBb and SBbc types. Multiple arms branch from the two main grand design inner arms

NGC 2442 SBI)c(is)II triplet?
CD-149-S
Feb 2/3, 1978
$103 a O+G G 385$
$\underset{45 \text { min }}{103 a O}+$
NGC 2442 forms an apparent pair with NGC 2434 (EO: panel I) at a separation of I $6 . \mathrm{a}^{\prime}$. The redshifts arc $\mathbf{u}_{0}(\mathbf{2 4 4 2})=1 \mathbf{1} 57 \mathrm{~km} \mathrm{~s}$ "' and $\mathrm{r},,(2434)=111!!\mathrm{km} \mathrm{s}^{-}$. At the mean rodand $\mathrm{r},,(2434)=111!!\mathrm{km} \mathrm{s} . \mathrm{At}$ he mean rod-
shift distance of $23 \mathrm{Mpc}(/ /=50)$ the projected linear separation is 112 kpc . A possible distant association is with NGC 2397 (Sc; panel 279) at a separation of 85 'at a redshift of $v_{o}=1044 \mathrm{~km}$ s^{-1}. The projected linear separation would be 570 kpc if there is a common distance.

The central part of NGC 2442 is an oval rather than a well-defined bar. Heavy dust lanes exist, the strongest of which threads the middle of the best-defined arm of the grand design pattern. The largest 1111 region in this arm resolves (core plus halo) at about the $5^{\prime \prime}$ level.

e	a
5	a

THe SBhc galaxies on this and the following panel arc all of the grand design type but arc of later luminosity class (greater geometrical entropy) than the galaxies on preceding panels.

NGC 4304

CD-225-S
Feb 12/13, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
45 niiii
The two principal arms in NGC 4304 spring from the ends of the bar, which is relatively smooth but is less well defined than in NGC 1300 . Dust exists in the bar, but the lanes are less regular than the two straight lanes that are characteristic of the strong shock lanes in SBb and SBhc galaxies of luminosity class I. Neverheless, the dust-lane pattern is believed to trace he velocity field (the streamlines) near the bar (e.g., Huntley 1978, 1980). Note that the dust lanes are nearly perpendicular to the bar on one side and arc along the bar on the other.

Copious star formation occurs in both of the main arms. The Mil regions have high surface brightness. They are individually unresolved at the 1 " level, but a complex of them in one of the arms has a halo diameter of about $5^{\prime \prime}$. The redshift of NGC 4304 is $v_{0}=2327 \mathrm{~km} \mathrm{~s}^{11}$.

Low-surface-brightness spiral fragments of arms branching from the two main arms exist on the outside of the main pattern. Such sets of outer low-surface-brightness, often called fossil, arms, are common features of spirals of all types.

NGC 6907
SBbc(s)II
CD-553-S
Oct 4/5, 1978
$103 \mathrm{aO}+\mathrm{GG} 38$
45 min
The spiral pattern in NGC 6907 is remarkably similar to that in NGC 4304, above. The bar is slightly less well defined. It is a highly flattened oval rather than a strong bar, but its dust pattern is the same as in NGC 4304. One heavy, nearly straight dust lane exits at one of the leading edges of the oval. The dust lanes on the other side are nearly perpendicular to the major axis of the oval.

The individual 11II regions are generally unresolved. The largest Mil complex, composed of several overlapping Till regions, lias a halo diameter of about 4". The redshift of NGC 6907 is $u_{\mathrm{s}}=3192 \mathrm{~km} \mathrm{~s} \sim 1$

IC 1953 SBbc(ra)II
CD-2001-Bedke/Gregory
Oct 22/23, 1981
L03aO + GG385
45 min
The arms spring from the ends of lite illdefined bar in IC 1953 and overlap on one side to form a partial internal ring that is incomplete in one quadrant. The arm on the opposite side from that with the light pitch angle (and therefore the overlap) has a straight section causing it to miss the opposite arm. creating a partial rather than a complete internal ring

Many bright MM regions exist throughout the arm pattern. The largest may resolve at about the 1.5 " level. The redshift of EC 1953 is v_{a} L856 km s"

An apparent companion (anonymous; type Sc or SBc) of unknown redshift is at a separation of 2.6^{\prime}. If it is at a common distance th projected linear separation would be small at 27 kpc . A second apparent companion (a blue compact dwarf, i.e.. type BCD; see Sand age and Binggeli 1984) at a separation of 6.1^{\prime} would be at a projected linear separation of 64 kpc .

NGC 6923

CD-1518-S/B
CD-1518-S/Br
103aO + GG385

45 mill

The seeming bar in NGC 6923 is a small, very-high-surf ace-brightness internal ring. The two grand design main outer arms emerge from the ends of the major axis of the ring. The fact that the arms begin at the ends of the major axis of the projected image in this obviously inclined galaxy, suggests that the internal ring is a true oval rather than a circle seen in projection.

The Mil regions in the arms are unresolved The redshift of NGC 6923 is $u_{0}=2858 \mathrm{~km} \mathrm{~s}$
L he four galaxies on this panel continue the SBbc spirals of the (s)-arm subtype of the grand design. The luminosity classes are II and II-III.

NGC 5430	SBbc(s)I. 8	Racine wedge
PH-7829-S		
Sep 3/4, 1980		
103 aO		
12 min		

The central region of NGC 5430 is an oval ather than a well-formed bar. The arm pattern is not symmetrical. Threads of multiple arms exist on one side of the oval. A single low-surfacebrightness, well-defined arm exists on the other side. The early luminosity class is based on the ack of chaos in the arm pattern, despite its lack of good symmetry

The few HII regions are unresolved. The redshift of NGC 5430 is $v_{0}=3016 \mathrm{~km} \mathrm{~s} \sim "$.

NGC $6217 \quad$ RSBbc(s)II
PH-6601-S
Aug 23/24, 1973
$103 \mathrm{aE}+\mathrm{RG} 2$
30 min
The reproduction on the facing panel is from a red plate: the HII regions are emphasized because the Balmer-a line is in the band-pass of the plate

The bar is very much better defined in the red here than on blue plates which emphasize the young stars. Clearly, such stars do not dominate the liar.

The (s)-type spiral arms originate from the ends of this smooth red bar. There is also a semblance of a straight dust lane in one of the legs of the bar, characteristic of SBb and SBbc legs of the
systems.

The unusual feature of the spiral pattern is the third arm coming from the center as a double bar on one side of the image. On blue plates this arm begins at the center, as in normal Sbc or Sc non-barred galaxies, rather than at the end of the bar.

The redshift is $v_{o}=1598 \mathrm{~km} \mathrm{~s}^{-1}$. The largest HII regions resolve at about the $2^{\prime \prime}$ level.

NGC 3887
CD-1685-S
Jaii 2/3, 1981
$103 \mathrm{aO}+\mathrm{GG} 38$
45 min
The central region of [VGC 3887 is an oval ather than a well-defined bar. The principal reason for classification as a barred spiral is the presence of two thin dust lanes starting on opposite sides of the center, as is usual in prototype SBb and SBbc bars (e.g. NGC 5383: SBb; Hubble Atlas, p. 46: panel 168 here). These remain straight throughout the oval but bend at the end $w^{\text {rhere }}$ they begin to accompany the luminous arms.

The largest of the many HII regions resolve (core plus halo) at the $2^{\prime \prime}$ level. The redshift of NGC 3887 is $v_{0}=915 \mathrm{~km} \mathrm{~s}^{\prime \prime}$.

NGC $3686 \quad$ SBbc(s)II group
CD-1841-HB
April 2/3, 1981
103 aO
NGC 3686 is the brightest member of a small group of at least seven galaxies that have closely the same redshift and that are within about 1° radius from NGC 3684 , which is the central member of the group. The brightest four group members arc in the RSA: NGC 3681 (SBb: 1135 km i j panel 164), NGC 3684 (Sc: 1065 km s~': panel 256), and NGC 3691 (Scd: 947 $\mathrm{km} \mathrm{s} \sim^{\prime}:$ panel 3 17). The redshift of NGC 3686 is $\nabla_{0}=1034 \mathrm{~km} \mathrm{~s}^{-1}$.

Three anonymous members for which redshifts and other data are available (Hoffman et al. 1987) arc All $27+1642$ (Imll1-IV, $\mathrm{u}_{\mathrm{D}}=957$ $\left.\mathrm{km} \mathrm{s}{ }^{11}\right)$, A1122 $+1709\left(v_{0}=909 \mathrm{~km} \mathrm{~s} \sim^{\prime}\right)$. and Al $122+1721$ (ImlV: $\left.v_{o}=1209 \mathrm{~km} \mathrm{~s}^{\prime \prime}\right)$. There arc also several candidates for dE dwarf ellipticals in the group. The mean redshift of the seven known group members is $\left\langle v_{o}\right\rangle=1021 \mathrm{~km} \mathrm{~s}^{-1}$. At the redshift distance of 20 Mpc the linear radiu corresponding to an angular radius of 1° is 360 kpc , similar to the radius of the Local Group.

The arm pattern in NGC 3686 is slightly better defined than in NGC 3887, above. The luminosity class is II here and II-III above.
∞
$\because \pi$

\because	\bullet
+6	\approx

NGC 151
 PH-1076-S

Aug 25/26, 1955

$103 a 0$

The beautifully symmetrical grand design in the pattern of NGC 151 contains a smooth central bar which terminates at the place where two inner arms begin. The arms do not spring from the ends of the bar but start from two symmetrically placed points about L5 ${ }^{\circ}$ downstream from the termination of the bar-a common-enough feature, noted before on previous panels.

The two principal arms that start at these places relative to the bar, fragment as they move outward and form the multiple-arm pattern in which at least four arm segments can be traced on each side of the galaxy

None of the many III! regions resolve at the $1 "$ level.

NGC 4981

SBbe(sr)II
CD-1860-HB
Aug 6/7, 1981
103aO
75 min
NGC 4981 may form a wide physical pair with NGC 4995 (She; panel 183) which has a redshif t of $v_{o}=1645 \mathrm{~km} \mathrm{~s}^{\text {at }}{ }^{1}$ an a n gu I a separation of 65^{\prime}. The redshift of NGC 4981 is $v_{o}=1492 \mathrm{~km} \mathrm{~s}^{-1}$. If the pair is at the same redshift distance of $31 \mathrm{MpC}(/ / /=50)$. the projected linear separation is 593 kpc .

The arms in NGC 4981 begin at the rim of the inner disk where the oval central region ends. The numerous 111! regions may resolve at about the $\mathbf{1 "}^{\prime \prime}$ level.

NGC 7121
 CD-1080-Hr
 Aug 17/18, 1979
 103aO + GG385

45 miu
One of tin- two principal arms thai can be traced begins about a quarter turn downstream from one of the ends of the bar. The opposite arm seems to begin at the end of the other side of the bar.

These arms fragment almost immediately into a semi-chaotic filamentary arm structure; hence the late luminosity classification is required.

The redshift is $v_{a}=\mathbf{1 8 3 8} \mathrm{km} \mathrm{s} \sim^{\prime}$. The largest 1111 region may resolve at the 2 " level.

NGC 1781
SBbc(r)II
CD-1677-S
Jan 1/2. 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
The b
The bar in NGC 1784 is well developed. Dust lanes and patches exist in Ihe bar: their description would be similar to the paragraphs on NGC 4304 and NGC 6907 two panels back.

The two. very tightly wound inner arms spring from the ends of the well-defined bar and overlap, forming a nearly complete inner ring overlap, forming a neariy complete inner ring.
The continuation of these arms results in an The continuation of these arms results in an
outer pattern of low-surface-brightness spiral fragments that cannot be individually traced fragments that cannot be individually traced

The redshift is $v_{o}=2254 \mathrm{~km} \mathrm{~s}^{11}$. The Mil regions are unresolved.
$T T$
JL he nine galaxies on this panel complete the illustrations of normal SBbc systems in the RSA. All are of luminosity class II or II-III, and all are of the multiple-armed (MAS) type.
ISGC 5970 SBbe(r)II
S-530-H
June 4/5, 1926
E40
45 mill
The print of NGC 5970 here is from
Mount Wilson 60 -inch plate.
The arms hegin from the ends of the bar th
terminate at the edge of an inner smooth dis
The pattern is a prototype (r) configuratio
where the outer arms are an extension of the The pattern is a prototype (r) configuration where the outer arms are an extension of the arent inner ring at the edge of the disk
The numerous HII regions in the disk are unresolved at the $1^{\prime \prime}$ level. The redshift of NGC 5970 is $v_{0}=2047 \mathrm{~km} \mathrm{~s}$

NGC $5483 \quad$ SBhc(s)II-III
CD-1526-S/Br
Aug 6/7, 1980
$103 \mathrm{aO}+\mathrm{GG} 38$
45 min
The two principal grand design arms are of the prototype (s) configuration, yet the entire disk is filled with spiral arcs, many of which are dust lanes. These arcs are not branch fragments from the principal arms. Rather they originate in the disk independently, like the arms in the MAS prototype galaxy NGC 2841

One large HII complex appears to be multiple, having a combined halo diameter of about "" The redshift of NGC 5483 is $v_{12}=1517 \mathrm{~km}$ ${ }^{4 \prime}{ }^{-1}$.

NGC 3318
SBbc(rs)II. 2
CD-1481-S/Br
May $12 / 13,1980$
$103 \mathrm{aO}+\mathrm{GG} 385$
35 nlin
NGC 3318 is in the complicated region of the Hydra-Centaurus Supercluster, about 6.5° south of the core of the embedded Antlia Group (Ferguson and Sandage 1990). A map of the region containing the neighborhood of NGC 3818 is given by Hopp and Materne (1985).

The redshift r , $=2306 \mathrm{~km} \mathrm{~s}^{\prime \prime}$ for NGC 3318 is among the lowest in the region. Hopp and Materne have identified six redshift groups with $\left\langle v_{o}\right\rangle$ values ranging from 2700 to $4500 \mathrm{~km} \mathrm{~s}^{-1}$ The adopted mean redshift of the Antlia Cluste is $\left\langle v_{o}\right\rangle=2503 \mathrm{~km}^{-1}$ (Ferguson and Sandage 1990).

NGC $4961 \quad$ SBbc(s)I
 PH-8091-S
 Feb 6/7, 1981
 103aO

The ill-defined bar in NGC 4961 terminate where the spiral pattern begins. The arm pattern is not well defined. Several bright Mil regions are vident. Each is unresolved at the 1 " level. Th redshift of NGC 4961 is $v_{o}=2508 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.

NGC 4763	SBbc(r)II
CD-1458-S/Br	

May 7/8, 1980
$103 \mathrm{aO}+$ GG385
45 min
The spiral pattern in NGC 4763 is of the classic (r) barred subtype: the multiple oute arms begin tangent to an almost-complete inne ing which begins at the end of a smooth, welldefined bar. As usual, the near-ring is composed of two coils of tightly wound principal spiral arm which spring from the ends of the bar.

The redshift is $v_{o}=3961 \mathrm{~km} \mathrm{~s}^{-1}$.
NGC $3485 \quad$ SBbc(s)II
CD-2128-S
March 21/22, 1982
103aO + GG385
45 min
The arm pattern in NGC 3485 is a par ticularly good example of the NGC 1300 (s)-type arm beginning at the ends of the bar but with almost-complete overlap after each arm has unwound by half a revolution to form an almost omplete inner ring. The ring, however, is roken, and the outer arms branch outward fro he extension of these tightly wound inner arms.

The redshift is $v_{n}=1395 \mathrm{~km} \mathrm{s"}$ '.

GC 438.
CD-698-Br
Jan 28/29, 1979
103 aO
45 min
The bar in NGC 4385 is not well defined except by the non-symmetrical luminosity distribution of spiral-like fragments; there is no smooth, definite bar as in NGC 1300

The redshift is $v_{o}=1969 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.

NGC 491
SBbc(r)II
CD-2006-Bedke/Gregor
Oct 23/24, 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
The spiral pattern is multiple in NGC 491 , starting from an internal ring upon which the bar terminates. The galaxy is remote compared with most others in the RSA; the spatial resolution is about a factor of four less than in the average RSA galaxy.

The redshift is $v_{b}=3890 \mathrm{~km} \mathrm{~s} \sim^{\prime}$
NGC 5188 SBbc(s)II-III pec
CD-1153-Br
Aug 22/23, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
The bar in NGC 5188 is suggested by a straight luminous segment on one side of the image. The form is unusual; NGC 5188 may not, in fact, be a true SB spiral but rather may simply have a semi-chaotic inner spiral morphology where one of its features imitates a bar

The redshift is $v,=2107 \mathrm{~km} \mathrm{~s} \sim^{\prime}$

NCC4618 \quad SBbe(rs)II. $2 \underset{\text { pec }}{\text { M }} \quad \underset{\text { M51 Grachentser } 349}{ }$ PH-7666-S 1979 $103 a 0$ 103 aO
NGC 4618 forms a physical pair with NGC $4625\left(\mathrm{Sc}\right.$ pec) at a separation of 8.5^{\prime}. The redhifts are $\mathbf{u}_{0}(4618)=563 \mathbf{k m} \mathrm{~s}^{\prime}$ and $\mathbf{u}_{0}(\mathbf{4 6 2 5})=$ $641 \mathrm{~km} \mathrm{~s}^{-1}$. At the mean redshift distance of 12 $\mathrm{Mpc}(/ /=50)$ tlic projected linear separation of pair is small, at 30 kpc

Both galaxies show evidence of interaction. Each has an asymmetrical spiral pattern charac erized by a single prominent arm, presumably made by the action of tides in the manner calcu ated by Toomre and Toomre (1972)

Both NGC 4618 and NGC 4625 are well resolved into brightest stars and HII regions. These galaxies are in the nearby complex Urs Major region, which Tammann (unpublished) has divided into three separate kinematic groups plus the great Ursa Major Cluster at $\left\langle v_{o}\right\rangle=980 \mathrm{~km}$ s^{-1}. The three groups are (1) a very highly resolved nearby group at $\left\langle v_{o}\right\rangle=285 \mathrm{~km} \mathrm{~s}^{-1}$ containing NGC $4144,4214,4244,4395$. 449,4736 and 1C 4182 among others, (2) the 551 Group at $\left\rangle_{0}\right\rangle=595 \mathrm{~km} \mathrm{~s}^{-1}$, containing NGC 4258,4490 , and 4618 , and NGC 4625 re, and (3) a group at $\langle i\rangle=750 \mathrm{~km}$ s containing NGC 3675. $4013,4051,4085$ $4088,4147,4242,4389$ and 1C 750 .

NGC 5534 SBbe(s)II(tides, merger?)
CD-1330-S/Br
March 13/14, 1980
103aO + GG385
50 min
NGC 5534' may he a composite image of two galaxies in the process of merger. The main body has a normal SB oval in the central regions. Two small satellite objects exist on one side of the main body from which an apparent tidal plume merges. The outer thin spiral arms of wide extent may also be a result of a response to tides. The redshift is $\mathrm{u}_{0}=2483 \mathrm{~km} \mathrm{~s}$ "'

CD-1433-S/Br
 March 25/26, 1980
 103uO + GG385

45 min
Based on the near' ecpiality of their r_{0} redhifts, $2146 \mathrm{~km} \mathrm{~s}^{-1}$ and 2 I $65 \mathrm{~km} \mathrm{~s} \sim^{\prime}$, NGC 5915 ad NGC 5916 (panel 81) form an obvious physical pair. The group may be a triplet formed so with NGC 5916A, bin the redshift of ib gaxa is presently (1990) unknow

At the mean redshift distance of 43 Mpc (/t $=50$). the projected linear separations of both NGC 5916 and NGC 5916A from NGC 5915 are small at 59 kpc .

The morphologies of both NGC 5915 ami NGC 5916 appear disturbed, presumably due to tidal interaction. Note that the form of NGC $5916(\mathrm{Sa})$ is similar to that of NGC 32 ! 11 (Sa: panel 65) in tin^{1} Antlia Cluster.

NGC 5915

SBbc(s) pec
CD-1433-S/Br
March 25/26, 1980
103aO + GG385
45 min
NGC 5915 is outside the classification sysem. It is called SBbc(s) based (Hi the "arms" that spring from the ends of the central region in the manner of NGC 1300.1 lowever. the form may be due to tidal interaction with NGC 5916. shown above.

The Sc Classification Section

THE SCI SUBCLASS
$\mathrm{K}_{\mathrm{k}} \mathrm{c}$ galaxies of luminosity class I are shown on this and the next eight panels. Galaxies with two principal arms of the grand design are on the first three panels; those with multiple arms are on panels 216-221.

NGC4321	Sc(s) I	VCC 596
PH-742-S		HA, pp. 28, 31
April 8/9, 1954		M100
103aE + RG2		
90 inin		

NGC $4303 \quad$ Sc(s)1

March 22/23, 1982
VCC 508
March 22/23, 1982

03aO

As with NGC 4321 at the left, NGC 4303 is among the largest-angular-sized spirals in the Virgo Cluster region. Both are considered memers of the cluster. Both have redshifts larger than the Virgo Cluster mean of $\left\langle v_{o}\right\rangle=976 \mathrm{~km} \mathrm{~s}^{-1}$ than the Virgo Cluster mean of $\left\langle v_{o}\right\rangle=976 \mathrm{~km} \mathrm{~s}$
(Sandage and Tammann 1990). The redshift of NGC 4321 is $v_{o}=1464 \mathrm{~km} \mathrm{s"}$ ": that of NGC 4303 is $v_{o}=1404 \mathrm{~km} \mathrm{~s}^{\prime}$.

The arm pattern in NGC 4303 begins at the center as two thin dust lanes that wind outward through the inner disk, meeting the two principal luminous arms of the grand design type at the edge of the bright part of the disk. One of the principal arms is bent into two straight sections that meet at a sharp angle.

The arms are filled with HII regions that must be identified and eliminated from a candidate list before a survey of the brightest stars can be made.

NGC $3893 \quad$ Sc(s) 1.2	Karachentsev 313 P1I-7636-S
April 28/29, 1979	
103aO	
12 min	
NGC 3893 and its companion, NGC 3896,	

NGC 3893 and its companion, NGC 3896, arc members of the Ursa Major Cluster, whose mean redshift is about $\left\langle v_{t t}\right\rangle=980 \mathrm{~km} \mathrm{~s}^{-1}$. The angular size of the galaxy is large at $\mathrm{D} 95=4-4^{\prime}$ listed in the RC2. The size is slightly smaller ${ }^{1}$ than the largest galaxies in the Virgo Cluster sueh as NGC 4321 and NGC 4303 on the preceding panel.

The spiral pattern of NGC 3893 is of the grand design type having two principal spiral arms, both of high surface brightness for at least hall' a turn from their place of origin near the center. The largest of the numerous HII regions in the arms resolve (core + halo) at about the 2" level.

NGC 3893/3896 Sc(s)1.2 Karachentsev 313 PH-7636-S BCD Ursa Major Cluster

April 28/29, 1979
103 aO
NGC 3896 (BCD. for blue compact dwarf) is a companion to NGC 3893 at an angular separation of 3.7'. At the mean redshift distance of 19.6 Mpc for the cluster $(11=50)$ the projected linear separation of the pair is small, at 21 kpc .

NGC $5660 \quad \mathrm{Sc}(\mathrm{s}) 1.2$
PH-7864-S
Sep5/6, 1980
I03a0
2 mill
NGC 5660 may form a wide pair with NGC 5676 (Sc; panel 245) at a separation of 30.5^{\prime}. 11 also has a likely dwarf hnlll companion of unknown redshift at the small separation of 2.6^{\prime} Tin- rcrlshifts are <>,,(5660) $=2433 \mathrm{~km} \mathrm{~s} \sim^{\prime}$ and $\mathrm{u}_{0}(5676)=2239 \mathrm{~km} \mathrm{~s} \sim^{\prime}$. At the redshift distance of $47 \mathrm{Mpc}(/ /=50)$ the projected linear separations are 417 kpc for NGC 5676 and 35 kpc for the I in 11 I companion.

The spiral pattern in NGC 5660 is prototype $\mathrm{Sc}(\mathrm{s})$ of the grand design type where the two main arms begin at the center

NGC 34-64 $\operatorname{Se}(\mathrm{rs}) \mathrm{I} / \mathrm{SBc}(\mathrm{s}) \mathrm{I}$
CD-199-S
Feh 8/9, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
NGC 3464 is shown in the Se section here rather than with the SI3e galaxies because we decided in preparing the KSA2 that the bar (or central oval) is weak enough to ignore. However our sober second opinion is that the bar is strong enough, as viewed at this favorable inclination angle, to acknowledge. If the galaxy were viewed from an angle sueh that the central near-ring which is almost complete, would appear circular the bar would be considered to be as weak as those of others classed simply as Sc with arms starting from the edge of the inner disk

The redshift is $v_{t t}=3571 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 2912
I'H-771 I-S
Feb 11/12, 1980
103 nO
12 min
'The spiral arms in ibis highly symmetric early-luminosity-class prototype $\mathrm{Sc}(\mathrm{s}) 1$ galaxy arc well-formed, thin, and of the grand design type. The galaxy is remote by KSA standards The rcdshifl is r, , $=4399 \mathrm{~km} \mathrm{~s}^{-}$.

NGC 2207/IC 2163
 $\mathrm{Se}(\mathrm{s}) 1.2$
 CD-580-S
 $\mathrm{Sc}(\mathrm{s}) \mathrm{II}-111$

Oct 8/9, 197!!
I03a 0 + GG385
55 min
The pail- is clearly interacting, based both on the morphological distortion of 1C 2163 (note the outward sweep on one side of the spiral pattern) and on the near equality of the redshifts. The redshifts derived from the 'rluchtmeier/Rich er Catalog (1989) arc,$-(2207)=2597 \mathrm{~km} \mathrm{~s}^{\prime \prime}$ and $\mathrm{i} . .(2163)=2418 \mathrm{~km} \mathrm{~s}^{\prime \prime \prime}$

The angular separation of the centers ul the pair is 1.5^{\prime}. At (he mean redshift distance of 50 Mpc (// =50). the projected linear separation is $\mathrm{Mpc}(/ I=50)$. the projected linear separation is
small, at 22 kpe. However, it may be that the tine small, at 22 kpe. However, it may be that the tine separation is larger the line of sight. The plane of NGC 2207 may be warped, but because the image is nearly face on, the warp, if present, would not be visible.

Note that although 1C 2163 shows evidence of tidal distortion, NGC 2207 docs not. This point illustrates thai interaction cannot be judged by morphological distortion, al least in some cases.

NGC 958	$\mathrm{Sc}(\mathrm{s})$
PH-7843-S	

PH-7843-S
Sep3/4,1980
103 aO
2 mill
NGC 958, with redshift $u_{0}=5738 \mathrm{~km} \mathrm{~s} \sim$ is one of the most distant galaxies in the RSA (se the distribution of redshifts set out in RSA2, Fig 2. p. 92). There are two major arms of the grand design type. Their beginning near the center is difficult to trace because of the high inclination to the sight line: the (s)-subtype designation is uncertain for that reason

NGC 2955	Se(s)I \quad Racine wedge	
PH-8071-S		

PH-8071-S
Feb5/6, 1981
103aO
12 inin
NGC 2955. with $v,=7051 \mathrm{~km} \mathrm{~s} \sim \sim^{\prime}$. has the second-largest redshift in the RSA: consequently the number of resolution elements in the image is among the smallest in this atlas. (The galaxy with the largest redshift is NGC 7119. Sell, pane 282, with $v_{o}=9825 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.)

There are two main arms of the grand design type beginning at the center in NGC 2955.

NGC 3478
PII-8074-S
Feb 5/6, 1981
103 aO
12 inin
The redshift of NGC 3478 is $v_{B}=6730 \mathrm{~km}$ $s \sim$, the sixth-largest in the RSA, giving a distance of $135 \mathrm{Mpe}(77=50)$. Hence the resolution of the image here is poorer than for most galaxies in this atlas.

The unusual feature of ${ }^{\prime}$ NGC 3478 is its six principal arms, each of which is thin and well defined. Each starts from the center and is generally smooth, although a few II11 regions exist in the outer parts of three of the arms.

New 6=A2120-46 $\quad \mathbf{S c}(\mathrm{s})$ I
CD-1543-S/Br
Aug 7/8, 1980
103aO + GG385
45 niin
The nearly edge on inclination of New 6 makes the classification of a grand design spiral pattern uncertain; what is evident is that the arms are thin, well defined, and well separated. The redshift of New 6 is $u_{\mathrm{e}}=2600 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.

IC 764
$\mathbf{S c}(\mathbf{s}) \mathbf{1 . 2}$
CD-1706-S
Jan 5/6, 1981
103aO + GG385

55 inin

The spiral arms in IC 764 are well define and begin at the center. A central bulge is absent; the center is defined by a very small nucleus; hence the Sc classification is required.

Many HII regions exist in one of the two principal arms. The largest have core + halo diameters of about $3^{\prime \prime}$. The redshift of IC 764 is $v_{v}=1851 \mathrm{kms}^{\prime 1}$.

NGC 3095 Sc(s)I-II pec :ir
CD-128-HB
Jan 5/6, 1978
103aO + GG385
80 min
NGC 3095 forms a wide apparent pair with NGC 3100 (SO_{J} J prolate: not in the RSA) at an angular separation of 10^{\prime}. The redshift of NGC 3095 is $v_{o}=2564 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}$ ': the redshift of NGC 3100 is unknown. If the pair is physical rather than optical in the line of sight, the projected linear separation is 149 kpc . If the pair is in fact binary it is important because the large difference in morphological type (Sc vs. SO) would have important implications for the yet-unsolved problem of galaxy formation and subsequent evolution as related to the classification seevolution as related to the classification sequence.

NGC L232 is one of the wonders in the sky. It is the prototype of a highly regular multiplearmed spiral of the earliest luminosity class.

The arms start at the edge of a high-surfacebrightness disk. Only two major arms begin al this rim. After about one-quarter revolution this rim. After about one-quarter revolution,
each branches into two fragments which after each branches into two fragments which after
further unwinding branch again until a highly further unwinding branch again until a highly
multiple armed structure spreads over the outer disk.

Each fragment is well separated from the others; the geometrical entropy of the pattern is as low as in any galaxy in the RSA, equal or somewhat lower than in other highly regular $S c$ galaxies such as NGC 309 (Hubble Atlas, p. 32. panel 221 here) and NGC 5361 (Hubble Atlas p. 32; panel 217 here)

The arms are Tilled with III] regions and candidates for brightest stars. The largest 11II regions have core + halo diameters of $\mathbf{3}^{\prime \prime}$. The redshift is $v_{0}=1775 \mathrm{~km} \mathrm{~s}^{-1}$

The SBm 111 companion to the east is separated from NGC 1232 by 4.0^{\prime}. Tin-re is confusion (c. 1992) as to whether this highly resolved galaxy is at the same distance as NGC 1232 . The redshift of NGC 1232 A measured by Welch, Chincarini, and Rood (1975) of $v_{0}=$ $1780 \mathrm{~km} \mathrm{~s}^{-1}$ was rejected by de Vaucouleurs, de Vaueouleurs, and Nieto (1979) in favor of u_{o} $6496 \mathrm{~km} \mathrm{~s}^{-1}$ measured by them from an I let line However, a $2 \mathbf{1 - c m} 111$ redshift of $v_{o}-\mathbf{1} 772 \mathrm{~km}$ s^{-1} by Reif, Mebold, Goss, van Woerden, and Siegman (19H2) confirmed the early value liy Welch el al. But an even later $21-\mathrm{cm}$ redshift confirms the larger redshift near $\boldsymbol{v}_{0}=\mathbf{6 5 0 0} \mathbf{~ k m}$ s^{-1}.

The resolution of INGC 1232 A into star' and 1111 regions at the same Level as in NGC 1232 itself makes no sense in the conventional inter pretation of redshifts as a precise distance in dicator if the high redshift value is correct. Th Case remains an important mystery (c. 1992).

At the mean redshift distance of 35 Mpc , the projected linear separation of NGC 1232 A from NGC 1232 is small at $41 \mathbf{k p e}$ if they are at the same distance. If not, the mystery remains.

Abstract

NGC 5364 PH-193-MH May 13/11, 1950 $103 a O$ 30 min NGC 5364 has one of the most regular spiral patterns of all the RSA galaxies. The arms start tangent to a complete inner ring. The ring is not made by the near overlapping of opposite principal arms, as is the usual case. It is fed by two spiral arcs that start near the center. The description in the Hubble Atlas of the outer arms is still valid and is not repeated here.

NGC 5364. with a redshift $v_{n}=1140 \mathrm{~km}$ s^{-1}, forms a physical triplet with NGC 5360 (BCD: not in the RSA: $v_{o}=1060 \mathrm{~km} \mathrm{~s}^{\text {"1 }}$) at a separation of 7.7'. and with NGC 5363 (SO_{3} in the RSA but not shown in this atlas: $v_{o}=1018$ $\mathrm{km} \mathrm{s}^{-1}$) at a separation of 14.4'. At the mean redshift distance of 2 . At the mean redshift distance of $21 \mathbf{M p c}(1 \%)=50)$ the projected linear separations from NGC 5364 are 47 kpc and 88 kpc , respectively. The large morphological difference between NGC 5363 (SO) and NGC 5364 (Sc) is noteworthy

NGC 5457	Sc(s)I	HA, pp. 27,31
PII-81-B	M101	

PIT-81-B
June 9/10, 1950
103 aO
M101. like NGC 1232 two panels back, is the prototype of the multiple-armed Sc class, luminosity class I, subtype (s), where the arms begin at the center rather than from an internal ring. The two main arms at the center branch into multiple fragments outward. Thin, intricate dust lanes are closely associated with the luminous fragments. The entire face of the galaxy is well resolved into individual brightest stars and Till regions

M1 01 . the closest $\mathbf{S c]}$ galaxy to us, has been important in the steps toward a correct calibration of the extragalactic distance scale

Hubbies (1936a) distance modulus for Ml 01 was small, at $m-M=24.0$. The modulus was increased in the Hubble Atlas to $m-M=$ 27.0 ($\mathrm{D}=2.5 \mathrm{Mpc}$). It is now known that even this value is 2.3 magnitudes too small. Following work on the distance scale in the early 19701 s when Cepheid variables could not be found with the 200 -inch telescope (Sandage and Tammann the 200 -inch telescope (Sandage and Tammann 29.3, which is 5.3 magnitudes farther than 29.3, which is
Bubble's 1936 value.

This large increase provided the third step upward in the revision of Hubble's distance scale. The first was Baade's increased distance to M31 in 1952. The second was the increased distance to NGC 2403 (Tammann and Sandage 1968) based on the identification and measurement of Cepheids beyond the Local Group.

The 1974 photometry of the stellar content of M101 was extended in the 1980 \s (Sandage 1983b). Brightest blue stars, of which some are bright irregular supergiant variables, begin to resolve at magnitude $V=18.9$. The brightest red supergiants resolve beginning at $V=20.3$.

M10 1 is al the center of a group of highly resolved dwarf galaxies all with small redshift The companions include NGC 5201. 5171 5477, 5585. and Ho IV. A discussion of the group and photographs of the companions are given elsewhere (Sandage and Tammann I 974c). The mean redshift of the group is $\langle *\rangle=,402 \mathrm{~km}$ s~. The redshift of MI 01 itself is $\boldsymbol{u}_{a}=372 \mathrm{~km}$
Tin- angular diameter of M 10 I to an isophote of 25 mag arc sec ${ }^{2}$ is large al 27°. A pictorial comparison of the angular diameters ol in- giant Sri galaxies M 101 . M51, MIC $(>2 \mathrm{~N}$ GGC 5248, and the three largest spirals in ih Virgo Cluster (iNCC 4254.4303, and 4H2 1) i given elsewhere (Sandage and Tammann $\mathrm{L}^{\text {¹ }} 76 \mathrm{~b}$) where it is shown that the angular sizes scale wel as the inverse of the measured redshifts. This is the of several independent ways to demonstrate that there is very little noise in the local llulihle linear expansion velocity flow.

Sc Classification Section (continued)

NGC $3938 \quad$ Sc(s)I Ursa Major Cluster PH-4523-S panels 220, S5

April 15/16, 1964

$103 \mathrm{aE}+\mathrm{Ha}$ interference
120 min
NGC 3938 is a millLipie-armed, early
luminosity class $\mathrm{Sc}(\mathrm{s})$ galaxy- similar to NGC 1232 anil Ml 01 on the preceding panels. The print here is from a Palomar 200 -inch Hex interference red plate. The image in the blue conference red plate. The image in the blue con-
tinuum is on the following panel at the upper left (panel 220).

The HII regions define the arms as beads on a string. As in M5 1 and M101. the two principal arms begin near the center and unwind for about half a revolution, branching thereafter. Thin dust lanes are present throughout the inner arm region, the inner disk, and the inside of the principal luminous arms.

The largest HII regions have diameters (core + halo) of about $5^{\prime \prime}$. The redshift of NGC 3938 is $x_{o}=844 \mathrm{~km} \mathrm{~s}^{-1}$

NGC 3938	Sc(s)I	panels 219, S5
PH-7637-S		
April 28/29, 1979		

Aprii 28/2
103 aO
12 min
Tlie image here is made from a blue plate taken with the Hale 200-inch telescope at Palomar. The resolution into individual brightest stars is not as evident as, and will lie more difficult to identify and measure photometrically than, in MI0I or NGC 628. Nevertheless, the size of the largest HII regions at 5 " shows that the low redshift of $v_{0}=844 \mathrm{~km} \mathrm{~s}^{-1}$ correctly indicates that the galaxy is close enough to permit study of the brightest stars at a level more favorable than in the Virgo Cluster Scl spirals, where the Hll-region diameters are not larger than about $3^{\prime \prime}$.
$\begin{array}{lrl}\text { NGC 628 } & \text { Sc(s)I } & \text { HA, p. 29,31 } \\ \text { PH-1151-S }\end{array}$
PH-1151-S
Oct 24/25, 195
25 min
The spiral pattern in NGC 628 is the prototype of a highly regular, two-principal-arm, grand design type. The central parts of the two major arms begin at the center as dust lanes. The lanes accompany luminous arms after about a quarter-rotation. The thin dust lanes then are generally on the inside of the luminous ridge-lines of the star-forming arm regions.

The resolution into individual stars begins at the bright apparent magnitude of about $B=$ 20. This galaxy is one of the prime candidates wherein we must obtain (c. 1990) brightest-star photometry; the background surface brightness of the luminous arms is low compared with the much more difficult cases of M5 1 (panels 172, 177) and M83 (panels 300, 301), making this galaxy ideal for study.

The largest HII regions in NGC 628 are complex. Several with multiple nuclei have tore + halo diameters of $5^{\prime \prime}$. The redshift of NGC 628 is $v_{0}=861 \mathrm{~km} \mathrm{~s}^{-1}$. The resolution into stars is easier seen in NGC 628 than in the Virgo Cluster and Ursa Major Cluster spirals, but is more difficult than in M101 and its satellites, consistent with the intermediate value of its redshift.

NGC 3614 $\mathbf{S c}(\mathbf{r})$
 pair: Racine wedge
 Feb 1/5, 1981
 03 aO

2 min
The spiral pattern in NGC 3614 is thai of the multiple-armed type, starting with two main arms thai begin from an internal ring and that branch after about three-quarters ol a revolu tion. The arms are thin and can be well traced requiring the early luminosity classification

A candidate for a clos < ...mpanion exists a a separation of 2.6^{\prime}. Its redshift is presently (1990) unknown. If it is similar to the value for NGC 3614 of !!, $=2362 \mathrm{~km} \bar{a}^{\prime}$, the projected lineal" separation of the pair would be small. 36 kpc at the redshift distance of $47 \mathrm{Mpr}(/ /=50)$. The brightnesses of the HH-region knots in the two galaxies are similar enough to argue fo equality ol distances.

NGC 5161
$\mathrm{Se}(\mathrm{s}) \mathrm{I}$
CD-1478-S/Br
May 11/12, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
Two opaque dust lanes begin at the small nucleus in a prototypical (s) pattern. These lanes change into luminous arms close to the center whereupon the arms soon branch into a multiplearm pattern similar to that in M31 (panel 149) Going outwards, the arms cross the major axi ive times on one side of the major axis: on (lie ther side four crossings are definite. An arm fragment that would provide (he filth crossing is present, but is of very low surface brightness.

The numerous IIII regions in the arms ar nresolved. The redshift of NGC 5161 is $v_{o}=$ $2113 \mathrm{~km} \mathrm{~s} \sim$.

Many of the galaxies on this panel are more distant than most RSA galaxies. As a consequence, the prints have fewer resolution elements than do most prints on preceding panels. Despite the relative lack of resolution, it is evident that all galaxies here have very regular spiral patterns of small geometrical entropy, requiring the luminosity class I category.

| NGC 309 | Sc(r)I HA, p. 32 |
| :--- | :--- | :--- |
| PH-15-MH | |
| Nov 15/16, 1949 | |
| $103 a 0$ | |
| 20 min | |
| The internal ring from which the highly | |

The internal ring from which the highly branched multiple arms begin in NGC 309 is almost complete. The ring may attach to the ends of a central bar. similar to the pattern in the prototype SBbc(rs)II galaxy NGC 1073 (Hubble Atlas, p. 49: panel 294 here), but any bar that is present in NGC 309 is weak
Many HII regions are present in the arms but none are resolved. The distance is large, as is also shown by the high redshift of $v_{._{2}}=5786 \mathrm{~km}$ s^{-1}.

NGC $2776 \quad$ Sc(rs)I
PH-7991-S
Feb 2/3, 1981
103aO
12 niin
The reproduction here is made from a weak 200 -inch Palomar plate taken through clouds.

The spiral arms start from the outer edge of a smooth inner disk of moderately high surface brightness [not a luminous inner ring as in most (r) subtypes]. Three, rather than two, arms begin from this edge. None of the HII regions resolve into disks at the $1^{\prime \prime}$ level. The redshift of NGC 2776 is $v_{n}=2673 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 2280 CD-664-Br
 Jan 22/23, 1979
 $103 a \mathrm{O}$ + GG385

45 min
As in the pattern of NGC 5161 on the preceding panel, tile multiple-armed pattern of NGC 2280 can be traced to show five crossings of the major axis on one side and four on the other. Six crossings on either side of the minor axis can be counted.

The redshift is $v_{o}=1709 \mathrm{~km} \mathrm{~s}^{1}$.

NGC 2989

CD-683-Br
Jan 26/27, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
The angular diameter of NGC 2989 is small at 1.4': the redshift is $v_{o}=3916 \mathrm{~km} \mathrm{s"'}$. The spiral pattern is regular and of the multiplearmed type, similar to all others on this panel.

NGC 1376
PH-7919-S
Nov 7/8, 1980
103aO
12 min
The spiral pattern of NGC 1376 is similar to that of NGC 309 at the upper left except that the inner ring is absent; the inner arms begin at the nucleus as in M101 (Hubble Atlas, pp. 27, 31; panel 218 here) rather than in the (r) pattern as in prototype NGC 309.

The redshift of NGC 1376 is $v_{n}=4198 \mathrm{~km}$
s^{-1}.
NGC 2998
$\mathrm{Sc}(\mathrm{rs}) \mathrm{I}$
H-2346-H
Nov 27/28, 1946
103 aO
The spiral pattern of NGC 2998 is of the same type as that of the other five galaxies on this panel. Five arm crossings can be counted on each side of the major axis. The arms are thin and very well defined, requiring the early luminosity class.

The reproduction here is made from a plate taken in excellent seeing with the Hooker 100 inch telescope on Mount Wilson.

The redshift of NGC 2998 is large, at $v_{0}=$ 4813 km s"'

NGC2997 \quad Sc(s)1.3 panel S5
CD-710-S
Feh 3/1, 1979
103aO + GG385
15 min
The spiral pattern in NGC $2<\gg 7$ is of the grand design type; two main arms in the central egion branch into thick fragments covering the outer disk, filling il much as in NGC 5 I 94 (MS I Hubble Atlas, pp. 26, .II I : pain-Is 172.177 ere), hut less extreme here

The inner disk is covered with thin, tightly wound spiral dust lanes. The two most opaque anes begin at the center [(s) type] silhouetted against the high-surface-brightness inner disk in ${ }^{1}$ two main luminous arms associated with hese dust lanes begin some distance from the center, each after about half a turn outward from he parent dust lanes. The arms become luminou on the outside of the accompanying spiral dus attern.
A group of "hot spots" exist in the comple nter (Sersic and Pastoriza L965).
Many till regions exist in the high-surface brightness luminous arms. The largest are complexes of several centers.

As in M5 1, the identification and hotometry of individual stars will be difficul because of the problem of identification and limination of the small III I regions. The high rface brightness of the arms will mak photometry difficult

The redshift is $v_{s, s}=199 \mathrm{~km} \mathrm{~s}^{\prime \prime}$

THE SCI-II SUBCLASS

CD-908-IIB 197
103aO + GG385
45 mill
NGC 5247 is a prime example of spíral structure of the grand design type. Two very structure of the grand design type. Two very-
well-defined principal arms start as narrow well-defined principal arms start as narrow luminous spiral lanes at the center and can be traced at high surface brightness for slightly more than half a revolution. A set of fainter-sur face-brightness arms exist inside the main set These also begin near the center, but are thick and less well defined

The largest HII-region complexes in the main arms have core + halo diameters of about $4^{\prime \prime}$. No resolution into individual stars is eviden brighter than about magnitude $V=22$. The red shift of NGC 5247 is $v_{o}=1143 \mathrm{~km} \mathrm{~s}^{-1}$

NGC 4254	SC(B)I.3	VCC 307
H-1697-B	HA, p. 29	
April 3/4, L946		M99

L03a0 + UG2 (ultraviolet.)
90 miii
NGC 4254 is among the ten largest spirals of the Virgo Cluster members listed in the VCC. The isophotal angular diameter from the RC2 is $D_{25}=5.4^{\prime}$. Comparison of the size of NCC 4254 with other large Virgo Cluster spirals is seen from the photographs printed is a common scale given in the Virgo Cluster photographic alias (Sandage, IJin^jjirli, and Tammann L985a),

The print here is from an ultraviolet plate aken by Baade with the Mount Wilson I 00 -inch Hooker reflector. The print in the Hubble Atlas (p. 29) is from a red (103aE, no filter) plate p. 29) is from a red (103aE, no filter) plate made by Humason with the Palomar 200-inch elescope. Both photographs favor the 1111 regions rather than the continuum radiation of unresolved stars in $\ln ^{*}$ arms emphasized in the
blue photograph in the Hubble Atlas cited above. blue photograph in the Hubble Atlas cited above.
The two principal arms are of the grand The two principal arms are of the grand
design type. A complex set of arm fragments design type. A complex set of arm fragments
exists in the disk on one side of the grand design exists in the

Thin dust Lanes accompany the main spiral arms, generally on their inside edges, as is usual.

NGC $157 \quad$ Sc(s)II-III \quad HA, p. 29
Au- 24/25, 1955
103aO
Although the spiral pattern in NGC 157 consists of two main grand design arms of high surface brightness beginning near the center, the entire disk is filled with thick arm fragments. Th pattern differs from that of NGC 5247 tw panels back, where the grand design arms ar thin and cover only a small fraction of the disk area.

The main arms in NGC $15 \hat{i}$ branch such that eventually three crossings of separate arm fragments occur on one side of the major axis, proceeding outward. On the other side, spira dust fragments cover the disk. The geometrical entropy is high. The luminosity class given in the HSA2 is I-II. It is revised here to II-III becaus of the disorder in the arm

The 1 III regions are unresolved at the $2^{\prime \prime}$ level. Brightest stars are not easily resolved on the high-surface-brightness background. The redshift is $v_{n_{n}}=\mathbf{1 8 1 3} \mathbf{~ k m ~ s}{ }^{\prime \prime}$

NGC 7125
CD-1520-S/Br
Aug5/6, 1980
Aug5/6, 1980
$103 \mathrm{aO}+$
NGC
NGC 7125 forms a physical pair with NGC 7126 (Sab: panel 111) at 6.2 ' separation. The 7126 (Sab: panel 111) at 6.2 separation. The
redshifts are $\mathbf{y}_{0}(\mathbf{7 1 2 5})=2910 \mathrm{~km} \mathrm{~s}^{* 1}$ and $u_{0}(712 \sigma)=2888 \mathrm{~km} \overline{\mathbf{s}} \backslash$ At the mean redshift distance of $58 \mathrm{Mpc}(/ /=50)$, the projected linear eparation is 105 kpc

A short bar exists in the central region of NGC 7125 from which the two principal arms begin at each end. The two main arms can be raced for a complete revolution as the principal piral features, albeit with branching into fragments that generally parallel the main pattern as it unwinds outward

The HIT regions are unresolved. No candidates for brightest stars exist to this plate limit.

NGC 2903

PH-71-MH
Feb 15/16, 1950
03aO
ntin
NGC 2903 is nearby, as judged by the de ree of resolution into individual stars beginning at about $B=22$ in the two very-low-surface brightness outer spiral arms. Resolution is not a asy as in MI 0.1 , but is much easier than in any of the Virgo Cluster spirals such as MI 00. Th redshift of NGC 2903 is $v_{0}=472 \mathrm{~km} \mathrm{~s}^{\prime \prime}$

The surface brightness of the inner spiral pattern is exceptionally high. The arm pattern is thick. In addition to the two main arms, well seen in the print at the right, the outer arm pattern is multiple, filling the disk On the short exposure multiple, filling the disk. On the short exposure n the right, the central pattern is a weak ba rom which one of the two principal arms spring part of the slightly urved bar on that side.

The dust lanes throughout the disk are piral fragments. Their opening (pitch) angles near the edges of the bar are very steep (the lanes begin almost perpendicularly to the bar), flattening to the pitch angles of an ordinary non-barred piral in the outer pattern. These dust lanes undoubtedly trace the flow pattern of the interstellar medium as its hydrodynamic response to the gravitational potential of the rotating bar, including shocks near the leading edges of the bar (e.g., Huntley 1978, 1980, and references therein).

NGC 2903
SC(B)I-II
HA, p. 35
PH-3902-
Feb 5/6, 1962
L03aE + Ha interference

90 nuin

The weak bar pattern is seen well in this Ho
Herference filter photograph taken with the
Palomar 200-inch Hale Telescope, 'The bar is not
well defined but is definite. U ran also lie seen as
an intensity enhancement across tin* disk in the continuum photograph on the left.

The dust lanes along the bar on either side, situated as usual' on tili* leadingedges of "lie bat relative to the direction of rotation, are characteristic of dusty barred spirals. They are thought to be the result of shocks in the vicinity of the bar caused by the bar's rotation (Prendergast 1962 1983: Peterson and Iluntley 1980; 1lunlley 1978. 1980).

The largest HIl-region complexes seen here have core + halo diameters of about $6^{\prime \prime}$. The redshift of NGC 2903 is small, at $\boldsymbol{v}_{0}=472 \mathbf{~ k m}$ s.

Nole the difference in the enlargement of this image compared with that at the left.
$\underset{\text { L }}{7}$ galaxies here, the arms either fragment themselves or are joined near the center hy lower-surface-brightness secondary (fossil) arms which, together with the two main arms, cover the disk with a high-surface-brightness spiral pattern. Yet the arms and their fragments are definite, not filamentary as in NGC 2841 (panels $142, \mathrm{~S} 4, \mathrm{~S} 12$).

NGC 2441
Nov 6/7, 1978
103aO
12 min
At first dance the spiral pattern in NGC 2441 seems similar to that in NGC 309 (panel 221). where an almost-complete internal ring exists from which the spiral arms originate. The impression, however, is deceptive. Very-low-sur face-brightness, luminous thin inner arms in NGC 2441 connect with the center, together with two associated dust lanes. After half a revolution the nearly invisible arm on one side increases in surface brightness and, after nearly overlapping a segment of the opposite bright arm, wind outward for another nearly half-revolution. At that point it overlaps with a section of the other arm which, in the meantime, has itself branched at nearly right angles to form part of the ap parent inner ring. Hence the pattern is disturbed on one side with overlapping arms, which, however, still are narrow and well defined as fragments.

The redshift is high, at $v_{o}=3815 \mathrm{~km} \mathrm{~s}^{-1}$
NGC $7412 \quad$ Sc(s)I-II
CD-1510-S/Br
Aug 4/5, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
The spiral pattern is similar to that of M51 (panels 172, 177). The arms are of the grand design type and are massive in the sense of Reynolds (1927a.li). The two major arms start at the center, each dominated at the beginning by a thin dust lane which continues outward on the inside of each luminous arm. Secondary, lower surface-brightness arms exist, one inside of one of the main arms and the other outside of the opposite main arm.

None of the MI! regions arc resolved at the 1.5 " level. The redshift of NGC 7412 is $v_{o}=$ $1691 \mathrm{~km} \mathrm{~s} \mathrm{\sim}$.

NGC 908
CD-1513-S/Br
Aug 4/5, 1980
103aO + GG385
45 min
As in NGC 7412 below at the left, the arms are massive in the sense of Reynolds (1927a,b). Although the spiral pattern is of the grand design, there are more than two dominant arms Going outward along the major axis, four crossings of the major axis can be counted on either side.
-1 The redshift of NGC 908 is $v_{k}=1563 \mathrm{~km}$
NGC 1042
CD-1579-S/Br
Aug 10/11, 1980
$103 \mathrm{aO}+$ GG385
45 min
NGC 1042, redshift $v_{a}=1436 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}$, forms a probable physical pair with NGC 1035 (Sc; panel 291) whose redshift is $v_{o}=1307 \mathrm{~km}$ s^{-1}. The angular separation of 22.5^{\prime}. at a mean redshift distance of $27 \mathrm{Mpc}(H=50)$, gives the edshift distance of $27 \mathrm{Mpc}(H=50$), gives the projected linear separation of 177 kpc .

Two principal arms begin near the center but on the rim of a smooth central disk. The arms branch into fragments, one after a quarter revolution outward, the other after half a revolution.

The largest of the HIl-region complexes is about $1^{\prime \prime}$ in diameter (core + halo)

0	6
a	6

$\stackrel{T}{\text { I. }}$ of the grand design type, although lour have multiple arms rather than simply two principal arms.

IC 262
CD-1666-S
Dec 30/31, 1980
103aO + GG385
45 min
IC 2627 has only two principal arms, which are thin and (Jo not branch into secondary arms of the kind that cover the underlying disk in other galaxies of this type. The disk here is threaded only by the two high-surface-brightness principal arms.

The arms begin near the center, yet on the edge of the small smooth central disk. The redshiftoflC 2627 isy $_{0}=1804$ bis 11.

NGC 6878
Sc(r)1.3
group?
CD-1107-Br
Aug 18/19, 1979
$103 \mathrm{aO}+$ GG385
45 min
This exquisite spiral is of small angular diameter, $\mathrm{D}_{-1}=1.6^{\prime}$; its redshift is large, at $v_{o}=$ $5791 \mathrm{~km} \mathrm{~s} \sim$. It is in a field of several other galaxies of similar angular diameter, which may form a physical group. NGC 6878A (RSabll) is at a separation of 10.3 ' toward the north (the declination in the RC2 is incorrect) at a projected linear separation of 347 kpc . An anonymous high-surfaee-brightness closer can didate companion (unknown redshift) at a separation of 6.7' has a projected linear separation of 226 kpc . Many other galaxies of similar angular size over a wider but still nearby field are seen on the Palomar Schmidt survey prints. However, this field is in the neighborhood of the Telescopium Group, whose mean redshift is $\left\langle v_{o}\right\rangle$ $=2733$ kins"' (Sandage 1975b): NGC 6878 may simply be in the background.

The spiral pattern is prototypical Scl: two principal arms start at the edge of a smooth central high-surface-brightness inner disk.

NGC 7300
 $\mathbf{S c}(\mathbf{s})$ I-II

CD-1573-S/Br
Aug 10/11, 1980
45 min
The multiple arms in this highly inclined galaxy arc thin and well developed. The nucleus is small, characteristic as a classification criterion for Sc galaxies.

The redshift is $\boldsymbol{v}_{o}=\mathbf{5} 021 \mathrm{~km}^{-}$.

NGC 5297	Sc(s)I-II	Racine wedge PH-8093-S
Feb 6/7, 1981		
103aO		
12 min		
NGC 5297		forms a chentsev 394

NGC 5297 forms a close physical pair with an anonymous (SO pec) companion at an angular separation of $88^{\prime \prime}$. The redshift from the RSA is $v_{o}=2654 \mathrm{~km} \mathrm{~s} \mathrm{\sim} \sim^{\prime}$. Karachentsev (1987) lists v_{0} $=2755 \mathrm{~km} \mathrm{~s}^{-1}$ for the SO companion. At the redshift distance of 53 Mpc , the projected linea separation of the pail* is very small at $23 \mathbf{k p c}$.

The multiple arms in NGC 5297 are thin and well defined but the pattern is mostly hidden by the high inclination.

vGC 7309 $\mathbf{S c}(\mathbf{r s}) \mathbf{I}-\mathbf{I}$ P1I-7688-S

 Sep 26/27, 1979103aO
0 min
The angular size of ihis remote ($\mathrm{r}_{\mathrm{r}}=4082$ $\mathrm{km} \mathrm{s}^{-1}$) exquisite spiral is small at $/$) $\cdot{ }^{\circ}=\mathbf{2} . \mathbf{1}^{\prime}$. Three principal, high-surface-brightness arm exist: fragments of lower-surface-brightnes outer arms are present. The nucleus is small.

NGC 5936
 $\mathbf{S c}(\mathbf{r}) \mathbf{I}-\mathrm{II}$
 S-1601-II
 April 23/24, 1936
 mp. Eel.

0 min
The reproduction here is from a plate taken in excellent seeing by Hubble with the 60 -inch telescope on Mount Wilson. The angular size of he galaxy is small at $D_{>-y}=1.5^{\prime}$: the number of esolution elements in this image is smaller that for most other prints in this atlas. The redshift of NGC 5936 is $v,=3995 \mathrm{~km} \mathrm{~s}^{\mathbf{s}}$.

The arm pattern is peculiar in ;i similar way to NGC 244 1, described on the preceding panel.

Qagaxies on this and the next five pages, all of

 early luminosity class I-II, have multiple arms rather than two major ones as in the extreme examples of the grand design spiral type. Some of the multiple-armed galaxies still have elements of the grand design, while many are totally of the flocculant type (Elmegreen and Elmegreen 1982, 1987), having arm fragments such as those in NGC 488 (panels 115, 116, S3,S12) and NGC 2841 (panels 142, S4, S12).
Abstract

NGC 6070 PH-7830-S Sep3/4, 1980

\section*{$03 a O$
 12 niin}

Five arm crossings on one side of the major xis and seven on the other define the multilicity of the well-defined arm pattern in NGC 0070 . Although the outer pattern is multiple, all arms are branched from two main arms that begin near the small central region.

The redshift of NGC $\mathbf{6 0 7 0}$ is $\boldsymbol{v}_{0}=1979 \mathrm{~km}$ s^{-1}. Two of the largest Hill-region complexes may resolve (core + halo) at about 1.5

$\mathbf{S c}(\mathbf{s}) \mathbf{I}-\mathrm{II}$

S-1982-H
Feb 20/21, 1947
103 aO
The reproduction of NGC 4100 here is from plate taken with the 60 -inch telescope on plant Wilson. The siral itro telescope on Mount Wilson. The spiral structure near the mall nucleus is defined by thin dust lanes. Three major luminous arms can be identified

The redshift of NGC 4100 is $v_{o}=1135 \mathrm{~km}$

NGC 6118
 CD-1403-S/Br

March 22/23, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
10 nuill
The spiral pattern consists of two principal arms, which begin at the center and branch into fragments which constitute the outer multiple spiral pattern.

The redshift is $v_{o}=1535 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 4602
 CD-1400-S/Br

March 22/23, 1980
$103 a O$
75 niin
The spiral pattern of multiple outer arms fed by two major arms which start near the center is similar to that of the other three galaxies on this page. The high inclination of NGC 4602 obscures the details of the pattern near the center, but two thin dust lanes emerge from the center in a manner similar to the straight lanes along the bar in SBb and SBbc galaxies, suggest ing here a mild bar.

The redshift is $v_{n}=2347 \mathrm{~km} \mathrm{~s}^{\prime \prime}$ '

$x+x$	6
$+\infty$	zex

NGC 1653

Sc(rs) 1.3
D-1411-S/Br
March 23/24, 1980
$103 a \mathrm{O}$
7 mi
NGC 4653, with redshifi r, , $=2433 \mathrm{kins}{ }^{-}$, forms a close physical pair with iNGC 4642 (Sc nearly on edge; not in the RSA), with $\boldsymbol{v}_{0}=2471$ $\mathrm{km} \mathrm{s} \mathrm{s}^{-1}$. The angular separation of '). $\left\{\left\{^{\prime}\right.\right.$ cor responds to a projected linear separation of $I 40$ kpe at the redshift distance of $49 \mathrm{impc}(/ /=50)$

The outer spiral arms are branches wo main arms that begin on opposile sides of' entral disk, similar to the (s)-lypc arm origins in Bb galaxies such as NGC 1300 (panels 154 88). However, there is no additional evidence of bar or of a strong oval central region.

GGC 4136
H-8029-S
eb 3/1, 1981
103a0
2 nuin
The inner ${ }^{1}$ spiral pattern begins tangent to an almost-complete inner ring similar to the pat tern in NGC 309 (Hubble Atlas, p. 32; pane 221 here) and NCC 5364 (Hubble Atlas, p. 32; panel 217 here).

The outer arms are more massive in the ense of Reynolds (1927a,b) than in NGC 309 sense of Reynolds ($1927 \mathrm{a}, \mathrm{b}$) than in NGC 309
hence the slightly later luminosity class is required here.

Brightest stars begin to resolve in the arm t about magnitude $l i=22$, much more easily than in the Virgo Cluster spirals such as NGC 4321 (M100; Hubble Atlas, pp. 28. 31; panel 213 here), but not as easily as in M1 01 (Hubble Atlas, pp. 27, 31; panel 218 here) which ha nearly the same redshift. The redshift of NGC 4136 is $v_{t \mid}=409 \mathrm{~km} \mathrm{~s}^{\prime \prime \prime}$ that of Ml 01 is $v_{0}=$ $372 \mathrm{~km} \mathrm{~s}^{\mathrm{\prime} \mathrm{\prime}}$. However, the absolute magnitudes of these two galaxies differ by 3.2 mag , NCC 4136 being very faint at $\boldsymbol{M g}=-18.3$. Because the absolute B magnitude of the brightest resolved blue stars is a strong function of the absolute blue stars is a strong function of the absolute magnitude of the parent galaxy (Sandage and Tammann 1974b; Sandage and Carlson 1988) he difference between NGC 4136 and NGC 4321 in ease of resolution into stars is understood. That the distance determined from red-
shift is reliable within this range of very small shift is reliable within this range of very small
redshift values follows from the low random redshift values follows from the low random velocities about a linear redshift-distance rela-
tion for the nearby galaxies (Sandage and Tamtion for the nearby galaxies (
The five largest HI! regions each resolve at about the $5^{\prime \prime}$ level, showing again that the galaxy is nearby.
[C2537
CD-1327-S/B
March 13/1 I, 1980
1()3a() + GG385
45 miu
The two main arms in 1 (1 2537 thai begin near the center, along with their associated thin dust lanes, branch outward until about fivti arm crossings of the major avis can be counted on each side.

The rrdshil'l is r, , -2523 km s
NGC 2967
CD-1358-S/Br
March 16/17, 1980
I03a0 + GG385
45 miu
The spiral pattern in NGC 29 fi 7 is remarkably similar lo the pattern and the character of the arms in M 1 I) 1 (11 ubide Atlas, pp. 27. 31: panel 2 I (here), requiring no further description here.

The redshift of NGC 2967 is,$\ldots=2065 \mathrm{~km}$ s^{-1}.
NGC $3756 \quad$ Sc(s)I-II \quad Racine wedge

PH-7127-S
Jan 31/Feb 1, 1976
103aO + GG13
30 niin
Three arms emerge from the central region of NGC 3756 . As the arms wind outward they fill the area of the disk, being of the massive variety in the sense of Reynolds ($1927 \mathrm{a}, \mathrm{b}$) lacking a thin, well-defined form.

The redshift of NGC 3756 is $v_{0}=1372 \mathrm{~km}$ s^{-1}. The galaxy is in the region of the Ursa Major Cluster but is considered to be a probable background galaxy.

NGC 3198

PH-7960-S
Nov 8/9, 1980
103 aO

12 min

The arms in NGC 3198 are moderately thin and fairly well defined. However, the inclination angle is so high that the pattern, although regular, is not easily traced. If one views the image at an angle and at an optimum orientation by tipping and rotating the panel to compress the major axis until it is equal to the minor axis, the image presents two principal arms that start at the center [the (s)-type attachment to the center]. Each can he traced for about half a revolution before each branches to form the multiple pattern.

The redshift of NGC 3198 is small, at 702 $\mathrm{km} \mathrm{s} \sim^{1}$, but the HII regions remain unresolved at the 2 " level.

NGC 3672
$\mathbf{S c}(\mathbf{s}) \mathbf{I}-\mathrm{H}$
HA, p. 30
CD-1832-HB
April 1/2, 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
Although the spiral pattern here has multiple arms, it is not filamentary (flocculent; El megreen and Elmcgreen 1982, 1987) but rather is of the grand design: four rather ill-defined arms start near the center and wind outward to cover the disk.

The redshift is $v_{o}=1633 \mathrm{~km} \mathrm{~s}^{1}$.
NGC 1337 Sc(s)I-II
PH-7699-S
Sep 26/27, 1979
103 aO
min
NGC 1337 is seen only about 10° from edge on, making the spiral pattern difficult to trace. It is evident that the nucleus is small (the type, therefore, is Sc). The arm pattern is multiple similar to the other highly inclined galaxies on this panel.

The redshift is $v_{n_{2}}=1270 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.

∞	$*$

NGC 329
 $\operatorname{Sc}(\mathrm{s}) 1.3$

Oct31/Nov I, 1946
I03a0
NGC 3294 and NGC 877 to the right have spiral arms of the grand design type, albeit with a multiple-arm outer pattern. The two galaxies below arc of the flocculent type whose prototypes are NGC 488 and NGC 284 i .

The one highest-surface-brightness arm which starts at the center in an (s)-type configuration can be traced for a full I $1 / 2$ revolutions outward before it fades below detectability on this 100 -inch Hooker Telescope plate. The corresponding opposite arm can be traced for a whole revolution, which is unusual.

The redshift of NGC 3294 is 1566 Um s"'

NGC 4899	Sc(s)I-II	triplet
CD-1842-HB		
April 2/3, 1981		
103aO + GG385		

Aprii 2/3,
103aO + GG385
75 nun
NGC 4899 is the middle galaxy of a wide triplet, with NGC 4891 (SBbc; panel 205) to the north by 30^{\prime} at a redshift of $v_{o}=2418 \mathrm{~km} \mathrm{~s} \sim^{\prime}$ and NGC 4902 (SBb; panel 162) to the south by 34^{\prime} at a redshift of $v_{0}=2426 \mathrm{~km} \mathrm{~s} \sim 1$ The redshift of NGC 4899 ist $>_{0}=\mathbf{2 4 3 7} \mathbf{~ k m s} \mathbf{s}^{\prime}$.Atthe mean redshift distance of 48 Mpe , the projected linear separations of NGC 4891 and NGC 4902 from NGC 4899 are $419 \mathbf{k p c}$ and $475 \mathbf{~ k p c}$ respectively. The group is of a similar size to th Local Group.

The arms are flocculent. of the NGC 284

NGC 877
PH-7531-S
Nov 4/5, 1978
I03a0 + GG13
15 mill
NGC 877 is the brightest galaxy in a field of other Dreycr galaxies (NGC 870.87 I . 1176. and 877) within I 2' of each other, 11 seems likely thai least sonic of these form a physical group. The redshifts are similar at $3830 \mathrm{~km} \mathrm{~s}^{-1}$ for NGC 7 I (low-surfacc-brighlness Sc at 8.-1' separ ion), $4006 \mathrm{~km} \mathrm{a}^{\text {'11 }}$ for NGC 876 (edge-on SO_{3} ? a separation of 22^{\prime}) and $4010 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{f}$ NGC 877 itself. At the mean redsbifi distance of $9 \mathrm{Mpc}(1 /=50$), ions of NGC 871 and NGC 876 from NGC 877 arc 193 kpc and $50 \mathrm{kpc}-$ respectively.

The arms in NGC 877 are semi-massive in the sense of Reynolds (1927a,b). The arm pat tern is of the grand design, although not prototypical.

NGC 4047
 Se(s)IIII

H 7642
PH-7642-S
103aO
12 min
The exquisitely line, multiple-spiral pattern of NGC 4047 is similar to the MAS patterns in NGC 488 and NGC 2841 but is farther along the classification sequence. A better match, later in the sequence but still earlier than NGC 4047. is with NGC 5055 (She: Hubble Atlas, p. Z5; panels 19 1. S5 here) and NGC 3521 (She: Hubble Atlas, p. 15; panel 188 here)

The redshift of NGC 4047 is $v, \ldots=3416 \mathrm{~km}$

T,
he six galaxies on this panel and the four on the next complete the Sc section of luminosity class I-II. Most are of the grand design type, but many have more than two arm fragments in the outer regions.

NGC 3888
 H-7635-S

April 28/29, 1979
103 aO
2 min
The high-surface-brightness parts of each of the two inner luminous arms in NGC 3888 begin a^{*} dust lanes near the center. They become luminous after about a quarter of a turn from the center. The arms arc thin and do not branch into as many multiple fragments outward as in the prototype MAS pattern of M1 01 . The pattern in NGC 3888 is primarily two-armed throughout.

The redshift is $v_{o}=2454 \mathbf{~ k m ~ s}^{-1}$.

NGC 4651
 $\mathbf{S c}(\mathbf{r}) \mathrm{I}-\mathrm{II}$

H-2534-H
May 4/5, 1948
103 aO
30 miii
NGC 4651 is in the Virgo Cluster region, 4° north of NGC 4486, which is near the center of Virgo subcluster A. This position is just outside the survey area for the Virgo Cluster Catalog (Binggeli, Sandage, and Tammann 1985), so that NGC 465 I is not listed in the VCC.

Four crossings by the arms of the major axis on both sides can be counted. The arms are thin and well defined, requiring the early luminosity classification.

The small redshift of $v_{o}=723 \mathrm{~km} \mathrm{~s}^{-1}$ indicates, but does not require, a small redshift distance of $14 \mathbf{M p c}(\mathbf{m}-\boldsymbol{M}=30.8)(/ /=50)$ because the resolution into stars and 1 III regions is similar" to that in Virgo Cluster spirals such as NGC 432 1. The large velocity dispersion of the Virgo Cluster members accounts for the small observed redshift of NGC 4651 . despite its large indicated resolution-distance of $m-M$ of about 31.8.

NGC 237
Sc(s)l-II
PH-7833-
Sep 3/4, 1980
$103 a O$
min
NGC 237 is a two-armed spiral where each arm can be traced for nearly a whole revolution, causing two crossings of the major axis on each side. Faint spiral fragments from mild branching also exist in the outer regions.

The redshift is $v_{0}=4308 \mathrm{~km} \mathrm{~s} \sim^{\prime}$

NGC 753

PH-7850-S
Sep 4/5, 1980
103aO
12 min
The spiral pattern is extremely regular in the inner region of NGC 753 where the two grand design arms of very high surface brightness originate. The regularity of the pattern is similar to that of the inner arms of NGC 1566 (She; panels 171, S5), which is one of the most symmetrical galaxies in the RSA.

The arms branch into well-defined fragments at the place where the surface brightness ments at the place where the surface brightness
of the principal arms decreases rather abruptly after about three-fourths of a turn

The redshift of NGC 753 is $v,=5145 \mathrm{~km}$ s^{-1}. The absolute magnitude is bright at $M g=$ -22.7, similar to $\mathbf{M}_{\mathrm{B}}=\mathbf{- 2 2 . 3}$ for NGC 1566.

CD-2137-S
March 22/23, 1982
$103 a 0$
50 min
NGC 4152 is listed in the VCC. though no decision is given there on membership. It is lo cated in the extreme northwestern corner of the survey field. The redshift is large, at $v_{o}=2055$ $\mathrm{km} \mathrm{s}^{-1}$, but is not higher than the upper redshift cutoff of $v_{o}=2700 \mathrm{~km} \mathrm{~s}^{-1}$ adopted in the VCC for cluster membership (justified by a symmetrical velocity distribution), with the low-velocity cutoff observed to be at $v_{o}=-700 \mathrm{~km} \mathrm{~s}$ (Binggeli, Sandage, and Tammann 1985).

The arms in NGC 4-152 start from an inter nal ring similar to the pattern in NGC 309 (Hubble Atlas, p. 32: panel 221 here).

NGC 3512 Sc(rs)I-II group
Nov 27/28, 1946
$103 a O$
30 min
NGC 3512 is at the center of an apparen group of three bright galaxies; the other two are NGC 3504 ($\mathrm{Sb} / \mathrm{SBb}$; panel 169) at an angular separation of $12^{\prime}, v_{o}=1480 \mathrm{~km} \mathrm{~s}^{-1}$, and NGC 3515 (She, not in Lhe RSA) at an angular separa tion of 13.7 but whose redshift is presently unknown (e. 1990). The redshift of NGC 3512 is $v_{0}=1340 \mathrm{~km} \mathrm{~s} \boldsymbol{\sim}^{\wedge}$. At the mean redshift distance of 27 Mpc , the projected linear separation of NGC 3512 and NGC 3504 is 96 kpc

NGC $4162 \quad$ Sc(i-)MI
H-2390-H
Feb $23 / 24,1947$
103 aO
$\mathbf{3 0}$ niiii
The spiral pattern in NCC 4162 is multiple-
armed throughout the image. There arc not two
principal arms from which a multiple pattern
develops; rather, the arms begin tangent to an
inner disk at many places on the rim.
The redshift is $v_{o}=248$ km s"'.
NGC 3370 \quad Sc(s)I-II
PH-8019-S
Feb 3/4, 1981
103 aO
12 min
Four arms (three of which are bright)
emerge from the center, forming the multiple-arm
pattern on the outside.

NGC 1667
 PH-7896-S
 Nov 6/7, 1980
 103a

The three main spiral arms begin tangent k
a high-surface-brighlness inner ring similar the pattern in NGC 309 (panel 221)

The redshift is $v_{0}=.1562 \mathrm{~km}$)

NGC 3936

Se(s)MI
CD-769-S
Feb 21/22, 1979
103aO + GG385

- 15 miii

NCC 3936 is viewed within $)^{\circ}$ of edge on, making assessment of the spiral pattern and the luminosity classification uncertain. The nucleu is small, indicating the Sc (-lass. The arm fragments are narrow and well separated, suggesting the early luminosity class

The redshift is $v_{n}=1738 \mathrm{~km} \mathrm{~s} \sim$.

THE Sell SUBCLASS

C
O ell galaxies constitute the largest subclass of the Sc section. The RSA galaxies of this type and luminosity class illustrated on the next 24 panels are arranged in two parts. Those where the spiral pattern is predominately of the grand design type, dominated by two principal arms, are set out on the next six panels. Galaxies of the multiple-armed type, some grand design and others of the filamentary (flocculent) type, are on the remaining 18 panels, 241-258.

NGC $4145 \quad$ Sc(r)II Ursa Major Cluster PH-8028-S
Feb 3/4, 1981
$103 a O$
NGC 4145 is a large-angular-diameter (O95
$=5.8^{\prime}$) spiral. It is one of the principal galaxies
$=5.8^{\prime}$) spiral. It is one of the principal galaxies
in the Ursa Major Cluster, which is dominated by in the Ursa Major Cluster, which is dominated by
spirals. The mean redshift of the cluster is <e,> spirals. The mean redshift of the cluster is <0,>
$=980 \mathrm{~km} \mathrm{~s} \sim$ with a dispersion of about 100 km $=980 \mathrm{~km}$ s~ with a dispersion of about 100 km
$\mathbf{s} \backslash$ The redshift of NGC $\mathbf{4 1 4 5}$ is $\boldsymbol{v}_{\boldsymbol{a}}-\mathbf{1 0 3 0} \mathbf{~ k m}$ s
s^{-1}.

The two principal spiral arms begin on the rim of an inner disk, across which there is a weak bar. Each of the arms begins to fragment after about half a revolution, but two main fragmented extensions of the original segments can be traced for an additional half rotation.

The arms are well resolved into individual brightest stars beginning at about $B=22$. This is somewhat brighter than in the giant spirals of the Virgo Cluster, but much fainter than in the galaxies of the Ml 01 Group and the very nearby NGC 4395 Group. Many HII regions also exist in the arms, the largest of which resolve at about the $2^{\prime \prime}$ level.

HA 85-1 = A0509-11 \quad Sc(s)II
CD-720-S
Feb 1/2, L979
103aO + GG385
45 niin
The spiral patterns of both galaxies on this page arc similar.

The two principal arms in HA 85-1 start near the center at opposite edges of the small central region. Each arm is well defined for more than half a revolution. Major branching occurs in one of the arms beyond that point, giving four arm segments on one side. The branching is less complete on the other side.

The redshift of HA 85-1 is $v_{0}=2063 \mathrm{~km}$ s^{-1}. The evident HII regions are bright but are unresolved at the $1^{\prime \prime}$ level. Individual brightest stars are not identifiable because of their faintness at this distance.

NGC3052
CD-8U-S
Feb 26/27 1979
$103 \mathrm{aO}+$ GG385
45 mill
The arm pattern of NGC $\mathbf{3 0 5 2}$ has very high
urface brightness over almost all the image.
Each of the two principal arms near the center are highly symmetrical for the first quarter-turn. One of the inner principal arms blanches into two major arms, which retain their thinness and good definition for another half evolution. The opposite arm only widens without becoming double. As a consequence, the outer spiral pattern has three major arms.

The redshift is $v_{0}=3364 \mathrm{~km} \mathrm{~s}^{-1}$. No star or HII regions are individually resolved.

NGC 3181
PH-7993-S
Feb2/3, 1981
103aO
12 nün
NGC 3184 is near enough that individual tars begin to resolve out of the background of the arms at about $B=22$, hut the separation of the stars from the many II11 regions will require he standard identification procedures comparing Met and yellow images. The redshift of NGC 3184 is $v_{0}=607 \mathrm{~km} \mathrm{s"'}$

The arms begin tangent to the rim of a small, mooth inner disk, within which two faint spiral dust lanes start at the center and connect with the beginnings of the two main luminous arms. The luminous arms branch into several thick fragments that spread to cover much of the area of the outer disk. Dust lanes exist throughout the pattern

NGC 895
CD-1589-S/Br
Aug 11/12, 1980
$103 \mathrm{aO}+$ GG385
45 niin
The two principal arms can be traced into the center. Well-defined (opaque) dust lanes exist inside these high-surface-brightness dominant arms throughout the region where their surface brightness remains high. Low-surface-brightness spiral arm fragments exist over the outer area of the disk on the outside of the principal arms.

The redshift is $v_{n}=2383 \mathrm{~km} \mathrm{~s}^{\prime \prime}$

he separate arms in each of the galaxies on this panel are easy to trace. Their geometrical entropies are low; hence the moderately early luminosity classes near II for each is required.

NGC 578		
CD-1523-S/Br		
Aug 5/6, 1980		
$103 \mathrm{uO}+\mathrm{GG} 38$		
45 niin		
Like NGC 3052 two panels back, NGC 578		
is a three-armed spiral. The third arm is not well defined near the center. It becomes prominent, having the highest density of II11 regions of the three arms, only in its outside segment.		
The two largest HII regions are complex, probably composed of overlapping separate centers. They appear to resolve (core + halo) at about $1.5^{\prime \prime}$. The redshift of NGC 578 is $v_{t}=$ 1675 km s "'.		
NGC 7418 Sc(rs)1.8 Gins Gr?		
CD-1161-Br		
Aug 22/23, 1979		
$103 \mathrm{aO}+\mathrm{GG} 385$		
45 niin		
NGC 7418 may be a member of the		
Grus Group, of wide extent and mixed morphology (de Vaucouleurs 1956a; Shobbrook 1966;		
Sandage 1975b, 1978). The mean v_{o} redshift of the group is about $1580 \mathrm{~km} \mathrm{~s}^{-1}$. The redshift of NGC 7418 is $v_{0}=1451 \mathrm{~km} \mathrm{s"'}$.		
Four prin the grand	1 arms ex type.	galaxy is

IC L954

CD-672-Br
Jail 24/25, 1979
103aO + GG385
15 mill
The arms in IC 1954 are massive in the sense of Reynolds (I927a.b). As in NGC 578 to thi' left and NGC 3052 on panel 236, there are three principal arms, two of which start together OII one side of the center; the other starts on the opposite side and remains single for the two opposite side and remains single for the two inrds of a revolution that can be traced. Opaque major arms. major arms.

The redshift of IC 1954 is $\mathrm{i}>_{o}=905 \mathrm{~km} \mathrm{~s} \sim$

NGC 1084	Se(s) II. 2	HA, p. 29
PH-7915-S		
Nov 7/8, 1980		

Nov 7/8, 1980
103a0
2 min
The surface brightness of the arm pattern in NGC 1084 is exceptionally high. The well-ex posed image here was obtained in only a two minute exposure with the Paiomar 200 -inch Hale Telescope; it is nearly overexposed even so

The arms are massive in the sense of Reynolds (1927a.b). There are three arms, as in IC. 1954 and NGC 578 on this panel and NGC 3052 on panel 23 d . The best-developed oi' the arms is on one side alone. The other two arms on the opposite side in the outer region start as two thin, luminous threads that themselves begin on opposite sides of the center but overlap after unwinding by half a turn, after which the spiral pattern on that side is conluscd.

The redshift of NGC 1084 is , $<,,=147!!\mathrm{km}$

TT
JL he four galaxies on this panel all have spiral patterns of the grand design rather than filamentary (floccular) type, examples of which follow on panels 241-258.

NGC 5861
 $\mathbf{S c}(\mathrm{s}) \mathbf{I I}$
 CD-1381-S/Br
 March 20/21, 1980

103aO + GG385
55 miii
The spiral pattern in the inner part of NGC 5861 is one of the most regular in the sky.

One of the two main arms can he traced from its beginning at the center for nearly $11 / 2$ revolutions without branching. The other can be traced for one revolution, at which point breaks into an outer fragment and a moderatel chaotic pattern begins. If this outer pattern were absent, the luminosity class would be I rathe than 11 .

The redshift is $\boldsymbol{v}_{0}=1725 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 6946
 $\mathbf{S c}(\mathbf{s}) \mathrm{II}$

PH-3832-S
Aug6/7, 1961
120 min
NGC 6946 is among the closest galaxies to the Local Group as judged by the large angular xtent ($\mathrm{D} 95=18^{\prime}$). the moderately easy resolu in into brightest stars beginning at about B 1. and the large angular size of the several argest HII regions at a core + halo diameter of 10. The resolution into stars is not as easy as in Ml 01 . whose distance modulus is 29.3. or in members of the NGC 4395/NGC 4214 Group al $\boldsymbol{m}-M$ of about 28.5 . but the Galactic latitude of NGC 6946 is low at $b=12^{\circ}$. opening the pos sibility of appreciable Galactic absorption.

Note that the plate used here is red sensive, favoring the detection of $\mathbf{H I I}$ regions rathe than individual brightest blue stars.

The redshift of NGC 6946 is low at $\mathrm{u}_{o}=336$ $\mathrm{km} \mathrm{s}^{-1}$.

NGC 5899
 $\mathbf{S c}(\mathrm{s})$ II

H-7648-S
pril 28/29, 1979
103aO
2 min
The pattern defined by the two principal arms of this grand design spiral is highly regular. The arms are of high surface brightness, they are thin, and they can each be traced for threequarters of a turn without branching. Beyond that point, one of the arms branches in a way similar to the pattern in NGC 5861 at the left.

The redshift of NGC 5899 is $v_{n}=2657 \mathrm{~km}$ s^{-1}.

NGC 5756
CD-1471-S/Br
May 10/11, 198
103aO + GG385
103 aO
45 niin
This galaxy, shown also in a deeper print on panel 25 7. has a very faint set of regular, smooth outer arms which resemble the outer pattern in he Sa galaxy NGC 1350 (panels 71, 88, S3). These outer arms of exceedingly low surface brightness are extensions of the two principal print here
The redshift of NGC 5756 is $\boldsymbol{v}_{0}=2025 \mathrm{~km}$

PANEL
239

he lour galaxies on this panel finish the Sill section of galaxies where the spiral pattern is Formed by two principal arms.

5 min
The spiral pattern in NGC 406 is not well defined. Although the luminosity class assigned in he RSA2 is II, the diffuseness of the patter suggests the later luminosity class of II. 8 given here.

The redshift is $v_{0}=1326 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.

π
.I his page begins the section of the Sell galaxies having a primarily multiple-armed pattern. Some have arms of the grand design type; others have a flocculent design of the NGC 2841 (panels 142, S4, S12) type. Galaxies with multiple arms that are thin are on panels 241-247. Galaxies with thicker arms are on panels 248-253

NGC 7689

$\mathrm{Sc}(\mathrm{sr}) \mathrm{II}$
CD-503-S
Scp 27/28, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
45 mill
Each of the many arms in NGC 7689 begin tangent to a thin luminous inner ring close to the nucleus. The three arms on one side begin nea one another on the ring, within about 15° in thei position angles. The three arms wind outward and remain moderately well defined over half the outer disk, although one arm abruptly change direction by about 120° and continues unwrap ping. The arm pattern on the other side is mor chaotic, becoming more difficult to trace. This may be an aspect effect where the far side is les visible than the near because of silhouetting ef fects against the background disk.

The arms are massive, covering an appreci able fraction of the disk area.

The redshift is $v_{o}=1681 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC $3423 \quad$ SC(B)IL2
CD-1684-S
Jan 2/3. 1981
!03aO + GG385
45 mill
The multiple-armed Bpiral pattern in $\operatorname{IN}(\bar{y})($ 3423 is similar to thai in NGC 5457 (M101 Hubble Alias, pp. 27. 31; panel 218 here). There are no grand design major arms; rather al least six arms can $\mathbf{I K}^{*}$ identified starting nl the center, existing over all position angles around the image

Brightest individual stars may be beginning o resolve at about $\boldsymbol{B}=\mathbf{2 1}$. luil they are confused on this blue plate with the numerous 1111 regions. The largest of these regions have core + halo diameters of about $\mathbf{2}^{\prime \prime}$.

The redshift of NGC 3423 is $v_{o}=\mathbf{8 4 5} \mathbf{~ k m}$ s^{-1}.

Abstract

NGC $2763 \quad \operatorname{Sc}(\mathbf{s})$ II CD-789-S Feb 23/24, 1979 $103 \mathrm{aO}+$ GG385 15 niin The two galaxies on this panel have spiral patterns highly similar to that of M10] (Scl; panel 2 18).

Two principal arms in NGC 2763 start near the center. After unwinding for about half a revolution, each arm branches into several segments, which themselves branch again until the outer region is filled with spiral fragments, most of which are of moderately high surface brightness. Many HI1 regions exist throughout the multiple arms, but individuals must be identified by the usual methods before the brightest stars can be isolated.

The redshift of NGC 2763 is $v_{n_{-}}=1658 \mathrm{~km}$ s^{-1}. NGC 5085 $\mathrm{Sc}(\mathrm{r}) \mathrm{II}$ CD-1849-HB April 3/4, 1981 $103 \mathrm{aO}+\mathrm{GG} 385$ 45 mill

Two principal well-defined arms of low surface brightness begin near the center, tangent to the edge of a small central bulge. Prominent, regular dust lanes exist inside each of the two main arms over about half a revolution from their beginnings.

The outer disk is filled with spiral fragments, which originate not as branches of the two main arms but rather as dust lanes covering the isk, as in the NGC 2841 floeculent pattern. These lanes in the outer disk either turn luminous in short segments or are defined by a pattern of HII regions. The pattern is not chaotic, but, aside from the inner parts of the two principal grand design arms, the outer spiral fragments are difficult to trace

The redshift is $!;=1720 \mathrm{~km} \mathrm{~s}^{11}$.

he galaxies on this and the following panel continue the pattern of spiral arms that are thin and multiple

NGC 549
CD-1549-S/Br
Aug8/9, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
Two principal arms begin in NGC 5494 near the center on the rim of a small, relatively high surface brightness, smooth disk They branch almost immediately into secondary arms, which remain of moderately high surface brightness.

The redshift is $v_{0}=2461 \mathrm{~km} \mathrm{~s}^{-1}$. The numerous HII regions arc not resolved at the $1^{\prime \prime}$ level.

NGC 2848
CD-799-S
Feb 24/25, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
45 nún
NGC 2848 forms an apparent triplet with NGC 2851 (SO_{3} or very early Sa . not in the RSA) at an anguiar separation of 5.1', and with an ImlV dwarf irregular at 3.6' from NGC 2848.

The brightest of the HH-region-eandidate knots in NGC 2848 and in the ImlV candidate companion are about the same brightness. The same is true of candidates for the brightest in same is true of candidates for the brightest in dividual stars in each galaxy, strengthening the case for a common distance; the redshifts of NGC 2851 and the ImlV dwarf are not yet known (c. 36 Mpc , based on $v^{2}=1795 \mathrm{~km}$ s"' . of NGC 36 Mpc , based on $v_{o} 1795 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime \prime}$ of NGC 2848, the projected linear separations of th companions from 53 kpc and 38 kpc .

The two principal well-defined arms in NGC 2848 begin at the center [(s)-type pattern] and branch to form most of the multiple arms over the face of the disk.

CD-1836-HB
April 1/2, 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
Tin' spiral pattern is highly regular although of the multiple-armed type. Some of the arms ran be traced for more than half a revolution as Individual fragments. Three arms ran be said to begin near the center. The two principal one emerge from the center in an (s)-type connection; he third begins near the center and can b raced for half a revolution outward. Other frag ments branch from these main arms farther oul in the disk

The redshift is $\mathrm{r}, \mathrm{=}=1518 \mathrm{~km} \mathrm{~s}^{-}$.
NGC $4189 \quad$ SBc(sr)II \quad VCC 8

CD-2118-S
March 20/21, 1982
03aO
0 mill
INGC 4189, listed in the Virgo Cluste atalog, is located 4.2° west of subcluster A ssociated with NGC 4486 (M87). The morphological type listed in the VCC is $\mathrm{SBc}(\mathrm{sr}) \mathrm{IL} 2$. The evidence for the bar is well seen in the eproduction here. (The galaxy was placed in the Sc section here during an early formatting of the pert atas, based on the RSA classifications. That formatting became fixed early, preventing That formating became fixed early, preventing
moving the illustration into the more appropriate SBe section.)

Three principal arms begin near the ends of he bar. Two start at the ends of the short bar in the manner of arms in NGC 1300 (panels L5 8). The third begins close to but slightly beyon ne of the ends of the bar. Branching of all the egments fills the disk with the multiple-arm spiral pattern

Sc Classification Section (continued)

NGC 5676 Sc(s)II
S-1999-H
April 12/13, 1948
103 aO
30 niin
The print here of NGC 5676 is from a plate taken with the Mount Wilson 60 -inch telescope. The galaxy is unreachable with the Mount Wilson 100 -inch because of the high declination.

The spiral pattern is not symmetric on opposite sides of the major axis; the faint and chaotic outer spiral pattern on one side extends over the outer disk to twice the distance from the center, as do the well-defined inner arms on the opposite side, where there are no corresponding outer arms. This pattern is rare but not unknown. NGC 5678 (ScII-III: panel 278) shows the same asymmetry

The inner arms are thin and well defined They start from the center in the (s)-subtype configuration.

The redshift of NGC 5676 is $«, \quad-2239 \mathrm{~km}$ s^{-1}.
NGC 3810
$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$
HA, p. 30

NGC 38
St
H-15-S
Jan 5/6,
103 aO
The spiral pattern of IVGC 3810 resembles that of NGC 1068 (Sb : panel 138). The central disk is filled with very-high-surface-brightness, ightly wound spiral fragments. Lower-surfacebrightness arms with more-open pitch angles exist outside the break in the surface-brightnes distribution over the inner half of the image.

The largest Mil regions may just resolve at the $1 "$ level. Candidates for individual brightest stars exist, but they must be verified by standard techniques that separate the stars from HII regions.

The redshift is $\mathrm{i}_{o}=860 \mathrm{~km} \mathrm{~s}$.

NGC 991
PH-7844-S
Sep 3/4, 1980
103aO
The extremely low surface brightness arms begin at the rim of a central smooth disk that may be an oval; if so, an alternate classification would be SBc.

An unresolved nucleus exists at the center of the oval. The central pattern closely resembles dE,N nucleated dwarf elliptical galaxies (Sandage and Binggeli, 1984, give an atlas of dE,N Virgo Cluster galaxies). Such bright, unresolved nuclei mbedded in a smooth disk are characteristic of his type.

The redshift is $v_{a}=1607 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 5468
 $\mathrm{Sc}(\mathrm{s}) 1.8$

CD-1856-HB
April 4/5, 1981
103aO + GG385
45 min
Two thin principal arms can be followed from the center outward, one for half a revolution and the other for a quarter revolution, before they branch into several thin fragments winding through the outer disk. The resulting arm pattern is open. Although the arms are multiple, they remain thin and do not cover a large area of the outer disk because they are so thin.

Three high-surface-brightness HII regions and a number of fainter HII regions exist in the arms but are unresolved at the $1^{\prime \prime}$ level. The redshift of NGC 5468 is $v_{n}=2696 \mathrm{~km} \mathrm{~s}^{\prime \prime}$.

well-organized spiral structure where the arms are moderately thin and the pattern is multiple rather than dominated by two arms of the grand design type.
-703 =A1511-15
CD-1420-S/B
March 24/25, 1980

03 aO

5 min
F-703 forms a possible wide physical pai with NGC 5878 (Sb: panel 128) at an angula separation of 1.2°. The rcdshifts are $\mathrm{i}>(703)=$ $2128 \mathrm{~km} \mathrm{~s}^{\prime \prime}$ and i$\rangle(5878)=1974 \mathrm{~km} \mathrm{~s}^{\prime \prime}$ '. If the wo galaxies are at the same redshift distance of 41 Mpc , the projected linear separation would b 860 kpc (which is the separation of our Galaxy from M3 1 in the Local Group)

NGC 5605

CD-1580-S/Br
Aug 11/12, 1980
103aO + GG385
45 min
Three arms begin near the center of NGC 5605 , tangent to the rim of a small, high-surfacebrightness, smooth inner disk. These arms branch to form the arm fragments that cover the outer disk.

The redshift is $v_{n}=3196 \mathrm{~km} \mathrm{s"'}$.

NGC 6643	Sc(s)II
PII-60-H	HA, p. 35
April 27/28, 1949	panel 247
103aO	
40 min	
The surface brightness of the inner part of	

The surface brightness of the inner part of the multiple-arm pattern in NGC 6643 is high. Many bright IIII regions largely define these inner arms. The arm fragments, together with heir associated fragmented dust lanes, cover the disk.
A print from a yellow Palomar plate is on the next panel.

The redshift is $v_{n}=1743 \mathrm{~km} \mathrm{~s}^{-1}$.

CD-1480-S/B
May $11 / 12,1980$
103aO + GG385
27 min
IC 4721 forms a physical pair with IC 4720 (Sc) at an angular separation of 8.5°. The red$=2405 \mathrm{~km} \mathrm{~s}^{-1}$) $=2104 \mathrm{~km} \mathrm{~s} \sim$ and $\mathrm{u}_{0}(4721)$ 45 Mpc the projected linear separation of the pair is 111 kpc . An E0 galaxy of unknown redphift exists at the small angular sorn shift exic 472 1 It me be 2.2 it If it is associated inear separation from IC 4721 is small, at 29 kpc.

NGC 2715
PH-7709-S
Fell 1 1/12. 1979
IO3a0
03a0
The arm pattern in NGC 2715 is multiple in the sense of NGC 2811 and NGC 488. It is nol formed by two principal inner arms that start at the center and then fragment into an outer mul iple pattern. Ratlin-, the MAS pattern in NGC 2715 is present from the beginning of the spira attern at the center.

The redshift of NGC 2715 is $\zeta,=1540 \mathrm{~km}$ s^{-1}.

NGC 4237 \quad Sc(r)II.2	VCC 226
H-1970-H	HA, p. 20
April 21/22, 1938	

April 21/22, 1938
E40
60 min
The spiral pattern of NGC 4237 is simila o that of NGC 27 15, above. The reproduction in the Hubble Atlas was made from the sam Mount Wilson 100 -inch plate shown here

The redshift of NGC 1237 is $v_{o}=814 \mathrm{~km}$ - The galaxy is in the region surveyed for the Virgo Cluster Catalog. It is located 4.5 northwest of NGC 4\%186. associated with Virgo subcluster A.

PH-5372-S
Sep 11/12, 1969
103aD + GG11
40 inin
The image here of NGC 6643 is from a 200 -inch Palomar 103aD yellow plate rather han from the blue Palomar plate used for the mage on the preceding panel.

The description of the spiral pattern is given here for this galaxy. The image on this panel shows a high-surface-brightness continuum disk upon which young spiral arms are superposed. The continuum yellow light shown in this print is from the old stellar component rather than from the young stellar content detected in either blue light or in Ha light, on red-sensitive plates.

NGC 4504	Sc(s)II	pai
CD-1859-HB		
April 6/7,1981		

103aO
75 min
NGC 4504 forms an apparent physical pair with NGC 4487 (Sc; panel 250) at an angular separation of 35^{\prime}. The redshifts of the pair are $u_{0}(4487)=831 \mathrm{~km} \mathrm{~s} \sim^{\prime}$ and $u_{0}(4504)=794 \mathrm{~km}$ $\mathrm{s} \sim$. At the mean redshift distance of 16 Mpc , the projected linear separation is 165 kpc . The resolution into HII regions and brightest stars is about the same for both galaxies. The largest several HII regions in each galaxy resolve into disks (core + halo) at about the $3^{\prime \prime}$ level.

Another nearby spiral exists (UGCA 282: SBbI) at an angular separation from NGC 4487 of 25 ' at redshift $v_{o}=5460 \mathrm{~km} \mathrm{~s}^{-1}$. It is clearly in the background for reasons other than the large redshift difference: its resolution into 1111 regions is nil, contrary to the case of NGC 4487 and NGC 4504.

NGC 4559
PH-8003-S
Feb 2/3, 1981
12 nün
NGC 4559 is nearby, judged by the ease of resolution of the HIII regions at about the $3^{\prime \prime}$ level and the existence of what appear to be individual stars starting at about $B=22$ mag. The blue image is given in the upper print here. The Ha interference filter image is below.

The redshift is $v_{o}=771 \mathrm{~km} \mathrm{~s} \sim^{\prime}$

NGC 4559

PH-4516-S
April 14/15, 1964
Ha interference filte
120 min
The largest of the individual HII regions in NGC 4559 resolve at about the $3^{\prime \prime}$ level. The arms are not as well defined as in the continuum blue image in the print above.

six galaxies on this panel continue the Sell morphology among galaxies whose spiral arms are thin and easily traced as individual fragments $1>\bullet 11$ which are multiple and cover much of the underlying disk.
NGC $514 \quad \mathrm{Sc}(\mathrm{s}) \mathrm{II} \quad$ Racine wedge

PH-7698-S
Sep 26/27, 1979
103 aO
The multiple pattern in NGC 514 begins at the small nuclear region, starting as dust lanes closer to the center than where the luminous segments start, after which the dust lanes are generally on the insides of the best-defined arm generally on
fragments.

The bright stars show secondary images made by the Racine wedge

The redshift is $v_{o}=2675 \mathrm{~km} \mathrm{~s} \sim$.
$\begin{array}{lll}\text { NGC 5112 } & \text { Sc(rs)II } & \text { Racine wedge }\end{array}$ PH-8063-S
Feb 4/5, 1981
103aO
12 min
An apparent short bar exists at the center of NGC 5112. The bar is strong enough for the type to be SBc in the RC2, based on a Mount Wilson 60 -inch plate.

Four arms begin in the vicinity of the ends of the bar. They remain thin but branch into several segments over the outer disk.

The redshift is $v_{p_{2}}=998 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.

NGC 95
PH-7694-S
Sep 26/27, 1979
103aO
12 min
Five arm segments begin at the center and end abruptly at a bright edge, which at lower resolution would appear to be a luminous outer rim.

The redshift is large for RSA galaxies, at v_{o} $=5104$. Because NGC 95 has an apparent magnitude that is bright enough to be in the RSA, the absolute magnitude of NGC 95 is among the brightest in that catalog, at $M_{B}=-22.2$.

There are evident HI1 regions, especially along the outer edge of the spiral pattern. These are unresolved at the great distance of the galaxy
NGC $3041 \quad \mathrm{Sc}(\mathrm{s})$ II \quad Racine wedge PH-7962-S
Nov 8/9, 1980
103 aO
12 mi
Two faint stubs of luminous spiral arcs begin at the center but fade into the inner disk after quarter revolution. The larger fragments of arms composing the outer spiral pattern begin farther from the center and have no clear connectio with the two inner spiral stubs.

The bright stars show the secondary images made by the Racine wedge, separated from the primary by $18^{\prime \prime}$ with an intensity that is 5 mag fainter.

The redshift is $v_{n}=1296 \mathrm{~km} \mathrm{s"}$
NGC 3629 Re(s)II. $2 \quad$ Racine wedge
PH-8053-S
Fcb4/5, 1981
103aO
12 min
The spiral pattern of NGC 3629 is of the
MAS type, similar to that of NGC 2 HI 1 and NGC
488 where many arms on the outside extend I"
the center.
The bright stars show the secondary images
made by the Racine wedge, separated by 18"
from the primary and fainter by 5 mag.
The redshift of NGC 3629 is $v, \ldots=145$ I km
s^{-1}.
NGC 5362
PH-8098-S
Feb $6 / 7,1981$
$103 a O$
12 min
Although the viewing angle for NGC 5362 is

Although the viewing angle for NGC 5362 is
h, it appears that four main arms exist in a high, it appears an (s)-type central connection

The most unusual feature is the spike of uminosity on one side of the image, beginning at an unresolved knot on the minor axis. From the direct image alone one cannot locate it in three dimensions: it is not evident if it is in the plane or is above the nucleus in the halo.

Such features arc rare elsewhere but not unknown. Evidence exists for a fountain into tin; halo in NGC 1808 (Shi- pec; panel 193). Evidence both from direct imaging and speetroscopy exists for matter being ejected from the plane in NGC 3034 (MK2: panels 333. 334).

The redshift of NGC 5362 is $u_{0}=2321 \mathrm{~km}$

CD-923-HB
May 3/4, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
45 mill
NGC 5967 forms a physical pair with NGC 5967A at an angular separation of 8.3' The redshifts are $2657 \mathrm{~km} \mathrm{~s}^{-1}$ and $2714 \mathrm{~km} \mathrm{~s}^{-1}$ redshifts are 2657 km s and 2714 km s espectively. At the mean redshift distance of 5 130 kpc .

The inclination of NGC 5967 to the sight line is sufficiently high that the central region ppears to be oval. However, the major axis of the central image has the same position angle as hat of the outer spiral arms. By viewing the that of the outer spiral arms. By viewing the
image obliquely by holding this page at an angle and rotating for the proper position angle of the major axis, a decision can be made that the major axis, a decision can be made th
morphological type is Sc rather than SBc.

NGC 1292
CD-577-S
Oct 8/9, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
40 min
Four arm crossings of the major axis occur on one side of the image of this MAS-type spiral hree crossings occur on the other side. The arm and their associated spiral dust lanes in the inter and their associated spiral dust lanes in the inte The redshift is $v_{v}=1390 \mathrm{~km} \overline{\mathrm{~s}}^{\prime}$

NGC 7059
CD-508-S/Br
Sep 28/29, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
5 min
The spiral pattern is not regular in NGC 7059. The arm pattern is difficult to trace both in the center and on the outside. Two thin segments of separate arms cross on one side of the major axis: they either have very different pitch angles or one is out of the main plane. As with other galaxies on this panel, the disk is covered with star-forming regions. The numerous HII regions are unresolved.

The redshift is $v_{o}=1660 \mathrm{~km} \mathrm{~s}^{\prime \prime}$ '

PH-7932-S
Nov 7/8, 1980
103 aO
7 min
The set of (s)-type multiple arms is of high urface brightness. Note the secondary images of the bright stars made by the Racine wedge.

The redshift is $v_{o}=1520 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 657
H-1403-H
July 31/Aug 1, 1932
Imp. Eel
60 min
Three principal arms exist in this more-orless grand design spiral. Two of the principal arms are themselves double. Counting these as arms are themselves double. Counting these as
separate arms yields four arm crossings of the major axis on one side.

The redshift is $u_{i,}=2415 \mathrm{~km} \mathrm{~s}^{11}$
NGC $4951 \quad \mathrm{Sc}(\mathrm{s}) \mathrm{II}$
CD-2189-S
pair
March 29/30, 1982
$103 \mathrm{aO}+\mathrm{GG} 385$
45 nún
NGC 4951, with <<, $=993 \mathrm{~km} \mathrm{~s} \sim \sim^{\prime}$. may form a physical pair with NGC 4941 (Sab; panel 117) whose redshift is $v_{0}=878 \mathrm{~km} \mathrm{~s} \sim^{1}$. The angular separation of the pair is 60^{\prime}. At a redshift dis tance of 19 Mpc the projected linear separation is 332 kpc , or about one-third the diameter of the Local Group.

morphological class Sell and often have the MAS arm pattern. Most have massive arms in the sense of Reynolds (1927a,b); such arms cover much of the disk.

NGC 4487

CD-1859-HB
April 6/7, 1981
April 6/7,
103aO
75 niin
NGC 4487 forms an apparent physical pair with NGC 4504 (Sc; panel 247). The redshifl of NGC 4487 isi $;=831 \mathrm{~km} \mathrm{~s}^{11}$; that of NGC 4504 is $v_{o}=794 \mathrm{~km} \mathrm{~s}^{-1}$. The latter has an angular separation of 35' from NGC 4487. At the mean separation of 35 from NGC 4487 . At the mean
redshift distance of 16 Mpc the projected linear separation is 165 kpc

Two principal arms of the grand design type exist in NGC 448 7. Dust lanes accompany these arms on the inside of the arm segments. One of the principal arms is less well defined than the other; it branches into several, perhaps four, broad segments which cover one side of the disk.

The largest of the many Hll-region candidates resolve into disks (core + halo) at the $3^{\prime \prime}$ level.

NGC 2742 \quad Sc(rs)II \quad Racine wedge PH-7710-S
Feb 11/12, 1980
103aO
12 nun
The spiral pattern in NGC 2742 is beautifully regular. It is multi-armed: five crossings of the major axis can be traced on one side and three or four on the other (depending on whether one counts satellite arm fragments as separate arms).

The original plate was taken with a Racine wedge which makes secondary images of the bright stars.

The redshift is $v_{\mathrm{i}}=1422 \mathrm{~km} \mathrm{~s}^{-1}$
pair

NGC 1255 $\mathbf{S c}(\mathbf{s}) \mathrm{H}$
CD-2000-Bedke/Gregory
Oct 22/23, 1981
103 min
min
The arm pattern in NGC 1255 is massive in the sense of Reynolds (1927a,b), covering the disk. Four arm crossings of the major axis can be counted on each side of the image.

The largest of the several Hil-region candidates probably resolve into disks (core + halo) at about the $1.5^{\prime \prime}$ level.

The redshift is $v_{o}=1656 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 450	Sc(s)III. 3	Racine wedge
PH-7835-S		
Sep 3/4, 1980		
103aO		
12 rain		

The surface brightness of the multiple-arm pattern in NGC 450 is low. The brightest of the many Hll-region candidates in the arms may be complex. The largest two regions appear to resolve (core + halo) at about the $2^{\prime \prime}$ level. The redshift of NGC 450 is $1911 \mathrm{~km} \mathrm{~s} \sim$.

Note the small Sc galaxy nestled in the outer arm pattern of NGC 450. There is no evidence for a strong gradient of absorption across the disk of this galaxy. The point is important be cause the small galaxy is evidently in the background; yet dust absorption, as would be caused by the disk of NGC 450 if it were optically thick, is not evident. This is taken as evidence that the disks of at least some Sc galaxies are optically thin at blue (optical) wavelengths, contrary to some current (c. 1990) views.

NGC 2090

$\mathbf{S c}(\mathbf{s})$ II
panel 257
CD-663-Br
Jan 22/23, 1979
103aO + GG385
45 min
The distance to NGC 2090 is evidently smaller than the distance to the Virgo Cluster (adopted here to be $m-\boldsymbol{M}=$. SI .7) because the outer- arms are well resolved into individual brightest-star candidates and III1 regions. The brightest-star candidates and 111 regions. The
largest of the 1111 regions are resolved into disks (core + halo) at the $4^{\prime \prime}$ level.

Although the resolution into individual brightest stars is better than in Virgo Cluster spirals, the galaxy is not as easily resolved a Ml 01 , whose distance modulus, determined from Cepheids, is $m-M=29.3$. An estimate of the distance modulus of NGC 2090 at about $\boldsymbol{m}-M$ $=31$ comes from the ease of resolution into stars The redshift is $v_{a}=755 \mathrm{~km} \mathrm{~s}^{-1}$

The arm pattern in NGC 2090 is multiple The inner region of the disk is covered with spiral arms that have very high surface brightness. The outer-arm pattern is composed of arm fragment of low surface brightness; the resolution int stars and III! regions is easiest here

NGC 5768

CD-1844-HB
April 2/3, 1981
103aO + GG385
45 min
The small angular size of NGC $5768\left(D_{25}=\right.$ 2^{\prime}) and the faint apparent magnitude of $S f=$ 12.9. combined with the fairly small redshift of $v_{0}=1960 \mathrm{~km} \mathrm{~s}^{-1}$ gives the faint absolute magnitude $M_{H j}=-20.4$.

The HII regions and individual brightest stars arc unresolved
Γ are massive in the sense of Reynolds (1927a,b). The arm pattern in each is regular enough for assignment of luminosity class II.

NGC 7448	Sc(r)II. 2
PH-7689-S	
Sep 26/27, 1979	
103aO	
12 niin	

As in NGC 2090 on the preceding panel, the spiral pattern in NGC 7448 is composed of two regions of quite different surface brightness. The inner region of the disk has tightly wound, high-surface-brightness spiral fragments. Individual arms are not easily identified. The surface brightness decreases abruptly at the edge of this inner zone. Outer individual arm fragments and a general inter-arm spiral pattern in weak dus lanes can be traced over the outer disk.

A cluster of unresolved HII regions exist in one of the most conspicuous of the outer arms.

The redshift is $\boldsymbol{u}_{0}=2485 \mathrm{~km} \overline{\mathrm{~s}}^{-}$.

NGC 3055
 CD-1698-S

Jan 4/5, 1981
103aO + GG385
45 min
NGC 3055 has weak features of a barred spiral. Two high-surface-brightness inner arm start from the ends of the bar and. by branching, give rise to the luminous, massive arm fragments that cover the outer disk.

The redshift is $v_{-t}=1747 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 3089
 CD-1315-S/Br

March 12/13, 1980
103aO + GG385
45 niin
The two principal arms of this (s)-type spiral begin as low-surface-brightness features with as sociated dust lanes near the center. These fe ures, moderately ill-defined, connect with the very-high-surface-brightness, massive, welldefined principal outer luminous arms at a disance of about half a disk length from the center

A third, lower-surface-brightness arm begins also at the place that one of the two gincipal high-surface brightness arm starts. principal high-surface-brightness arms starts The pitch angle of this third arm is different from others.

The redshift is $v_{o}=2375 \mathrm{~km} \mathrm{~s} \sim^{1}$.

NGC 2964 PH-7603-S

Sc(s)II. 2 Karachentsev 210 panel 240 April 3/4, 1979
IllaJ + GG385
30 min
NGC 2964 forms a close physical pair with NGC 2968 (SO_{8} or Amorphous; panels 49, 337) at a separation of 5.8^{\prime}. The redshifts are $\mathbf{u}_{\mathbf{0}}(\mathbf{2 9 6 4})=1292 \mathrm{~km} \mathrm{~s}^{\mathrm{sl}}$ and $\mathrm{f}_{\mathrm{o}}(2968)=1576$ $\mathrm{km} \mathrm{s}^{-1}$. At the mean redshift distance of 29 Mpc $(H=50)$ the projected linear separation is small, at 49 kpc .

NGC 245	Sc(s)II pec
PH-7834-S	
Sep 3/4, 1980	

Sep 3/4, 1980

103 aO

min

There are three main arm connections with the center in NGC 245, but, as in NGC 3089 to the left, the surface brightness of these connec tions is low. The central structures become the bright principal arms at about a third of a disk radius from the center. Four main bright arm are evident near the outside of the pattern

The redshift is $\boldsymbol{v}_{\boldsymbol{0}}-\mathbf{4 2 7 5} \mathrm{km} \mathrm{s}{ }^{\prime \prime}$.
NGC 6215
$\mathbf{S c}(\mathbf{s}) \mathrm{II}$
pair
CD-1582-S/Br

Aug 11/12, 1980
103 aO
45 min
min
NGC 6215 forms a physical pair with NGC
(Sbc; panel 189) at an angular 6221 (Sbc: panel 189) at an angular separation of 18.3'. The redshifts are $u_{o}\left({ }^{6215}\right)=I^{355 k_{T M}}$ $\mathrm{s} " '$ and $\mathrm{u}_{\mathrm{o}}(6221)=1270 \mathrm{~km} \mathrm{~s} \mathrm{~s}$ '. At the mean redshift distance of $26 \mathrm{Mpc}(H=50)$, the projected linear separation of the pair is 140 kpc . There are several candidate low-surfacebrightness companion dwarfs in the field.

TT amples of spiral patterns that cover the disk because of their massive nature in the sense ol Reynolds (1927a,b)
NGC 337 Sc(s)III.2 pec \quad merger?
PH-7672-S
Sep 25/26, 1979

Sep 25/26, 1979
103 aO
2 min
The arms in NGC 337 cannot be well traced from the nucleus. Perhaps part of the central pattern is a bar, from whose opposite ends originate two of the arm fragments, but the pattern is not regular. The association of the other segments with any overall spiral pattern as a whole is even less obvious.

The irregular morphology of the arm segments may be clue to a close encounter; this might be established if the small structure with a central knot (a nucleus?) and associated bar with its associated stubby (s)-type arms can be identified as a companion. But it is not certain that this galaxy is in fact a companion, or even if soil' it is ready to merge.

The comment in the RC1 on the morphology of NGC 337 that NGC 337 "resembles NGC $1313 "$ may be appropriate; NGC 1313 (SBiIIIIV; panel 309) has been suggested to be in a close encounter.

NGC 2793
 Sell pec
 PH-7931-S

Nov 7/8, 1980
103aO
2 min
The unusual morphology of NGC 2793 is similar to NGC 337 above and NGC 4027 to the right. The partial-ring morphology is also similar to the ring galaxies attributed by Theys and o the ring galaxies attributed by Theys and (1976) as due to plunging encounters, as discussed on earlier pages of this atlas. A small, cussed on earlier pages of this atlas. A small,
undisturbed galaxy exists at the close separation of $90^{\prime \prime}$, but its redshift is unknown and it may be in the background. If so, the unusual morphology in the background. If so, the unusual morphology
of NGC 2793 would be endemic to the system, of not due to an encounter

NGC 4027	Sc(s)II. 2
CD-1679-S	
Jail $1 / 2,1981$	

Jail 1/2, 1981
103 aO
min
NGC 4027 is in an apparent small group of galaxies contained within a 2°-diameter circle, all having similar redshifts within $110 \mathrm{~km} \mathrm{~s}^{-1}$ of the mean redshift. $\left\langle v_{u}\right\rangle=1382 \mathrm{~km} \mathrm{~s}^{-1}$, of the five brightest group members. These five brightest members, all in the RSA. are NGC 4024 (SO, panel 31), NGC 4027 here (Sc), NGC 4033 (SOj: panel 35), and the famous interacting pair NGC 4038/4039 (Sc/Sc tides: panel 280). If the angular radius of the group is 1°, its linear radius is 480 kpe , based on a mean redshift distance of 28 Mpc . Therefore the group is a field example of the Local Group. It contains late-type spirals, early-type galaxies, and Magellanic Cloud-type early-type galaxies, and Magellanic Cloud-type
Im galaxies. Two of these are close to NGC 4027 , Im galaxies. Two of these are close to NGC 4027 here. A well-resolved Imlll exists at an angular separation (south) of 4.0' (projected linear separation of only 33 kpc): a BCD exists at a angular separation (northwest) of
(projected linear separation of 133 kpc).

Although NGC 4027, shown here and below, has a peculiar morphology because of the nonsyiumetry due to its one bright, massive arm there is no evidence of an encounter or a merger there is no perturbing galaxy nearby

It must be considered a coincidence that NGC 4038/4039, the galaxies that provide the most direct evidence anywhere in the sky of a close encounter, are in this group and ar separated from NGC 4027 by only 41^{\prime}. The projected linear separation of the NGC $4038 / 4039$ pair from NGC 4027 is 334 kpc

NGC 4027
$\mathrm{Se}(\mathrm{s}) \mathrm{II} .2$
group
CD-1679-S
m 1/2, 1981
103 aO
60 min
The resolution of NGC 4027 into 1111region candidates and perhaps a few brightes stars is visible in this short-exposure print from the same original plate used for the heavy print above.

NGC 3985	Sc(s)Il peeRacine wedge PH-8055-S	
Feb 4/5, 1983		
103aO		
12 min		

12 min

Us position and redshift, $v_{0}=1004 \mathrm{~km} \mathrm{~s}^{-1}$ uggest thai NGC 3985 is a member of the Urs Major Cluster.

In a way similar to NGC 44)2 7 shown at the eft, the spiral structure in NGC. 3985 is unusual because of its one-armed pattern.

NGC $2990 \quad$ Sc(s)II. 2
an $3 / 4,198$
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
NGC 2990 insert
CD-1691-S
jim 3/4, 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
7 min
The inner spiral pattern in NGC 2990 has an unusually high surface brightness, as seen ill the insert. The arms are massive, covering much of the area of the disk

The redshift is $v_{0}=3006 \mathrm{~km} \mathrm{~s} \sim$

TIT
lustration of Sell objects having massive arms in the sense of Reynolds ($1927 \mathrm{a}, \mathrm{b}$). Most are of the two-armed variety with the arms beginning at the center [the (s) subtype].

C 4444 Sc(s)II pec
CD-1875-HB
April 10/11, 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
45 mill
The surface brightness of the central region and the two inner spiral fragments beginning therein is very high. The arm pattern is not symmetrical, yet the spiral feature of the three symmetrical, yet the spiral feature of the
(perhaps four) arm segments is definite.
(perhaps four) arm segments is definite.
The redshift is $\mathrm{u}_{0}=1760 \mathrm{~km} \overline{\mathrm{~s}} \backslash$ Only a ery few (if any) HH-region candidates have been identified.

NGC 5595
$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$
pair
CD-1569-S/Br
Aug 10/11, 1980
5 nün
NGC 5595 forms a close physical pair with NGC 5597 (SBe; panels 298, S10) at an angular separation of 4.0^{\prime}. The redshifts are $\mathrm{i} ;_{0}(5595)=$ 2501 krns"' and $\mathrm{i}_{0}(5597)=2444 \mathrm{~km} \mathrm{~s}^{\prime \prime}$. At the mean redshift distance of 59 Mpc , the projected linear separation of the pair is small, at 58 kpc .

The surface brightness of the arms in NGC 5595 is unusually high.

NGC 3389
PH-270-S
$\mathrm{Sc}(\mathrm{s}) \mathrm{II} .2$
Dec 10/11, 1952
$103 \mathrm{aD}+$ GGll
25 nün
NGC 3389 is listed as a member of the Leo Group in the catalog of Ferguson and Sandage (1990), where the morphological type is given as Scd(s)II.

NGC 3389 is in a triplet of the brightest Leo Group galaxies, which form the center of the aggregate. The other two galaxies are NGC 3379 (E0: panel 1) at a separation of 9.8^{\prime}, and NGC 3384 (SBO j: panels 54, S7) at a separation of 6.4'. The mean redshift of the group listed in the Leo Cluster Catalog is $\left\langle v_{o}\right\rangle=909 \mathrm{~km} \mathrm{~s}^{-1}$. At a redshift distance of 18 Mpc , the projected linear separations of NGC 3379 and NGC 3384 from NGC 3389 are small, at 51 kpc and 34 kpc , respectively. The redshift of NGC 3389 itself is $v_{o}=1127 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 6970
$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$
CD-1532-S/Br
Aug 6/7, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
15 inin
NGC 6970 insert
CD-1110-Br
Aug 19/20, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
15 nun
The angular size of this remote galaxy is small, at $35 "$. The redshift is $v_{0}=5207 \mathrm{~km} \mathrm{~s} \mathrm{\sim}$.

The two major spiral arms have very high surface brightness. The arm pattern is of the grand design, the arms being of the massive type

IC 2056
CD-135-S
an 31/Feb 1, 1978
Jan 31/Feb 1, 1978
$103 a \mathrm{O}$

+ GG385
60 inin
IC 2056 insert
CD-172-S
Feb 6/7, 1978
98-04 + GG385
10 min
The inner disk of IC 2056, filled with spiral segments, has a very high surface brightness and surrounds a nearly pointlike nucleus. The spira arms are tightly wound

Lower-surface-brightness segments of a spiral pattern exist in the outer disk, shown in the heavy main print. Many knots in these oute arms are candidates for Mil regions. The redshift of IC 2056 is $v,=934 \mathrm{~km} \mathrm{~s}^{11}$.

The high-surface-brightness inner arms and the small, intense nucleus are well seen in the insert print made from a red-sensitive plate and a wide-bandwidth filter

NGC 5633
$\mathrm{Sc}(\mathrm{s})$ II
PH-7862-S
Sep 5/6, 1980
103a0
min
Two sets of arms exist in NGC 563 3. The inner set, of extremely high surface brightness, is shown in the print here, made from a very-short exposure Palomar plate. The outer set of much fainter-surface-brightness arms is not seen here.

The redshift is $v_{n}=2437 \mathrm{~km} \mathrm{~s}^{11}$.

C.ixios on this and the next panel arc grouped together as Sell galaxies with multiple-arm morphologies similar to the arm patterns of NGC 488 (Sal>; panels L15, S3, SI 2) and NGC 2841 (Sb; panels 142, S4, SI 2).

NGC 1437 Sc(s)II \quad FCC 290	NGC 441-1 Sc(sr)H. 2
CD-192-S	[-1-2384-11
Fel>8/9, 1978	Fcb 21/22, 1947
$103 \mathrm{aO}+\mathrm{GG} 385$	IlaO
45 mill	10 iiiin
NGC 1437 is listed as a member in the	The multiple-armed spiral structure is well
Fornax Cluster Catalog (Ferguson 1989). It is	developed in NGC 4414. Dust accompanies the
located about 1° southeast of the center (nominally at the position of NGC 1399). Us	luminous arm fragments and is well silhouetted against the near side of the underlying disk. The
redshift is $v_{0}=1067 \mathrm{~km} \mathrm{~s}^{-1}$. The adopted mean redshift of the Fornax Cluster is $\left\langle v_{\nu}\right\rangle=1366 \mathrm{~km}$	Illl regions are unresolved, as are the brightest stars on this plate taken with the Mount Wilson
$\mathrm{s}^{\mathrm{n} 1}$ (Ferguson and Sandage 1990). The Fornax Cluster is 0.2 mag more distant	LOO-inch Hooker reflector. The redshift of NGC 4414 is $v_{B}=702 \mathrm{~km} \mathrm{~s}^{-1}$.
than the Virgo Cluster (Ferguson and Sandage 1988, Sandage and Tammann 1990) and therefore has a distance modulus near $m-M=32$.	
Resolution of NGC 1437 into individual stars occurs about half a magnitude above the plate limit of this image ($B=23$) made with the Las	
Campanas du Pont 100 -inch reflector; therefore the absolute magnitude of these brightest stars is about $M B=-9.5$. The several IUI-region candidates are unresolved at the 1 " level.	

NGC 1792
CD-129-HB
Jaii 6/7, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
60 niin
Tlie surface brightness of the spiral fragments covering the disk is exceptionally high. The arms are massive in the sense of Reynolds (1927a.b). and the spiral pattern is multiple, as in NGC 488, but NGC. 1792 here is of later morphology; the arms are not thin or as easily morphology; the arms are not
traced as they are in NGC 488.
The redshift is $o_{o}=1055 \mathrm{~km} \mathrm{~s}^{-1}$.
NGC 1792
$\mathrm{Sc}(\mathrm{s})$ II
CD-1347-S/Br
March 15/16, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
7 niin
This print from the short-exposure plate shows the high-surface-brightness ridge position of multiple arms. Hll-region candidates are numerous along the ridge lines. Note the small nucleus.

NGC 1309
PH-7918-S
PH-7918-S
Nov 7/8, 1980
103 aO
2 niin
The spiral arms are regular and are very tightly wound. The inner-arm pattern is of high surface brightness. One of the principal arms is brighter than the other. Both begin at the edge of the inner disk, which itself is filled with luminous arm segments that begin at the center.

Hll-region candidates exist. A few candidates for individual brightest stars also exist in the low-surface-brightness parts of the outer arm ystem, but identification as stars must yet be done by the standard methods that separate stars and HII regions. The redshift is $v_{o}=2143 \mathrm{~km}$ s~'. At the redshift distance of $m-M=33.2$ a star of absolute magnitude $\mathrm{Mg}=-10$ has a blue magnitude of $B=23.2$, which is fainter than the candidate stars: the starlike candidates are therefore interesting, as they may be HII regions.
NGC 754-1 Se(s)II Karachentsev 578 H-945-Dunean Sep 2/3, 1945
103aO
60 niin
NGC 7541 forms a physical pair with NGC $7537[\mathrm{Sc}(\mathrm{s})]$ at an angular separation of 2.7^{\prime}. Karachentsev (1987) gives redshifts of $\mathrm{i}^{\prime}{ }_{\mathrm{o}}(7537)$ $=2834 \mathrm{~km} \mathrm{~s} \sim^{\prime}$ and $u_{0}(7541)=2793 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}$. At the mean redshift distance of 56 Mpc the projected linear separation is small, at 44 kpc . There is no evidence for morphological distortion in either galaxy, despite this apparent closeness.

NGC3684

CD-1811-IIK
April 2/3, 1981
I03a0
7rs mill
NGC 3684 is IIK- center $\diamond 1 ;$; small group of seven confirmed members (based on similarity ol ${ }^{-}$ redshifts). The number of candidate group memredshifts). The number of candidate group members is ;is lii \neq us 15 , Many of the fainter cantypes. ypes.
The confirmed group members listed in RSA are NGC 3681 (SBb; panel L64; $\mathrm{u}_{0}-1135$ kms^{11}), NGC 3686 (SBbc; panel 20*): $v_{o} \sim 1034$ $\mathrm{km} \mathrm{a}^{11}$), and NGC 3693 (Scd; panel 317; $v_{0}=$
$\left.947 \mathrm{~km} \mathrm{~s} \sim^{1}\right)$. Other members lhal have 21-cm 97 km s~). Other members thal have $21-\mathrm{cm}$
redshifts are listed in Hoffman et til. (1987). The redshifts are listed in Hoffman et til. (1987). The mean redshifl of the seven confirmed group memers is $\left\langle v_{u}\right\rangle=1021 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.

The group is more compact than the Local Group. The members are within I° of each other, a linear diameter of 356 kpc (about one-third the size of the Local Group).

The three images of NGC 3684 on the opposite page have been made from a single original lu Pont 100 -inch plate taken at Las Campanas hut printed to different densities to show the inside spiral pattern [(s) type] and the very-lowsurface brightness outer-arm struelure, which has at times been called a fossil-arm pattern.

7
tern of two sets of ams seen on preceding panel. An inner set er two sets of arms seen on the preceding panel. An inner set has very high surface brightness; an outer set of very faint outer arms exhibits the form of what is often called a fossil-arm pattern, common in many galaxies. Earlier-type galaxies having this pattern include NGC 1068 (Sb ; panel 138) and NGC 3981 (Sbc; panel 178).

NGC 4793 Sc(s)H. 2 HA, p. 35	NGC 5756 Sc(s)II panel 239
H-2273-H	CD-1471-S/Br
May 5/6, 1946	May 10/11, 1980
103 aO	$103 \mathrm{aO}+\mathrm{GG} 385$
40 niin	45 iiiin
A possible dwarf companion (type Sm?) to	The very-faint-surface-brightness out
NGC 4793 exists at an angular separation of 1.3^{\prime}. The redshift of NGC 4793 is $v_{o}=2460 \mathrm{~km}$	arms in NGC 5756 are smooth, showing no evidence of recent star formation. The two main
s^{-1}. If the satellite is a companion, the projected	high-surface-brightness inner arms start at
linear separation from NGC 4793 is small at 19	small nucleus in a prototype (s) pattern.
kpc, based on a redshift distance of 49 Mpe ($H=$ 50). One of the outer low-surface-brightness fos-	The redshift is $v_{o}=2025 \mathrm{~km} \mathrm{~s}$
sil arms appears to connect with the satellite.	NGC 2090 Sc(s)II panel
	CD-663-Br
NGC 3403 Sc(s)II Racine wedge	Jan 22/23, 1979
PH-8015-S	103aO + GG385
Feb 3/4, 1981	45 nun
103 aO	NGC 2090 is repeated here from panel 250
12 niin	to illustrate and compare the pattern of high
There is an abrupt change of surface bright-	face-brightness inner arms and low-surfa
arms in NGC 3403.	shown by other galaxies on this page. The pattern
The redshift is $v_{n}=1422 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.	is similar to that in such prototype cases as NGC 1068 (Sb; panel 138) and NGC 3981 (Sbc panel 178).
	The redshift is $\mathrm{u}_{.}=755 \mathrm{~km} \mathrm{~s}{ }^{1}$.

he six galaxies on this panel complete the Sell morphological bin of RSA galaxies whose arm pattern is generally filamentary, often similar to the pattern in NGC. 488 but later in he classification sequence. All six galaxies here are highly inclined o the line of sight, showing well the absence of a central bulge and the presence of only a small nucleus.

NGC 3549
 PH-8073-S

Feb 5/6, 1981
103 aO
2 niin
The multiple arms in NGC 3549 are thin, egular, and multiple. The redsbift is $v_{0}=2921$ $\mathrm{km} \mathrm{s}{ }^{1}$.
NGC $3437 \quad$ Sc(s)II Racine wedge
PH-8021-S
Feb 3/4, 1981
103 aD
2 ruin
The image of NGC 3437 here is from a
yellow plate (no filter) with a very short ex-
posure, designed to see the semi-chaotic spiral
pattern over the high-surface-brightness inner
disk. The redshift of NGC 3437 is $\mathrm{u}_{2}=1201 \mathrm{~km}$
$\mathrm{~s}^{-1}$.

NGC 3956
 Dec 31/Jan 1, 1980/1981

103 aO
60 niin
NGC 3956 is in a rich field that includes the RSA galaxies NGC $3957\left(\mathrm{SO}_{3}\right.$: panel 44), at a separation from NGC 3956 of 59.2^{\prime} with a redshift of $v_{0}=1583 \mathrm{~km} \mathrm{~s} \sim^{\prime}$. and NGC 3981 (Sbc: panel 178), at a separation of 50.0^{\prime} with a redshift of $v_{f)}=1554 \mathrm{~km} \mathrm{~s}^{-1}$. The redshift of NGC 3956 itself is $v_{o}=1.394 \mathrm{~km} \mathrm{~s}^{11}$. If the three galaxies are physically related with mean redsbif of $\left\langle\mathrm{f}_{\mathrm{o}}\right\rangle=1510 \mathrm{~km} \mathrm{~s}^{-1}$ at a redshift distance of $30 \mathrm{Mpc}(17=50)$, the projected linear separations from NGC 3956 are 516 kpc and 436 kpc from NGC 3957 and NGC 3981, respectively. These dimensions are similar to the size of the Local Group

The field around and between these three bright galaxies contains many (IE, Im, and Sm dwarf galaxy candidate members of the group.

IC 5039
CD-1529-S/Br
Aug 6/7, 1980
$103 \mathrm{aO}+$ GG385
45 niin
IC 5039 forms a physical pair with IC 5041 [SBbc(s)II; not in the RSA] al a separation or 9.8'. The redshifts are $\mathrm{i}>_{0}(5039)=2723 \mathrm{~km} \mathrm{~s} \sim$ and y, ,(5041) $=2739 \mathrm{~km} \mathrm{i}^{-1}$. At the redshift distance of $55 \mathrm{Mpe}(/ I=50)$, the projected linear separation is 157 kpc .

NGC 3003
PH-7958-S
H-7958-S
103 aO
12 mill
NGC 3003 is seen nearly on edge, making its spiral pattern difficult to trace. The absence of a halo and (he smallness of the central nucleus is evident.

The redshift of is $v_{a}=1161 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}$

NGC 6808

CD-480-S
Sep 23/24, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
60 mill
Three principal arms can he traced in NGC 6808 , two on one side and one on the other. The arms are intermediate in width between narrow nd massive in the sense of Reynolds (1927a,b).

The redshift is $\mathrm{i}^{\prime}=3281 \mathrm{~km} \mathrm{s"}$ '.

THE SCII-III SUBCLASS

Gglaxies on the next 16 panels are of the lateluminosity classes II-III and III. Many are nearby and are highly resolved into individual stars and HII regions, making them especially useful for calibration of the extragalactic distance scale. Many of the disks are of low surface brightness; hence photometry of the resolved stars will be relatively straightforward.

C 5332 Sct
 CD-539-S

Oct 1/2, 1978
103aO + GG385
45 niin
IC 5332 forms a wide pair with NGC 7713 (Sc; panel 267) at a separation of 1.9° and redshifts of $713 \mathrm{~km} \mathrm{~s} \sim^{1}$ and $684 \mathrm{~km} \mathrm{~s} \sim^{1}$. At a mean redshift distance of $14 \mathrm{Mpe}(H=50)$, the projected linear separation of the pair is 464 kpc , similar to the distances within the Local Group.

IC 5332 resolves easily into individual star starting at about $B=19$. The surface brightness of the disk is low, making IC 5332 a prime candidate for detailed photometric study.

The largest HII region in a faint outer arm has a disk diameter (core + halo) of $6^{\prime \prime}$. If it conforms to the linear halo diameter of 500 pc from the calibration of first-ranked HII region ScII-III galaxies (Sandage and Tamman 1974a), the inferred HH-region-based distanc s 17 Mpc , similar to the adopted redshift dis ance given above. A similar distance is obtained from the ratio of the halo diameter $6^{\prime \prime}$ here hat of NGC 604 (the first-ranked HII region in M33. with a halo diameter of 100 ")

Because of the very low disk surface brightness and the easy resolution into individual stars, a detailed study of the stellar content would be of great importance.

NGC4571
CD-756-S
Feb4/5, 1979
$103 \mathrm{aO}+\mathrm{Wr} 2 \mathrm{c}$
50 inin
NCC 4571 is an Sc galaxy in the Virgo Cluster whose potential for significant resolution into individual stars and 1111 regions from tin ground is good, owing to the low surface brightness of the disk and the openness of tin* spiral arms.

The arm pattern resembles M101 hut is of lower surface brightness. It is similar to hut later than thai in the prototype multiple-armed spira NGC 488 (Sab; panels L15, 116, S3, S12).

NGC 4571 is in the northeastern part of the Virgo Cluster region, about 2.5° from the core of Virgo subcluster A assoeiated with [NGC 4486 Its redshift is $v_{0}=342 \mathrm{~km} \mathrm{~s}^{-1}$. which differs from the cluster mean of $\left\langle v_{o}\right\rangle=976 \mathrm{~km} \mathrm{~s}^{-1}$ presumab ly because of the large internal velocity disperly because of the large internal velocity disper
sion of the Cluster and/or the streaming motions of the system of Virgo spirals relative to the Virgo of the system of Virgo spirals relative to the Virgo core ellipticals. Spirals may be falling into th ellipticals and d dwarfs.

NGC 300 Sc(s)II. 8 South Polar Gr

CD-2044-Bedke/Gregory
 panel S6

Nov2/3, 198
103 aO
0rain
NGC 300 is a member of the South Polar Group (de Vaucouleurs 1959a), which also conains the well-resolved galaxies NGC 55, NGC 147. NGC 253, and NGC 7793. The distance modulus of NGC 300 is small, at $m-M=26.5$ $D=2.9 \mathrm{Mpc}$), determined from Cepheids (Graham 1984). Because the distance is so small, resolution into individual brightest stars in many well-defined associations is exceptionally easy, beginning at about $B=18$ (estimated).

The brightest stars are contained in the associations. let. only slightly fainter stars that are also young are spread throughout the interarm region

The spiral-arm pattern is massive in the ense of Reynolds (1927a,b). At least two major arms exist on each side of the minor axis. Three arm crossings of the major axis can be traced on each side of the image

PR-243-Schweizer
Aug 23/24, 1974
$103 \mathrm{aO}+$ GG13
120 inin
The wide-field ìmage of M3 3 here was taken with the Palomar $\mathbf{6 0}$-inch reflector by Schweizer. The telescoped remarkable field of more than 1° (diameter) with its large plate scale of 16 arc seconds per mm is the optical design of I. S. Bowen. His design of the 60 -inch Palomar reflector was the prototype for the even-wider-field Las Campanas 40 -inch Swope Telescope and the remarkable Las Campanas 100 -inch du Pont reflector, both of whose optics were also designed by Bowen.

The stellar content of M33 has been discussed in detail by Humphreys and Sandage (1980). They addressed the spiral pattern, the associations, the dust patterns, and the brightest resolved red and blue stars. The brightest blue stars begin to resolve at $B=15$: the brightest red supergiants begin to resolve at $V=16.5$.

Ten spiral arms were identified and mapped in that study. The two main inner arms have a in that study. The two main inner arms have a
different projected geometry than the outer eight arms. This was interpreted (Sandage and Humphreys 1980) as a warp of the spiral-arm plane, as in the tilted angular ring model of Rogstad, Wright, and Lockhart (1976).

The surface brightness of the disk is moderate-to-light. M33, the prototype for ScIIIII galaxies, is the template by which other galaxies of this type and luminosity class are compared. Its near-twin is NGC 300, shown on the previous panel.

NGC 2500
PH-7704-S
Feb 11/12, 1980
103aO

12 min

Individual stars arc ne> as easily resolve oul of the high surface background of the disk in NGC. 2500 as in IC 5332 (panel 259). which ha nearly the same redshifl. The Illl regions ar numerous and are of high individual surface brightness. The largest of these has a disk diameter of about $3^{\prime \prime}$

NGC 2500, with redshifl $v_{o}=713 \mathrm{~km} \mathrm{~s} \sim$ forms a wide quadruple with NGC 2537 (Sc pec panel 275: $v_{o}=513 \mathrm{~km} \mathrm{s"'}$), NGC 254] (Sc panel 264: v, , $=646 \mathrm{~km} \mathrm{~s}^{11}$). and NGC 2552 (Sd; pane] 322; $v_{0}=607 \mathrm{~km} \mathrm{~s}^{-1}$). The separations of the members of this nearby group are discussed in the description paragraph for iNGC 2541 (panel 264).

NGC 3780
 $\mathrm{Sc}(\mathrm{r}) \mathrm{II} .3$
 PH-7634-S

April 28/29, 1979
103 aO
12 niin
The spiral pattern in NGC 3780 is similar to the multiple arms in the prototype multiplearmed galaxy M101 (Sc; Hubble Atlas, pp. 27, 37; panel 218 here). Both galaxies are later versions of the multiple-armed pattern of NGC 488 (Sab: panels 115.1 16. S3. S12).

The arms in NGC 3780 are thin but highly branched. Most can be traced as individual fragments for only about a half-rotation.

The many individual HII regions are unresolved at the $1^{1 "}$ level. The redshift of NGC 3780 is $v_{o}=2481 \mathrm{~km} \mathrm{s"'}$.

NGC 2276 Sc(r)II-III Karachentsev 127 S-1879-H
Dec 4/5, 1939
103aO
60 min
NGC 2276 forms a pair with NGC 2300 (E3: panel 6). The redshifts measured by Karachentsev are $u_{0}(2276)=2598 \mathrm{~km} \mathrm{~s}^{-1}$ and $\mathrm{i}_{\mathrm{j}}(2300)=2332 \mathrm{~km} \mathrm{~s}^{-1}$. The separation of 6.3' corresponds to a projected linear separation of 90 kpc at the mean redshift distance of 49 Mpc . The difference in morphological type of the pair is particularly to be noted (Sc and E3) if the two galaxies form a bound system. Other listed nearby Dreyer galaxies are IC 455 (SO) and IC 469. Many fainter early-type galaxies and several candidates for dwarf dE galaxies also exist in the field.

The image here of this field near the celestial pole is from a plate taken with the Mount Wilson 60 -inch telescope. For comparison, an image from a plate taken with the Palomar 200-inch Hale reflector is shown at the right

NGC 1659 Sc(s) II-II
H-44-S
Feb 8/9, 1951
$103 a 0$
The multiple spiral arms form an asym metrical pattern over the outer disk. The asymmetry is similar to that in NGC 2276 , below, but unlike in that galaxy there is no evidence in NGC 1659 for a close (tidal) encounter. NGC 1659 appears to be isolated.

The multiple-arm pattern, which is asym metric in the region where the arms end abruptly at an outer edge, is nearly identical with that of NGC 95 (Sc: panel 248). The pattern is also similar to that in NGC 5605 (Sc; panel 246).

The redshift of NGC 1659 is $v_{p}=4522 \mathrm{~km}$ s^{-1}.

NGC 2276 Sc(r)II-III Karachentsev 127 PH-7566-S
Nov 7/8, 1978
$103 a 0$
12 mi
Compare the image of NGC 2276 taken with the Palomar Hale 200-inch telescope in the print here with that taken with the Mount Wilson 60 inch reflector in the print to the left.

The spiral pattern is unusual, perhaps be cause of a tidal encounter with the probable companion NGC 2300 (E3; panel 6), whose projected linear separation is small at 90 kpc .

L lie six galaxies on this panel continue the lateluminosity class, Sc morphological type, where the arm pattern is multiple and where the arm fragments are thin. The arm pattern in each galaxy has similarities to the spiral pattern in M10 1 (Se; panel 2 18) lint the geometrical entropy is higher (mure chaotic) here; hence the later-luminosity class is required.

NGC 5668 Sc(s)II-III

March 19/20, 1982
$103 \mathrm{aO}+\mathrm{GG} 385$
35 min
The brightest HII region in NGC 5668 is double, apparently resolving at about the $2^{\prime \prime}$ level. The numerous other Mil regions are unresolved at $1^{\prime \prime}$. The redshift of NGC 5668 is $v_{o}=$ $1491 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.
NGC $5962 \quad \mathrm{Sc}(\mathrm{rs}) \mathrm{II} .3 \quad \mathrm{HA}, \mathrm{p} .30$
II- $3295-\mathrm{H}$
July $2 / 3,1946$
ItaO
30 mil)
The HII-region candidates are unresolved at
the $1 "$ level. The redshift of NGC 5962 is $v_{0}=$
$1972 \mathrm{~km} \mathrm{~s} \mathrm{\sim l}$

New $4=A \quad 1252+00 \quad$ S $<(\mathrm{s})$ II-III
CD-2167-S
March 27/28, 1982
103aO + GG385
45 min
The largest of the several II11 regions appears to be a composite of several separate but overlapping regions, presenting a disk of about 2" diper The abou 2° de redsift New 4 is 100 mines

NGC 2541 St
PH-93-MH
group
March 16/17, 1950
$103 a O$
10 min
NGC 2541 is highly resolved into individual HII regions. The largest three of the more than 50 such regions identifiable on this short-exposure Palomar 200 -inch plate have resolved disks at the 3 "-diameter level.

NGC 2541 is near the middle of a loose group of at least four highly resolved galaxies, all in the HSA, already mentioned in the description of NGC 2500 (Sc; panel 262). The mean redshift of the group is $\left\langle v_{l l}\right\rangle=595 \mathrm{~km} \mathrm{~s}^{-1}$ The individual redshifts are $\mathrm{u}_{\mathrm{o}}(2500)=615 \mathrm{~km}$ $\mathrm{s} \sim \mathrm{u}_{\mathrm{o}}(2537)=513 \mathrm{~km} \mathrm{~s} \sim \mathrm{tf}_{\mathrm{o}}(2541)=646 \mathrm{~km}$ a^{l}, and $\mathrm{u},,(2552)=607 \mathrm{~km} \mathrm{~s}^{\text {. }}$. The angula separations and corresponding projected lineal separations and corresponding projected lineal
separations from NGC 2541, based on a mean separations from .NGC 2541, based on a mean and therefore 540 kpe for NGC $2500,3.1^{\circ}$ and and therefore 540 kpe . 644 kpc for NGC 2537, and 1.2° and 2.19 kp for NGC 2552. These projected linear separa ions are similar ditances within the Local Group.

Note the similarity of the HII-region bright ness distribution and the spiral pattern in all members of the group, seen on panels 262,275 and 322 in addition to the pane! here.

NGC 6106
CD-910-HB
April 29/30, 1979
03aO + GG385
40 min
The redshil'i of NGC 6106 is r, , $=1459 \mathrm{~km}$ s^{-1}. The IIII regions are unresolved at the $I^{\prime \prime}$ level.

NGC 7456
$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$
CD-549-S
Ocl 2/3, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
15 min
The surface brightness of the disk is low There is no central bulge: as in all Sc galaxies on his and previous pages, the nucleus is eithe small or often unresolved al the $1-2^{\prime \prime}$ level, as here. The redshift of this galaxy is $v_{o}=1199 \mathrm{~km}$ s^{-1}.

T,he six galaxies on this panel complete the lateluminosity class (II-III/III) of the Sc classification section for galaxies with thin arms. The ScII-III and ScIII galaxies with intermediate or massive arms follow on panels 266-272.
NGC 4062 Sc(s)II-III HA, p. 20
H-2246-H
March 7/8, 1946
103aO
60 rain
\quad The multiple-armed structure of the NGC

The multiple-armed structure of the NGC 488 type begins at the small nucleus of NGC 4062 and. together with associated spiral dus lanes, spreads throughout the moderately low surface brightness disk. A few HH-region can didates exist, which, despite the low redshift of v $=745 \mathrm{~km} \mathrm{~s}^{-1}$, are unresolved at the I" level.

The plate used for the image here was taken tor.

NGC 3949
S-476-H
June 16/17, 1925
E40
40 inin
NGC 3949 is in the highly complex Ursa Major region, within which at least four separate kinematic groups can be identified. The lowestredshift group contains the highly resolved late type spirals NGC 4144, 4214, 4244, 4449, 4736. and IC 4182. The mean redshift of this group is $\left\langle\mathrm{t}^{\prime}\right\rangle=285 \mathrm{~km} \mathrm{~s}^{-1}$. The second kinematic group at $\left\langle v_{o}\right\rangle=595 \mathrm{~km} \mathrm{~s}^{-1}$ is associated with M51, and contains also NGC $4258,4490,4616$ and others. A group with $\left\langle v_{o}\right\rangle$ near $750 \mathrm{~km} \mathrm{~s} \mathrm{\sim}$ contains NGC $3675,3769.3782$, IC 750 , NGC 4051. 4242. and NGC 3949 shown here. The fourth group is the great Ursa Major Cluster, with < u_{0} 〉 about $980 \mathrm{~km} \mathrm{~s}^{-1}$.

The image here of NGC 3949 is from a Mount Wilson 60 -inch plate. The surface brightness of the disk is high. Useful resolution into stars from the ground seems unlikely

The redshift is $u,=857 \mathrm{~km} \mathrm{~s}^{1}$

PH-5543-S
June 6/7, 1970
$103 \mathrm{aO}+\mathrm{GG} 385$
20 nún
The multiple-arm pattern of NGC 6015 starts at the center in a prototype (s)-type configuration. There is no evidence of a central bulge. The nucleus is small, characteristic of the Sc morphology. The redshift of NGC 6015 is v_{o} $=1018 \mathrm{~km} \mathrm{s"'}$.

NGC 4428
Sc (s) II. 3
H-2263-S
May 4/5, 1946
0 min
NGC 4428 forms a physical pair with NGC 433 (She; panel 194) at an angular separation of 7.2 'and v_{o} redshifts of $2828 \mathrm{~km} \mathrm{~s} \sim$ ' and 2771 $\mathrm{km} \mathrm{s}^{-1}$, respectively, giving a mean redshift distance of 56 Mpc . The projected linear separation is 117 kpc .

The print here is from a Mount Wilson 100 -inch plate. The print of NGC 4433 on panel 194 is from a Palomar 200 -inch plate. Note the similar morphology of the two galaxies of this pail*.

NGC $4595 \quad$ Sc(s)II-IH \quad VCC 1811
H-1729-H
Dec 25/26, 1
Imp. Eel.
60 min
NGC 4595 is a small galaxy located 3.7° northeast of NGC 4486, which is the brightest galaxy associated with the Virgo subcluster A. A comparison of the angular size of NGC 4595 with other Virgo Cluster galaxies is made in the atlas of such galaxies printed to a common scale of such galaxies printed to a commone, Binggeli, and Tammann 1985a).

The redshift of NGC 4595 is $v_{B}=559 \mathrm{~km}$ s^{-1}.

NGC 5645
$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$
CD-1868-HB
April 9/10, 1981
103 aO
75 min
The spiral pattern in NGC 5645 is less regular than in other galaxies of luminosity class II-III on this panel. The pattern has a similar geometrical entropy to that in NGC 428 (ScIII) on the next panel, and hence the luminosity classification might have been placed at III. Note however, that the arms are still moderately thin in contrast to the massive arms in, say, NGC 2427 (Sc: panel 269).

The redshift of NGC 5645 is $v_{0}=1375 \mathrm{~km}$

Th
he spiral arms of the 12 galaxies on this and the next two panels are intermediate in thickness between the thin arms shown on the preceding seven panels of .Sell-Ill types, and the massive arms in the sense of Reynolds (1927a,b) in galaxies on panels 269-2 72 .

NGC 7137

H-5-S
Sep 24/25, 195
103 aO
3 min
For its relatively small redshift, $v_{0}=1951$ $\mathrm{km} \mathrm{s}^{-1}$. the angular diameter to the edge of the spiral pattern in NGC 7137 is very small, at $D=$ 0.9'. At a redshift distance of $39 \mathrm{Mpc}(I I=50)$. his corresponds to a linear diameter of only 10 kpe. Despite the small size (and the consequent relatively faint absolute magnitude, $\left(\mathrm{V}_{\mathrm{B}}=-20.4\right)$, the arm pattern is well formed and indeed almost exquisite.

The disk is filled with arms which on one side break into six separate fragments; in contrast there is but one major arm on the opposite side.

NGC 428
$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$
PH-7562-S
Nov 7/8, 1978
103 aO
The semi-chaotic pattern seen here is similar to that in NGC 5645 on the preceding panel. The surface brightness of the inner disk is high. Many Mil regions exist in the bright part of one ol the major arms on one side of the image. Useful resolution into individual stars from the ground seems difficult.

The redshift of NGC 428 is $, \ldots,=1311 \mathrm{~km}$ s^{-1}.

NGC $3320 \quad$ Sc(s)II-III \quad Racine wedge
PH-7713-S
Feb 11/12, 1979
103 ao
2 min
The arm pattern is multiple, beginning at the center in a characteristic (s) mode. The disk is covered with arm fragments. The few in dividual HH-region candidates are unresolved a he $1^{\prime \prime}$ level. The redshift of NGC 3320 is v_{o} $2380 \mathrm{~km} \mathrm{~s}{ }^{11}$.

The original plate was made with a Racine wedge, making multiple images of the bright stars whose secondary component is 5 mag fainte than the primary.

NGC 7713 Sc(s)II-HI pair
CD-1522-S/Br
Aug 5/6, 1980
103aO + GG385
45 min
NGC 7713 forms a wide pair with IC 5332 (Sc: panel 259) at an angular separation of 1.9°. The redshifts are $\mathrm{u}_{0}(5332)=713 \mathrm{~km} \mathrm{~s} \mathrm{~s}^{\prime \prime}$ and (7713) $=684 \mathrm{~km}\left(\sim^{\prime}\right)$ distance of $14 \mathrm{Mpc}(/ /=50)$ the projected linear eparation is 464 kpc

The resolution of NGC 7713 into individual tars and HII regions is more difficult than in IC 5332 for two reasons: (1) the background surface brightness of the NGC 7713 disk is higher than that in IC 5332, and (2) the problem is made worse by the high inclination of NGC 7713 to the line of sight.

The largest of the several HH-region candidates resolve into disks at about the $2^{\prime \prime}$ level.

NGC 701
CD-1558-S/Br
CD-1558-S/Br
April 8/9, 1980
$103 \mathrm{aO}+$
min
The multiple-armed pattern in NGC 701 is similar to the spiral morphology of the arms in NGC 7713, at the lower left.

The HII regions are unresolved. The red shift of NGC 701 is $v_{o}=1923 \mathrm{~km} \mathrm{~s}^{11}$.

IC $3253 \quad$ Sc(s)II-III

CD-207-S
Feb 9/10, 1978
103aO + GG385
45 min
IC 3253 has the standard morphology of a multiple-armed spiral pattern in a highly inclined galaxy of late-luminosity class, of the M1 01 type The disk surface brightness is high: the arms fill the disk.

The HII regions will not usefully resolve from the ground. The redshift is $v_{0}=\mathbf{2 5 8 2} \mathbf{~ k m}$ s^{-1}.

laxies on this panel complete the illustrations of multiple-armed, Sc types of late-luminosity class having arms of ${ }^{\text {• }}$ in termed iale thickness.

CD-1145-Br
Aug 21/22, 1979
$103 \mathrm{aO}+$ GG385
45 min
The arm pattern in IC 5325 is similar to that in M101 (Hubble Atlas, pp. 27, 31; pane 218 here) although the individual arm fragments are more tightly wound and somewhat less fragmented.

Individual HII regions are unresolved. The redshift of IC 5325 is $v_{0}=1459 \mathrm{~km} \mathrm{~s}^{11}$.

NGC $5668 \quad$ Sc(s)II-III panel 264
CD-2114-S
March 19/20, 1982
$103 \mathrm{aO}+\mathrm{GG} 385$
35 mil!
NGC 5668 is also shown on panel 264. It is shown again here to illustrate the similarity of its arm pattern to the pattern of other galaxies on this panel.

The largest HII region is complex. Its halo diameter resolves at about the $2^{\prime \prime}$ level. The redshift is $v_{n}=1491 \mathrm{~km} \mathrm{~s}^{\prime \prime}$.

NGC 4775
CD-1882-HB
April 11/12, 1981
103aO
75 min
The arms of NGC 4775 arc filled with 1111region candidates, the largest of which are complex and resolve into a combined halo diameter plex and resolve into a combined halo diameter is $v_{o}=1375 \mathrm{~km} \mathrm{~s}^{-1}$.

A large number of candidates for dE, Sm, and Im dwarf companions exist in the 2° field surrounding NGC 4775.

NGC $4041 \quad \mathrm{Sc}(\mathrm{s})$ II-HI Ursa Major Cluster S-1912-H
Jan 27/28, 1946
103 aO
60 mill
NGC 4041 forms a kinematic triplet with NGC 4036 (SO/Sa: panel 60; $v_{n}=1509 \mathrm{~km} \mathrm{s"'}$ at a separation of 15^{\prime}, and with the non-RSA galaxy UGC 7009 (Im; $v_{o}=1248 \mathrm{~km} \mathrm{~s}^{\prime \prime \prime}$ at a separation of 12): perhaps also associated is another galaxy of type Sd ? in the field (separation of 17'), of unknown redshift (c. 1990). The redshift of NGC 4041 is $\mu_{0}=1361 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}$. At the mean redshift distance of 27 Mpc , the projected linear separations of NCG 4036 and UGC 7009 from NGC 4041 are 118 kpc and 94 kpc respectively. These galaxies are probable mem bers of the Ursa Major Cluster, whose mean redshift is about $980 \mathrm{~km} \mathrm{~s} \sim^{\prime}$

The spiral pattern of NGC 4041 is similar to that in M101. Numerous Hll-rcgion candidates exist, but none are resolved on this plate, taken with the Mount Wilson 60 -inch telescope.

NGC $105<$	Sc(s)II-IH	NGC 1023 Gr
PH-1553-B		
Oel8/9, 1956		
$103 \mathrm{aO}+$ GGl		
25 min		

NGC 1058 is a member of the loose NGC] 023 Group which, in addition to its eponymous galaxy, contains NGC 891, NGC 925, NGC 1003. and NGC 1058 shown here

The redshift, $v_{0}=221 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}$, for NGC 1058 in tlumason, Mayall, and Sandage (1956) 1058 in tlumason, Mayall, and Sandage (1956)
is incorrect. The redshift adopted in the RSA, is incorrect. The redshift adopted in the RSA
based on many later sources, is $v_{o}=746 \mathrm{~km} \mathrm{~s}^{-1}$ based on many later sources, is $v_{o}=746 \mathrm{~km} \mathrm{~s}$
belying an earlier conclusion, based on the belying an earlier conclusion, based on the
smaller (incorrect) redshift, that NGC 1058 was smaller (incorrect) reds
a nearby dwarf spiral.

Individual stars begin to resolve at $V=22$ At a redshift distance of 15 Mpc (i.e.. $m-M=$ 30.9), such stars are of absolute magnitude $M g=$ -9 , which is consistent with the calibration of brightest resolved blue supergiants in galaxie with $M_{B}=-19$ (Sandage and Carlson 1988).

NGC 3175
 $\mathrm{Sc}(\mathrm{s}) \mathrm{III}:$

CD-715-S
Jan 31/Feh 1, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
The arm pattern in NGC 3175 is traced in the highly inclined image primarily by the dust. There is no large central bulge. There is a pointlike nucleus; hence the Sc type is required. The type in the RSA2 is Sell I: pec, but aside from tin' type in the RSA2 is Sell: pec, but aside from in
mostly dust arms there is no peculiarity; hence mostly dust arms there is
the type is changed here.

The redshift is $\mathrm{r}, \mathrm{m}=843 \mathrm{~km} \mathrm{s"}$

MLost of the galaxies on this and the next three panels have massive arms in the sense of Reynolds (1927a,b). Such arms cover the disk and provide a high-surface-brightness background against which it is difficult to identify individually resolved stars.

NGC 2427
 CD-798-S

Feb 24/25, 1979
103aO + GG385
45 min
NGC 2427 is a very late Sc; it is near the St edge of the Sc morphological box in the classification progression. There is no central bulge or identifiable nucleus. Individual stars may begin to resolve at about $B=22$. The redshift is $v_{o}=$ $707 \mathrm{~km} \mathrm{~s} \sim^{1}$

The mixed classification $\mathrm{SAB}(\mathrm{s}) \mathrm{dm}$, between ordinary and barred spiral, given in the RC2 emphasizes the bar characteristics but assigns a later galaxy type (Sdm) than we have done here

NGC 5530
CD-1412-S/Br
March 23/24, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
The disk of NGC 5530 is filled with fragments of thick arms and their associated dust lanes. The arm pattern is multiple. There is only a small central nuclear region. Most of the palern is dominated by the arms.

Resolution into individual stars and 11II regions does not occur on the available plate material. The redshift is $v_{2,2}=\mathbf{9 4 3} \mathrm{km} \mathrm{s}^{-1}$

NGC 2082
CD-167I-S
De- 31/Jan 1, 1980/1981
103aO + GG385
0 min
NGC 2082 is in a rich field of LMC disk stars. It is located about 5° north ol the hiirof the LMC. close k Shaplcy's Constellation I II of the LMC.

No resolution into stars or Mil regions occurs. The redshift is r, , $=1038 \mathrm{~km} \mathrm{~s}^{\prime \prime}$.

$\stackrel{\Gamma}{I}$
he six galaxies on this panel and the two on the next complete the section showing late-luminosity-class Sc galaxies with massive arms.

NGC 4088 Sc(s)II-III/SBc Ursa Major Cluster S-1971-H
Feb 19/20, 1947
103aO
niin
NGC 4088 forms a pair with NGC 4085 (Sc; panel 291) at a separation of 11'. The redshifts are $\mathrm{i}_{\mathrm{o}}(4088)=820 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}$ and $\mathrm{u}_{0}(4085)=823 \mathrm{~km} \mathrm{s"'}$. Both arc considered to be members of the Ursa Major Cluster, whose mean redshift is $\left\langle\mathrm{r}_{0}\right\rangle=980 \mathrm{~km} \mathrm{~s}^{-1}$. At a redshif distance of $20 \mathrm{Mpc}(\mathrm{H}=50)$, the projected linear separation of the pair is 64 kpc .

NGC 2701
 H-7552-S
 , 1978

03 aO
2 min
One of the two major arms of NGC 2701, which begin near the center with the (s) arm configuration, is considerably brighter than the ther. In addition, the arm pattern is asymmetric bout the small bright nucleus. There is no vidence of a close encounter or a merger (n lose companion is seen). The asymmetry of th pattern appears to be natural, endemic to the alaxy

The redshift is $v_{n}=2421 \mathrm{~km} \mathrm{~s}^{-1}$.

C5179

CD-1563-S/Br
Aug9/10, 1980
103aO + GG385
45 niin
The nucleus of IC 5179 is unresolved (it is starlike, seen in the insert) at the $1^{\prime \prime}$ level. The redshift is $v_{0}=3453 \mathrm{~km} \mathrm{~s}$.

NGC 1359 $\mathrm{Sc}(\mathrm{s}) \mathrm{H}-\mathrm{III}$
CD-2008-Bedke/Gregor
Oct 23/24, 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
NGC 1359 is close to but just outside the catalog boundaries of the NGC 1400 Group (Ferguson and Sandage 1990) whose mean redshift is $\left\langle v_{o}\right\rangle=1581 \mathrm{~km} \mathrm{~s}^{11}$. The redshift of NGC 1359 itself is $v_{0}=1972 \mathrm{~km} \mathrm{~s}^{-1}$.

Active star formation is occurring hroughout the arms, evidenced by the many bright HII regions in the central bar and especially in the one well-developed major arm.

A bright asteroid trail is evident in the eproduction

HA $72=\mathbf{A 1 3 5 7} \quad \mathbf{S c}(s) \mathbf{I I}-\mathrm{IH}$
CD-1538-S/Br
Aug 7/8, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
45 niin
Galactic foreground stars in this low latitude field $\left(b=16^{\circ}\right)$ contaminate the face of the galaxy, complicating the identification of the stellar and the HII components of HA 72. Never theless, the existence of HH-region candidates evident in each of the two principal arms.

The redshift of HA 72 is $v_{o}-1192 \mathrm{~km} \mathrm{~s} \sim$
NGC 7218
Sc(s)III. 8
CD-1509-S/Br
103aO + GG385
45 niin
The surface brightness of the arms of NGC 7218 is very high. No useful resolution into HI regions is evident on the available plate material The redshift of NGC 7218 is $v_{11}=1781 \mathrm{~km} \mathrm{s"'}$

NGC 1518 ScIII

CD-2009-Bedke/Gregory

CD-2009-Bedke/
Oct 23/24, 1981
Oct 23/24, 1981
$103 a O+G G 385$
$103 \mathrm{aO}+$
45 nun
NGC 1518 is nearly on edge, making it impossible to trace the spiral pattern or accurately to classify the galaxy. There is no central bulge; hence the late-type classification is required. There is possibly a bar and an arm structure, as in NGC 1300 (but later), where the arms spring from the ends of the bar.

The arms contain many Hll-region candidates and possibly individual resolved stars. The redshift is $v_{\underline{n}}=914 \mathrm{~km} \mathrm{~s}^{\prime \prime}$.

IC 2995
CD-2I8-S
Ceb 11/12, 1978
Feb 11/12, 1978
103aO + GG385
40 mill
mill
The pattern of IC. 2^{\prime})<) 5 is similar lo [hat of
NGC 1518 al the left. The largest of the many IIII regions resolve at about $2^{\prime \prime}$. No resolution into individual stars is seen on the available plate material. The redshifl is $v_{0}=1566 \mathrm{~km} \mathrm{a}^{-1}$, eable, but the regularity of the arms is generally poor. Although the chaos in the pattern is great (large geometrical entropy), the surface brightness of most of the 18 galaxies on these
three panels is very high; yet the absolute magnitudes of many of these galaxies are faint. Evidently, surface brightness is not an indicator of absolute luminosity in the ScIII galaxies as defined here. The opposite is true, however, for Sd , Sm , and Im types in the later sections of the classification

NGC3511	Sc(s)II.8	pair
CD-722-S	HA, p. 35	
Feb $1 / 2,1979$		
$103 a O+$ GG385		
45 niin		

NGC 3511 forms a close pair with NGC 3513 (SBc: panel 299) with a separation of $1^{10.5}$. The redshifts are $\mathrm{P}_{0}(3511)=951 \mathrm{~km} \mathrm{~s}^{-1}$ anil $\mathrm{r},\left(\begin{array}{l}\text { 3 }\end{array} 13\right)=845 \mathrm{~km} \mathrm{~s} \sim^{\prime}$. At the mean redshift distance of $18 \mathrm{Mpc}(/ /=50)$, the projected linear separation is small, at 55 kpc

The surface brightness of the spiral pattern overlaying the entire disk is very high, as shown in the print at the upper left. A lighter print from the same plate is shown at the lower left.

The arms are massive in the sense of Reynolds (1927a,b). The pattern is similar to that in NGC 2427 (Sc: panel 269) and NGC 4088 (Sc; panel 271) although slightly les regular.

NGC 3511	Sc(s)II. 8	HA, p. 35
CD-722-S		
Feb $1 / 2,1979$		
$103 \mathrm{aO}+$ GG385		
45 min		

The image here is made from the same plate used for the print above, but printed more thinly to show the spiral pattern and the associated heavy dust lanes that are predominantly on the insides of the heavy luminous arms.

NGC $3621 \quad \mathrm{Sc}(\mathrm{s}) \mathrm{II} .8$
CD-811-S
Feb 25/26, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
$4-5$ niin
NGC 3621 is highly resolved into individual brightest stars, beginning at about $B=20$ in some of the outer associations. The HII regions are no numerous but are present, the largest of which have halo diameters of about 4". The galaxy is similar in its spiral pattern to NGC 2403 in th print below. It also resolves into brightest star in the same way but at a level about 1.5 mag fainter. This more-difficult resolution is consis tent with the larger redshift of $u_{0}(3621)=435$ $\mathrm{km} \mathrm{s}^{-1}$ compared with $\mathrm{i} ;_{0}(2403)=299 \mathrm{~km} \mathrm{~s}^{-1}$.
NGC 2403

PH-344-B
Nov 6/7, 1950
103a0
min
The stellar content of NGC 2403, including its brightest stars, the HII regions, the brigh irregular blue variables, and the Cepheids re quire a distance modulus of $m-\mathrm{M}=27.6$ (Tammann and Sandage 1968). This value was confirmed in a modern study by Freedman and Madore (1988).

The brightest blue stars begin to resolve a $B=18$: the brightest red supergiants begin at V $=19.5$ (Sandage 1984b). NGC 2403 was the first galaxy beyond the Local Group in which Cepheid variables were found. It was the firs step in taking the distance scale outward into the true expansion field. The large difference in the distance modulus obtained from Cepheids of m $M=27.6$, compared with Hubble and Humason's (1931) value of $m-M=24.0$, was a majo correction that eventually led to a stretching of Hubble's original scale at large distances by factor of slightly more than ten, giving the glob factor of slightly more than ten, giving the globa Mo"1. Hubble constant as near $I I=50 \mathrm{~km}$ "' Mpc" ${ }^{1}$

NGC 4781 $\mathrm{Sc}(\mathrm{s}) \mathrm{IH}$
CD-1848-HB
April 3/4, 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
75 niin
NGC $4781\left(\mathrm{u}_{\mathrm{o}}=689 \mathrm{kms}{ }^{\prime \prime}\right)$ is in a complex field where, within a radius of about 1°, are NGC 4742 (E 4 ; panel $10 ; v_{0}-1114 \mathrm{~km}$ s $\sim \sim^{\prime}$), NGC 7760 (SO; panel $30 ; \mathrm{u}_{\mathrm{o}}=4451 \mathrm{~km} \mathrm{s"'}$), and NGC 4760 (SO; panel $30 ; \mathrm{u}_{\mathrm{o}}=4451 \mathrm{~km} \mathrm{~s}$), and NGC 4742 and NGC 4790 may be kinematically reated to NGC 478 1, although a spread in redshift arger than $400 \mathrm{~km} \mathrm{~s} \sim^{1}$ is relatively rare. (See the later comment on resolution of the stellar content in the description of NGC 4790 on panel 315 , in the Scd section.)

Also in the field are a number of partially esolved late-type dwarf galaxies (Sm and 1 m ypes) which may be related to NGC 4781 .

The surface brightness of the thick spiral fragments that cover the disk is high. HII regions exist, and a few brightest stars may begin to resolve out of the background at about $B=21.5$.

NGC 1546
Se(s) III
CD-219-S
Feb 12/13, 1978
$103 \mathrm{aD}+\mathrm{GG} 495$
45 min
NGC 1546 inser
$\mathrm{Sc}(\mathrm{s})$ III
CD-1675-S
Jan 1/2, 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
10 min
NGC 1546 has a very-high-surface-brightness arm pattern, seen almost edge on. The surface brightness is so high that on low-resolution photographs the image would appear to he an SO galaxy having no structure. In both the RC1 and RC2 the classification is listed as SO?, based on a 30 -inch Stromlo reflector plate. But the pattern is that of a nearly edge on Sc spiral with multiple arms, similar to the morphology of NGC 3511 and NGC 4781 on this page

The redshift of NGC 1546 is $v,=1007 \mathrm{~km}$
s .
The image in the insert frame is made from a different Las Campanas plate than was used for the heavier main print. Tin? thick-armed, multi-ple-spiral-arm pattern that begins at the center is hinted at in this print

he six galaxies on this panel continue the pattern of high-surface-brightness arm fragments, often massive, thai cover the disk in a way similar to the galaxies illustrated on the preceding panel.
NGC 4928 Sc(s)III. 3

H-2387-H
Feb 21/22, 1947
103aO
30 iniii
NGC 4928 is a two-armed spiral where the arms are massive. Many HH-region candidates exist in the arms. The surface brightness of the luminous parts of the arms between the IIII regions is high; evidently the current rate of star formation is robust.

The redshift is $v_{o}=1434 \mathrm{~km} \mathrm{~s}^{1}$
NGC 6207
$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$
PH-775-S
Aug 24/25, 1954
$103 \mathrm{aO}+\mathrm{GG} 385$
30 min
NGC 6207 insert
PH-7683-S
Sep 26/27, 1979
103aO
8 min
NGC 6207 is similar to NGC 2403 (Sc; panel 273) in the character of the spiral arms and the high surface brightness over the inner disk. The redshift of NGC 6207 is $v_{o}=984 \mathrm{~km}$ s^{-1}.

The insert print of NGC 6207 is made from different original plate of shorter exposure than the one used for the heavy main print.

NGC 5480	Sc(s)IH	Racine wedge PH-7740-S
June 11/12, 1980		
Karachentsev 416		
103 aO		
min		
NGC 5480 forms a close pair with NGC		

NGC 5480 forms a close pair with NGC 5481 (EO/SO; not in the RSA) at a separation of 3.1'. The pair is number 416 in the catalog of close pairs by Karachentsev. He gives the redshifts of $\mathrm{u}_{\mathrm{o}}(5480)=2023 \mathrm{~km} \mathrm{~s} \sim^{\prime}$ and $\mathrm{u}_{\mathrm{o}}(5481)=$ $2143 \mathrm{~km} \mathrm{~s}^{-1}$. At the mean redshift distance of 42 $\mathrm{Mpc}(H=50)$, the projected linear separation of the pair at 38 kpc is small.

The pair is especially important because of the vast difference in the morphological types (E/SO vs. ScIII); yet they are obviously associated kinematically.

The arm pattern of NGC 5480 is multiple Five arm fragments can be identified, four on one side and one on the other, all originating near the center.

NGC $4420 \quad$ Sc(s)III VCC 957
CD-2174-S
March 28/29, 1982
103 aO
NGC 4420 is at the southern edge of the Virgo Cluster survey area used in the Virgo Cluster Catalog (Binggeli, Sandagc, and Tammann 1985), but it may not be a member of the cluster.

The galaxy is illustrated in the atlas of Virgo Cluster candidates where the photographs are enlarged to the same angular scale (Sandagr Binggeli, and Tammann, 1985a: panel 10 there)

The surface brightness over the disk is high The angular diameter is small. No useful resolution into individual stars is evident on the avail able plate material.

The redshift is $v^{\wedge}=1515 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 5653 Se(s)Ill pec
H-2258-H
May 3/4, 1946
I03a0
I03a0
40 mill
NGC 5653 insert
H-2302-H
July 3/4, 1946
103 aO
10 min
The surface brightness of the multiple-arm pattern over the inner disk of NGC 5653 is exceedingly high. Most of the detail of these arms is burned out in the main print. The five arm fragments, resembling a pinwheel. are seen in the insert. Very faint, smooth outer arms are visible in the overprinted main image here.

The redshift is $v_{o}=3587 \mathrm{~km} \mathrm{i}^{-}$
The insert print showing the main multiple piral arms of NGC 5653 has been made from a different original plate than the one used for the main print. Both plates were taken with the Mount Wilson 100 -inch Hooker reflector

NGC 3732 Sc(r) pee
CD-1376-S/Br
$\mathrm{Sc}(\mathrm{r})$ pee
CD-1376-S/Br
March 20/21, 198
20 min
NGC 3732 insert
CD-1377-S/Br
March 20/21, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
10 min
The inner .spiral pattern is tightly wound about a small nucleus seen only in the insert. A set of faint, smooth outer (fossil?) arms, brighter on one side than the other, is seen in the main print. No useful resolution into stars or Mil regions is evident on the available plate material. The spectrum is rich in emission lines (Sandage 1978), evidence of the high rate of star forma 1978), evidence of the high rate of star formation suggested by the high surface brightness of the arms.

The angular diameter of NGC 3732 of $30^{\prime \prime}$ is remarkably small for the small redshift of $v_{o}=$ 1493 km s"'

Tile insert print has been made from an original Las Campanas plate other than the one used for the main print.

A
 galaxies on this page are of the lowest

 luminosity classes of the Sc galaxies in the RSA. This panel completes the formal Sc illustrations. Special attributes of the Sc class follow, on panels 276-2 93NGC 3445
PH-8048-S
Feb 4/3, 1981
03 aO
2 min
NGC 3445 forms a triplet with NGC 3440 (possible Sbc merger in progress: not in the RSA) at a separation of 9.9^{\prime}, and NGC 3458 (SBO, panel 54) at a separation of 14.0^{\prime}. The redshifts are $\operatorname{Lo}(3440)=2021 \mathrm{~km} \mathrm{~s}^{\prime 1} . \mathrm{u}_{\mathrm{o}}(3445)=2083$ $\mathrm{km} \mathrm{s}^{\mathrm{\prime} \mathrm{\prime}}$. and $\mathrm{f}_{\mathrm{o}}(3458)=1899 \mathrm{~km} \mathrm{~s}^{\prime 1}$. At the mean redshift distance of $40 \mathrm{Mpc}(H=50)$ the projected linear separations of NGC 3440 and NGC 3458 from NGC 3445 are 115 kpc and 163 kpc , respectively.

The importance of the triplet is that the norphological types for two of the companions are so very different (Sc and SBO). The case is similar to that of NGC 5480/5481 on the preced ing panel.

The face of NGC 3445 is covered with a thick spiral pattern within which numerous HIIregion candidates exist. At the end of the single principal arm is a shred that may be a separate galaxy (or was at one time). The angular separation of the shred from the center of NGC 3445 is 1.2', which is a projected linear separation of only 14 kpc . This close pair is number 256 in Karachentsev's catalog of pairs. He lists the redshifts of $\mathrm{i}!_{o}(3445)=2058 \mathrm{~km} \mathrm{~s} \sim^{\prime}$ and $v_{o}=2004$ $\mathrm{km} \mathrm{s}^{-1}$ for the shred which he classifies as type Sm.

NGC 2537

H-2254-H
May 3/4, 1946
103 aO
The strange morphology of NGC 2537 may be due to an encounter in progress. Both galaxies are visible, one near the center of the arch: the other is the arch itself.

Both segments are filled with bright HII regions, the largest having a halo diameter of about $8^{\prime \prime}$ though it may be a complex of several overlapping separate regions. The redshift is small at $\left.v_{o}=5\right] 3 \mathrm{~km} \mathrm{~s}^{-1}$, consistent with the good esolution into disks of the largest 1111 regions.

NGC 4625 Sc(s)H-III pec Karachentsev 349 PH-7666-S
April 29/30, 1979
103aO
6 niin
NGC 4625 is not in the RSA but is a companion to NGC 4618 (SBbc: panel 212), which is in that catalog. The pair have closely the same redshifts, at $u_{0}(4618)=563 \mathrm{~km} \mathrm{~s}^{\prime}$ and $<_{0}(4625)=640 \mathrm{~km} \mathrm{~s} \sim^{1}$. The angular separation of 8.5^{\prime} at a redshift distance of $12 \mathrm{Mpc}(H=50)$ gives the small projected linear separation of 30 kpc . The pail ${ }^{1}$ is number 349 in Karachentsev's catalog of close pairs.

The morphology of both NGC 4618 (panel 212) and NGC 4625 , here, is peculiar. Both galaxies have a single dominant arm, as if pulled out by a tidal encounter. The resolution into stars and HII regions is at the same level in both galaxies. The high degree of resolution is consistent with the low mean redshift of $\left\langle v_{o}\right\rangle=602 \mathrm{~km}$ s^{-1} for the pair.

NGC $4630 \quad$ Sc(s)III VCC 1923 CD-2166-S
March 27/28, 1982
103 aO
50 min
NGC 4630 is in the extreme southeastern corner of the survey area of the Virgo Cluster Catalog (Binggeli, Sandage, and Tammann 1985). No decision was made in that catalog as to cluster membership.

HIl-region candidates are evidently present The redshift of NGC 4630 is $v_{n}=533 \mathrm{~km} \mathrm{~s} \sim$.

NGC $4540 \quad$ Sc(s)HI-IV VCC 1588
CD-2130-S
March 21/22, 1982
103aO
50 mi
NGC 4540 is about 3.5° northeast of the center of Virgo subcluster A associated with NGC 4486 . It is listed as a cluster member in the Virgo Cluster Catalog (Binggeli, Sandage, and Tammann 1985).

NGC $4369 \quad \mathrm{Sc}(\mathrm{s}) \mathrm{III}-\mathrm{IV}$
H-2508-H
March 5/6, 1948
103aO
0 mi
The spiral pattern in NGC 4369 is not well traced in the high-surface-brightness central region of this small, almost irregular spiral. The edshift of NGC 4369 is $v_{n}-1069 \mathrm{~km} \mathrm{~s}$

JL lassification system. They are placed in the S section here because of the late stellar content and small nuclear region of both.

NGC $3187 \quad$ Sc/SBc
PH-149-MH
April 12/13, 1950
103aO
30 nii
NGC 3187 (not in the RSA) is a member of the famous quartet whose other members are NGC 3185 (SBa; panel 99. $v_{0}=1151 \mathrm{~km}$ s \sim^{\prime}) NGC 3185 (SBa; panel 99; $v_{o}=1151 \mathrm{~km} \mathrm{~s} \mathrm{\sim}$) NGC 3190 (Sa; panel $76: v_{o}=1384 \mathrm{~km} \mathrm{~s}^{\text {"1 }}$), 3193 (E2; panel 5; $v_{0}=1307 \mathrm{~km} \mathrm{~s}^{11}$).
NGC 3187 is highly distorted, having two long plumes which are drawn out from the len ticular central region. The closest member of the quartet to NGC 3187 is NGC 3190 , which is also distorted, having a tilted fundamental plane in it outer regions. The circumstantial evidence sug gests that a close encounter occurred involving NGC 3187 and NGC 3 190; the present angular separation of the two is 4.8^{\prime}. At the mean redshif distance of $27 \mathrm{Mpc}(H=50)$ corresponding to $<u_{0}>=1336 \mathrm{~km} \mathrm{~s}^{-1}$. the projected linear separation of the pair is small at 38 kpc .

Hll-region candidates exist both in the resolved at the 1 " level.
$\mathrm{Sc}(\mathrm{s}) / \mathrm{Sa}$
March 29/30, 1982
HA, p. 21 panel 86
103aO
NGC 4580 has also been described and illustrated in the Sa section on panel 86. The illustrated in euth arms arc .similar to non-starproducing arms in the early section of the Sa producing arms in the early section of the small nucleus, the lack of a central bulge, and the obvious HII regions in the inner bulge, and the obvious HII regions in the inne ring, which is neal er of the content of Sc galaxies.

NGC 4580 is one of the few galaxies in the RSA having these mixed characteristics. The unusual classification assigned here is to identify the combination

T
L he nine galaxies on the next three panels have Sc multiple-arm spiral patterns that are similar to but later in stellar content than that of NGC 488 (Sab; panels $115,116, \mathrm{~S} 3, \mathrm{~S} 12$), the prototype example of the form. The galaxies are arranged on these panels to show the development of the form along the classification sequence. A similar summary of the development of the NGC 488 type along the sequence is shown in the Summary, panels S12 and S13, but with less morphological resolution than is given in the next three panels.
NGC 4689-S Sc(s)III. $3 \quad$ VCC 2058
CD-2138-S
March 22/23, 1982
$\mathbf{1 0 3 a O}$
$\mathbf{5 0}$ niiii
NGC 4689 is in the extreme northeastern
corner of the survey area for the Virgo Cluster
Catalog (Binggeli, Santiago, and Tammann
1985). It is listed as a cluster member, at redshift
$v_{0}=1508$ km s ${ }^{-1}$. A photograph printed to a
common angular scale with other members is
given in the photographic atlas of the Virgo
Cluster (Sandage. Bingeli, and Tammann
$\mathbf{l}^{1} \mathbf{J 8 5 a}$. panel 6) showing that NGC 4689 is
among the largest of the Sell-luminosity-class
galaxies in the cluster.
The HH-region candidates in many of the
arm fragments are unresolved at the 1.5" level on
the available plate material.
Upon inspecting this image on this plate, one
viewer commented, "When man creates a sharper
telescope, God will create a fuzzier object."
telescope, God will create a fuzzier object."

NGC 5949 Sc

pril 27/28, 1949
103 aO
30 min
The arm pattern in NGC 5949, composed as in NGC 488 of multiple fragments hut later in the classification sequence, begins at a poinllikc nucleus. There is no centra] bulge or evidence of a halo.

The redshift is small, $v_{f}=624 \mathrm{~km} \mathrm{~s}^{-1}$, yet he few Hll-region candidates are unresolved. And there is no sign of resolution into individual tars, as would be expected at such a small redshift by comparison with galaxies of similar redshift such as NGC 5194 (M5 1; panels 172, 177) at $v_{n}=\mathbf{5 4 1} \mathrm{km} \mathrm{s}^{-1}$.

NGC $4298 \quad$ Sc(s)III
CD-1399-S/Br
March 22/23, 1980

VCC 483
el 289 103 aO

NGC 4298 forms an apparent pair with NGC 4302 (Sc on edge; panel 289) at a separaCe 4302 ' The redaift listed in the RSA on of 2.4 . The redshifs listed the RSA are dentical at $v_{o}=1004 \mathrm{~km} \mathrm{~s}^{-1}$. However, as the pair is in the Virgo Cluster, the similarity of edshifts does not assure a dynamical relation ecause of the large virial velocities of parts of he cluster complex. If the pair is at the same distance of $21.9 \mathrm{Mpc}(\mathrm{m}-M=31.7)$, thei projected linear separation is small at 15 kpc .

As in NGC 5949 above, and NGC 7314 on the preceding panel, the nucleus of NGC 4298 is pointlike. There is no central bulge or evidence of a halo.

NGC 2397
CD-159-S
Feb 4/5, 1978
103aO + GG385
45 min
The spiral pattern in NGC 2397 is similar to that in NGC 5949 and NGC 4298, also on this panel.

The redshift of NGC 2397 is $v_{0}=1044 \mathrm{~km}$ s^{-1}.

Several candidates for Im dwarf companions exist within 0.5° of NGC 2397
NGC 1087 Sc(s)III. $3 \quad$ HA, p. 35
H-2337-H
Nov 27/28, 1946
103aO
$\mathbf{1 0 ~ m i n ~}$
Hel-region candidates exist within the disor-
dered spiral pattern of the multiple-armed type.

∞	e
p	8

I he next live panels show Sc galaxies thai arc in pairs and in some eases in close encounters. The illustrations here for Sc types are similar to the illustrations of such pairs and/or encounters in earlier sections describing galaxies of type K (panels 21-23), SO (panels 51,52), Sa (panels 81-86), SBa (panel 105). Sl> (panel 153), Six- (panel L98), and SBbc (panel 2 12).

NGC 4567/4568	Sc(s)II-III	VCC 1673
CD-733-S	Sc(s)H-III	VCC 1676
Feb2/3, 1979		W219
103aO + Wr2c		Karachentsev 347

The redshifts of the components ol this pair are $\mathbf{u}_{\mathbf{0}}\left(\mathbf{4 5 6 7}{ }_{-1}=2136 \mathrm{~km} \overline{\mathrm{~s}}^{\prime}\right.$ and $\mathbf{v}_{\mathbf{o}}(\mathbf{4 5 6 8})=$ $2199 \mathrm{~km} \mathrm{~s}^{-1}$. The separation of centers is 1.3^{\prime} If the pair is in the Virgo Cluster at a distance of 21.9 Mpc . the projected linear separation is small at $8 \mathbf{k p c}$.

A most interesting aspect of the combined morphology is the lack of evidence for tidal distortion in either member of the pair. Each galaxy has the morphology of a normal Sc galaxy of intermediate luminosity class. Each has a small ucleus and well-developed multiple spiral arm fragments of the NGC 488 type. Either the separation is large in the line of sight or the orbital circumstances of the encounter are un favorable for tidal plumes (orbital angular momentum could be opposite to the direction of the individual spin angular momenta).

NGC $3690 \quad$ Sc(tides) Karaehciilsev 288 PII-8058-S
Feb4/5, 1981
103aO
2 min
A close encounter is clearly in progress in this close pair whose separation of centers is $26^{\prime \prime}$ Karachentscv lists the individual v_{0} redshifts a $3156 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime \prime}$ and $3196 \mathrm{Um} \mathrm{s}^{-1}$. At the redshif distance of $64 \mathrm{Mpc}(I I=50)$ the projected linea separation is 8 kpc . A possible third E eompanion exists at a separation of $66^{\prime \prime}$, hut it may be in the background.

The morphology of each companion is highly disturbed. Faint outer plumes are associated with each galaxy.

NGC 7119
CD-1121-Br
Aug 20/21, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
NGC 7119 and its possible companion, with a separation of only $21^{\prime \prime}$. may be a chance superposition in the line of sight. Other galaxies of the same small angular diameter as the companion exist in the surrounding field as if there is a background group.

There is no distortion of the morphology of either member of the pair, again suggesting a chance alignment.

The redshift listed in the RSA2, $v_{0}=9825$ $\mathrm{km} \mathrm{s}^{-1}$, is suspect because of its very high valu for RSA galaxies. It is based on a single measure ment quoted in a private communication. The kinematics of the system are clearly of interest. There is, of course, the possibility that the high redshift applies to the small companion and that the redshift of NGC 7119 itself is unknown (e. 1990).

NGC 3395/3396 Sc(s)II-III Karachentsev 21.9 PH-7995-S Sc(tid.-s)
Feb2/3,
103 aO

2 min

Clearly a close encounter is in progress. The redshifts listed in the HSA2 are $u_{0}(3395)=$ I 599 $\mathrm{km} \mathrm{s}^{-1}$ and $\mathrm{u}_{0}(3396)=1619 \mathrm{~km} \mathrm{~s}^{-1}$. The angular separation of $68 "$ corresponds to a projected linear separation of 10 kpc at the redshifl dis tance of $32 \mathrm{Mpc}(/ /=50)$.

The pair is apparently connected by a faint (tidal?) plume. The fainter of the pair appears to be partially disrupted. Robust star formation may be occurring in the center of the fainter member.

NGC 7541/7537	Sc(s)II	Karachentsev 578
H-915-Dimcan	Sc(s)	panel 255

103 O
0 mill
NGC 7541, shown on panel 255, is the brighter member of a physical pair with NGC 7537. The redshifts listed by Karachentsev ar $\mathrm{u}_{0}(7537)=2834 \mathrm{~km} \mathrm{~s}^{11}$ and $\left.\mathrm{u}_{\mathrm{o}}(754]\right)=2793$ $\mathrm{km} \mathrm{s}^{-1}$. The angular separation of 2.7' corresponds to a projected linear separation of 44 kpc at the redshift distance of $56 \mathrm{Mpc}(I I=50)$. The spiral pattern of neither member of the pail' shows evidence of an encounter.

Two Im candidates for dwarf companions to the pair exist within 11' of NGC 7541. They have Hll-region candidates at the same brightness as the IIII knots in the two main Sc galaxies and are therefore very likely at the same distance. Three candidates for dK dwarf companions also exist in the immediate field.

NGC 3995/3991/3994 Karaclicntsev 311 PH-8054-S \quad Sc(tides) Racine wedge
Feb 4/5, $1981 \quad$ Pec(tides) Arp 313
123 inin
NGC 3995 is the brightest galaxy of a multiple interacting group whose next-brightest members are NGC 3994 (She: it is the closest galaxy to NGC 3995) and NGC 3991. The morphology of NGC 3991 is dominated by a thin tidal plume in which very bright HH-region can didates are present. Karachentsev lists redshifts of $\mathrm{r},,(3394)=3086 \mathrm{kins}{ }^{\prime \prime}$ and $\mathrm{u}_{\mathrm{o}}(3395)=3232$ $\mathrm{km} \mathrm{s}{ }^{\text {"1 }}$. The redshift listed for NGC 3991 by Palumbo el al. (1983) is $3256 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}$. From these three redshift values, the mean redshif distance of the group is $64 \mathrm{Mpc}(H=50)$.

The angular separations of NGC 3994 and NGC 3991 from NGC 3995 are 1.9' and 3.7 respectively. The corresponding projected linear separations are 35 kpc and 68 kpc .

The morphology of NGC 3994 (the fainter of the close pair) is normal for a late-type Sbe or Sc. There is no evidence of tidal distortion despite its apparent closeness to NGC 3395 However, tidal disruption is clearly evident in NGC 3991, the more distant in projection of the triplet

The two main prints of NGC 3395 (the brightest galaxy of the group) also show evidence of morphological distortion. It would seem that the interaction has been between NGC 3995 and NGC 3991, not involving NGC 3994

IC $1837 / 1839$
CD-537-S
Ocl 1/2,1978
$103 \mathrm{aO}+\mathrm{GG} 38$
45 mill
The pair has an angular separation of 3.4^{\prime} Only IC 4837 (the late-type Sc) is in the ShapleyAmes. although IC 3839 (the more regular Sab) is nearly as bright. Mo redshift is known for 1C 4839 (e. 1990). The redshifl for IC 4837 is v_{o} $=2575 \mathrm{~km} \mathrm{r}$ ' a a listed in the RSA2. [flC 4839 is at the same redahift distance of 52 Mpc , the rojected linear separation of the pair is 55 kpc .

The spiral morphology of IC 4837 (shown lone at the right) is too normal to provide evidence of tidal interaction. The extension of the outer arm on one side of the pattern, although asymmetric, is not unusual even in isolated galaxies.

G
 axies on this and the next six panels are Sc

 types that are either highly inclined or are nearly edge on. They are grouped together at the end of the Sc section to illustrate the smallness of the nuclear region, the absence of a central bulge, and the absence of an appreciable luminous halo. These characteristics separate the Sc class from the Sb types. The three criteria are best seen in galaxies that are nearly edge on.| | II-IV | th Polar |
| :---: | :---: | :---: |
| CD-512-S | | |
| Sep 28/29, 197 | | |
| 103aO + GG38 | | |
| 45 min | | |
| | | |
| in the South Polar Group (de Vaueouleurs | | |
| 1959a). Among members of the group are NGC 55, NGC 247, NGC 253, NGC 300, and NGC | | |
| | | |
| 7793 . all in the RSA and all shown in this atlas.
 The stellar content of NGC 247 is easily | | |
| resolved into individual stars, star clusters, associations, and a few small HII regions. The | | |
| resolution begins at about $B=17$ for the blue supergiants. The distance modulus must be nearly the same as that of NGC 300 (panels 261 , S6) | | |
| $m-M=26.5$ from Cepheids (Graham 1984). | | |
| Hence the brightest blue supergiants have absolute magnitudes of about $\mathrm{Mg}=-9.5$, consistent with the calibration given elsewhere (Sandage | | |
| $227 \mathrm{~km} \mathrm{~s}^{-1}$, consistent with the small distance modulus. | | |
| | very late absence of | Note the small |

NGC 4945
eb $1 / 2,197$
103aO + GG385

30 niin

NGC 4945 is seen nearly edge on, hiding the spiral pattern. The heavy dust on the near side silhouetted against the background disk obscures whatever nucleus may be present, but is certain that there is no central bulge and tha the nuclear region is small.

No useful resolution into individual stars chieved on the available plate material. A hough individual stars can be identified in parts of the arms, peeking out of the dust, they ar much fainter than in NGC 247 , which has nearl he same redshift. Contamination by Galactic tars is also a problem at the low galactic latitud offc $=13^{\circ}$.

The redshift of NGC 4945 is small, $u_{o}=275$ $\mathrm{km} \mathrm{s}^{-1}$. Closeness is also indicated by the large angular size (D95 =2 0^{\prime}), consistent with the small redshift. Although the distance is evidently small, the high inclination and the dust obscuration revent NGC 4945 from being useful for the alibration of distance indicators normally use for measurements of extragalactic distances.

NGC $253 \quad \mathrm{Sc}(\mathrm{a}) \quad$ South Polar Gr CD-2036-Bedke/Gregory HA, p. 34
Oct31/Nov 1, 1981
098-04
Omin
NGC 253 is a member of ihc South Polar Group. Its redshift is small at $v_{Q}=293 \mathrm{~km} \mathrm{a}^{-1}$ The estimate of the distance modulus in the RSA2 is $m-M=27.5$. As suggested there, the group may extend in distance from the nearest members such as NGC 55, NGC 247, and NGC 300 al about $m-M=26.6$. lo more-distant members such as NGGC, 253 here, and then to NGC 7793 (Sd; panels 321, S6), which may be a magnitude more distant.

Resolution into individual stars is more difficult than in NGC 247 on the preceding panel. but is not as difficult as in NGC 4945. also on that panel. The brightest stars are in associations; they resolve beginning at about $H=11!$. But the dust obscuration is very heavy. Limiting their use in NGC 253 for calibration purposes in measurements of the extragalactic distance scale. Yet star clusters, associations, and HII regions are clearly evident in the regions which have a small optical depth in the dust.

The nucleus is small. There is no central bulge. The type is prototypical $\mathrm{Sc}(\mathrm{s})$. but there is much more dust than in NGC 247 and NGC 55 (Se; panel 318).

「Tl
JL he four galaxies on this panel are similar to NGC
253 but are at much greater distances, masking the details of the dust lanes. This apparent lack of dust gives a false security that obscuration and dust-dimming of the stellar content are unproblematic in photometry of individual stars and HII regions. Because of this, caution is in order using stars in these galaxies for addressing the problem of the distance scale.

NGC $3877 \quad$ Sc(s)II Ursa Major Cluster
PH-8081-S
Feb 5/6, 1981
103aO
A few IHI-region candidates are present in
A few IHI-region candidates are present in some of the arm fragments of NGC 3877. Th piral pattern is multiple armed. There is a smal CC 3877 no central bulge. The redshift of GC 3 e a member of the Ursa Major Cluster.

GD 340
pril 2/3, 1981
5 min
dentical to that of NGC 3877, above. The redshift is $v_{2}=970 \mathrm{~km} \mathrm{~s}$.

NGC 4096
S-1979-H
Feb 20/21, 1947
103aO
30 min
Thin, multiple spiral arms are well defined, but the high inclination of NGC 4096 makes luminosity classification uncertain. Because of the rather-well-defined nature of the arms, the luminosity class has been reassigned here relative to the II-III class listed in the RSA2.

The redshift of NGC 4096 is $v_{o}=\mathbf{6 1 6} \mathrm{km}$ s^{-1}. The galaxy is tentatively assigned to the M5 1 Group, which also contains NGC $4258\left(v_{o}=520\right.$ $\left.\mathrm{km} \mathrm{s} \mathrm{s}^{11}\right)$, NGC $4460\left(v_{0}=605 \mathrm{~km} \mathrm{~s}^{\text {"1 }}\right.$), NGC $4490\left(v_{o}=601 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}\right)$, NGC 4618 ($v_{o}=563$ $\left.\mathrm{km} \mathrm{s}^{\text {"1 }}\right)$, and M51 ($\left.v_{o}=552 \mathrm{~km} \mathrm{~s}^{\prime 1}\right)$. Whethe these galaxies actually form a physical group, a suggested by the similarity of their small redshifts, is uncertain. The maximum separation of 16° on the sky of the suggested members cor responds to a projected linear diameter of the group of 3.4 Mpc at the mean redshift distance of 12 Mpc . If M51 is excluded from consideration of membership, the linear diameter of the remaining group is smaller, at 2.2 Mpc .

The original plate from which this print was made was taken with the 60 -inch reflector at Mount Wilson.

NGC 1448
CD-1590-S/Br
Aug 11/12, 1980
103aO + GG385
45 min
HII-region candidates exist in the arms of NGC 1448. On this plate, taken with the La Campanas 100 -inch telescope in excellent seeing the brightest stars seem almost ready to resolve individually.

The redshift is $v_{2}=1038 \mathrm{~km} \mathrm{~s}^{\prime \prime \prime}$.

Ine nine galaxies on this panel have similar morphologies. They have multiple-arm spiral patterns oi the NGC 488-NGC 2841 type but are later in the sequence; they generally have small, pointlike nuclei or none at all; they have no central bulge or evidence of a luminous halo. These attributes are characteristic of late Sc galaxies.

NGC 3556	Sc(s)
S-1742-H	

Dec 6/7, 1937
mp. Eel.
0 niin
The original Mount Wilson 60 -inch plate used for NGC 3556 here is the same used in the Hubble Atlas. The description there suggests the morphological similarity of NGC 3556 and NGC 253.

Several H1l-region candidates exist in parts of the arms not obscured by the dust lanes on the near side. The largest of these regions may begin to resolve at about the $2^{\prime \prime}$ level. The redshift of NGC 3556 is $v_{a}=790 \mathrm{~km} \mathrm{~s}^{\prime 1}$.

NGC 7361
Se(s)II-III
CD-1545-S/Br
Aug 7/8, 1980
$103 \mathrm{aO}+$ GG385
45 min
The largest of the several HII regions may just begin to resolve at the 1 " level. The redshift of NGC 7361 is $v_{0}=1276 \mathrm{~km} \mathrm{~s}^{\prime 1}$.

NGC 2748
Sc(s)II
H-7930-S
Nov 7/8, 1980
103 aO
2 min
The morphology of NGC 7361 is similar to that of NGC253.TheHII regions are unresolved at $1^{\prime \prime}$. The redshift is $v_{n_{\sim}}=1634 \mathrm{~km} \mathrm{~s}^{1}$.

NGC $4835 \quad \mathrm{Sc}(\mathrm{s}) \mathrm{H}$
 CD-2148-S
 March 23/24, 1982
 $103 \mathrm{aO}+\mathrm{GG} 385$

45 min
NGC 4835 forms an apparent pair with a dwarf shred (Im or BCD: classified as dIBm in the RCl) as a possible companion visible on this print near the lower-left border, at 1.6 separation. The resolution into knots (presumed HII regions) in the companion and in NGC 4835 itself is the same, suggesting a common distance.

The redshift of NGC 4835 is $v_{o}=1973 \mathrm{~km}$ s^{11}. At the redshift distance of $39 \mathrm{iVlpc}(H=50)$ the projected linear separation of the pair is small, at 18 kpc .

NGC 6503 Sc(s)II. $8 \quad$ Racine wedge PH-7687-S
Sep 26/27, 1979
$103 a O$
The spiral pattern in NGC 6503 is similar to the multiple-armed structure of NGC 488, but is much later, and the arms are not as well defined.

The well-determined redshift of NGC 6503 is small, at $v_{o}=303 \mathrm{~km} \mathrm{~s} \sim^{1}$. Individual stars and HII regions resolve out of the high-surfacebrightness background on a red-sensitive plate taken with the Palomar 200-inch telescope, bu the resolution in the blue on the print here is not nearly as prominent. Incipient resolution into stars occurs in one of the outer arms that is not silhouetted against the high-surface-brightness disk, but the exposure on the original plate used here is short, made to see the central regions rather than the individual stars that begin to resolve out at about $6=20$.

NGC 4808
H-2265-H
May 4/5, 1946
103aO
40 min
The original plate used for the print here was taken with the Mount Wilson 100 -inch Hooker reflector.

The surface brightness of the multiple-arm pattern that covers the disk is high. The nucleu is either small and faint or is nonexistent. The redshift of NGC 4808 is $630 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.

NGC 2:1
CD-530-S
Sep30/Ocl 1, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
The outer regions of NGC 24 thai arc mil silhouetted against the highly inclined bright disk are highly resolved into individual stars beginning at about $B=21$.

The redshift of NGC 24 is $v_{o}-621 \mathrm{~km} \mathrm{s"'}$.

NGC 5690 Sc(s)
CD-1850-HB
April 3/4, 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
The redshift of NGC 5690 is v, , $=1653 \mathrm{~km}$ s^{-1}.

NGC $4632 \quad$ Sc(s)II. 3
CD-1411-S/Br
March 23/24, 1980
103 aO
NGC $4<632$ forms an apparent triplet with NGC 4666 (Six-: panel 194: $v,=1474 \mathrm{~km} \mathrm{~s}^{\mathrm{s}}$) and NGC 4668 (SBc; panel 313; K, $=153(1 \mathrm{~km}$ $\mathrm{s}^{\prime \prime}$). The redshift of NGC 4632 is v, , $=1557 \mathrm{~km}$ s^{-1}. The angular separation of NGC 4666 from NGC 4632 is 45.9^{\prime}. At the mean redshift distance of $30 \mathrm{Mpc}(\mathrm{H}=50)$ for the triplet, the projected linear separation of NGC 4666 from NGC 4632 is 400 kpc , similar to distance within the Local Group.

Host of the galaxies on this and the next two panels are more nearly on edge than those on preceding panels of the ScII-III section. The thinness of the disk and the absence of a stronff central bulge are the classification criteria.

NGC 5907
PH-186-MH
So(on edge)
panel SI 1
May $10 / 11,1950$
$103 a O$
NGC 5907 shows the ahsence of the central bulge particularly well because of its high inclination.

$$
\text { The redshift is } v_{o}=779 \mathrm{~km} \mathrm{~s}^{-1} \text {. }
$$

NGC 4302/4298 \quad Sc(on edge) \quad VCC 497 $\mathrm{Sc}(\mathrm{s}) \mathrm{III}$ CD-1399-S/Br

- panel 279 103aO Karachentsev 332 75 niin

NGC 4302 and NGC 4298 in the Virgo Cluster may form a physical pair. Their redshifts are identical at $v_{0}=1004 \mathrm{~km} \mathrm{~s} \sim$, as listed in the RSA2. The angular separation of 2.4 ' corresponds to a projected linear separation of only 15 kpc at the distance of 21.9 Mpc . There is no evidence for tidal distortion in either NGC 4298 or NGC 4302 . Note that the thin disk seen edge on in NGC 4302 is not warped: yet NGC 4298 , in projection, is nearly in the pole of NGC 4302 .

The lack of morphological distortion in either galaxy suggests that the true separation is considerably larger than the projected separation. Similarity of redshift in the Virgo Cluster does not necessarily mean a common distance because of the large (virial) spread in the velocities of cluster members.

NGC $5775 \quad$ Sc(on edge) \quad Karachentsev 440 CD-1884-HB
April 11/12, 1981
$103 \mathrm{aO}+$ GG385
45 niin
NGC 5775 forms a physical pair with NGC $5774[\mathrm{SBc}(\mathrm{s}) \amalg \mathrm{I}]$ at a separation of 42^{\prime} The redshifts are similar at $u_{0}(5774)=1488 \mathrm{~km}$. and $\mathrm{y}_{0}(5775)=1687 \mathrm{~km} \mathrm{~s}^{-1}$, as listed by Karachentsev. At the mean redshift distance of $31 \mathrm{Mpc}(H=50)$ the projected linear separation of the pair is small at 38 kpc .

No morphological distortion is evident in either galaxy. In particular, the thin disk in NGC 5775, seen nearly edge on, is not warped.

NGC $5301 \quad$ Sc(s) Racine wedge PH-7719-S Feh 11/12, 1979 103aO
12 nii
The original plate used for the print here was taken with a Racine wedge, giving secondary images that are 5.0 mag fainter than the primary and separated from the primary image by $18^{\prime \prime}$

NGC 5301 is nearly on edge, showing the thinness of the disk

The redshift is $v_{n}-1709 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.

NGC 5496
CD-1591-S/Br
Aug 12/13, 1980
$103 \mathrm{aO}+$ GG385
45 niin
NGC 5496, seen nearly on edge, may have a small luminous bar near the center, seen well in the print here

The redshift is $v_{o}=1398 \mathrm{~km} \mathrm{~s}^{\prime}$.
NGC 3735
$\mathrm{Sc}(\mathrm{s})(\mathrm{I})$
Racine wedge

PH-8110-S
Feb 7/8, 198
103 aO
2 mm
NGC 3735 , seen nearly on edge, has a redshift of $v_{n}=2838 \mathrm{~km} \mathrm{~s}^{\text {s }}$

$=\sin$	\cdots
\sim	\cdots

NGC 4631/4627
H-2161-II
aii 29/30, 1941
CrHiSpSp
20 min
NGC 4631 forms a close pair with the dwarf elliptical NGC 4627 (dE,N) at a separation of 2.7 , and a wide pair with NGC 4656 (Im; panels 327 , S6) with a separation of 31^{\prime}. These galaxies are in the nearby group called the CnV II Cloud (de Vaucouleurs 1975: Sandage and Tamman 1975a), which has $\left\langle v_{o}\right\rangle$ of about $750 \mathrm{~km} \mathrm{~s}^{\prime \prime}{ }^{1}$

A study of the $21-\mathrm{cm} \mathrm{HI}$ content of the wide NGC 4631/4656 pair (Weliachew, Sancisi, and Guélin 1978) gave evidence that a tidal encounter had occurred or is now occurring (Combes 1978) between this apparent pair. At an assumed redshift distance of $12 \mathrm{Mpc}(H=50)$ the projected linear separation of NGC 4631 from NGC 4656 is 108 kpc . If a smaller distance of 5 Mpc is used, based on the stellar content (Sandage and Tammann 1974 d), the projected inear separation is 44 kpc . At this distance, the projected linear separation of the much closer NGC $4631 / 4627$ pair is only 4 kpc .

NGC 4631 is highly resolved into brightest stars starting at about $B=19$. However, because the galaxy is viewed nearly edge on, the dust obscuration is high and variable, making photometric studies of the stellar content difficult and the results uncertain

The dwarf companion NGC 4627 has nucleus and is surrounded by a swarm of about ten images brighter $B=22$. These bey ten images brigher han $B=22$. These may globular clusters similar to the; case in NGC 20 (panel 25), the companion to M31. Also like NGC 205, NGC 4627 has tidal tails pointing toward and away from its larger companion. This is clear evidence of a close encounter, pointed out and shown well in the deep photograph in the Atlas of Peculiar Galaxies (Arp 1966). A similar case is the pair NGC 1531/1532 (panels 197 337).

NGC 4627 has nearly the same redshift as NGC 4631. Ulrich, quoted by Weliachew et al. (1978), has measured $\mathrm{v}_{\mathrm{o}}(4631)=647 \mathrm{~km} \mathrm{~s} \sim^{\prime}$. Chinearini and Rood (1971) quote $\mathrm{t}_{\mathrm{o}}(4627)=$ $727 \mathrm{~km} \mathrm{~s}^{-1}$. Combes (1978). who has calculated encounter parameters for the three-galaxy interaction, suggests that NGC 4627 was once recent star-producing Im dwaff whose HI recent star-producing Im dwarf whose HI wa swept out, leaving a nucleated dwarf E galax from the encounter.

NGC 3079
PH-7933-S
Nov 7/<, 1980

103aO
 12 min

iNCC $\left.307^{\prime}\right)(\cdot,,=1225 \mathrm{~km} \mathrm{a"'})$ forms a pair with NGC 3073 (SO pec!;t; $0^{-} 1271 \mathrm{kms} " ' ;$ nol the USA) al a separation of 101^{1} A third (USA), al (1) (10) 1 . 1 de fidd separad by 6.6' fro shifl exists in the freld, separated by 6.6 from its sellan cont hean idate companion appeal's distance as NGC 3079.

At the mean redshift distance of 25 Mpc (// $=50)$ the projected linear separations of the two supposed companions from NGC 3079 are small, at 73 kpc and 48 kpc . respectively.
he plane of NGC 3079 is warped in the uter regions. Furthermore, the morphology of the two companions is abnormal, suggesting an arlier encounter.

A few individual stars (or more probably Il11 regions) resolve' out of the background light in the outer regions of the image starling al about $B=21$.

A Racine wedge has produced secondary images to the bright stars 5 magnitudes fainter than the primary at $18^{\prime \prime}$ separation.

NGC 3510 Sc(warped plain-)
PH-8O79-S
Feb 5/6, 1981
103 aO
12 min
The outer regions of NGC 3510 show a warped plane. There are no nearby companions upon which to blame the warping

Many individual knots, supposed unresolved Mil regions, exist in the inner (bar-like) central part of the image. Individual slurs begin to resolve al about $B=22$. The redshift of NGC 3510 is $!,=660 \mathrm{~km} \mathrm{~s}^{\prime}$.

Mny of the galaxies on this panel are of high surface brightness, indicating a high star-formation rate. But the surface brightnesses are also enhanced because of the nearly edge on viewing angle. We look through the long axis of the disk rather than through the galaxy's thin dimension if observed more face on.

NGC 1421

PH-7952-S
Nov 8/9, 1980
103 aO
12 mill
The smallness (or absence) of the nucleus, he absence of a central bulge, and the thinness of the disk in NGC 1421 are the reasons for assigning the Sc classification. The spiral pattern can he traced by noting that the brightest linear segment of the image is a thin arm on the near side. This segment appears to attach to the small nucleus. The fainter pattern on the far side also spirals out from this center.

The redshift is $\mathrm{u}_{0}=2080 \mathrm{~km} \mathrm{s"}$ '.
NGC 4522
$\mathrm{Sc} / \mathrm{Sb}$: VCC 1516
CD-1352-S/Br panel 194
March 15/16, 1980
103 aO
nun
NGC 4522 is listed in the Virgo Cluster Catalog as a cluster member. It is not associated with either subcluster A or B but is located nearly midway between them. Its redshift is high, $\mathrm{i}-$, , $=2186 \mathrm{~km} \mathrm{~s} \sim$

The galaxy is difficult to classify because it is seen neither enough edge on to determine the thinness of the disk nor enough face on to see any spiral pattern. Most galaxies on this panel are of this nature.

NGC $1406 \quad \mathrm{Sc}$
CD-152-S
Feb 3/1, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
45 niin
The spiral pattern can lie inferred for NGC I 1116 by the curvature of the two dust lanes near the outer edge of the disk on both sides of the center.

The redshift is r, , $=998 \mathrm{~km} \mathrm{~s}^{\prime}$

NGC 1035
CD-1579-S/Br
Aug 10/11, 1980
$103 \mathrm{aO}+$ GG385
$103 \mathrm{aO}+\mathrm{GG} 38$
45 nún
NGC 1035 forms a wide pair with NGC 1042 (Sc; panel 227) at a separation of 22.5^{\prime}. The redshifts are $\mathrm{u}_{0}(1035)=1307 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime \prime}$ and t^{\prime} (1042) $=1436 \mathrm{~km} \mathrm{~s} \sim \sim^{\prime}$. At the mean redshift distance of $27 \mathrm{Mpc}(\mathrm{H}=50)$ the projected linear separation is 177 kpc .

NGC 4129
CD-1834-HB
CD-1834-HB
April 1/2, 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
103 aO
The sense of the spiral pattern in NGC 4129 can be determined from the two low-surfacebrightness outer arms, one on each side of the center.

The redshift is $v_{0}=994 \mathrm{~km} \mathrm{~s} \mathrm{\sim l}$

NGC 4700	Sc or Sm	panel 320
CD-1444-S/Br		

May 6/7, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
45 nưn
NGC 4700 is difficult to classify because the spiral pattern cannot be inferred from curvature in dust lanes, which are usually used for that purpose. The galaxy here is viewed almost directly edge on, so that no prominent dust lanes are seen.

The redshift is $\nabla_{\eta}=1193 \mathrm{~km} \mathrm{~s} \sim^{\prime}$

NGC $3683 \quad$ Sc(on edge)
PH-8083-S
Feb 6/7, 1981
103 aO
2 niin
The sense of the spiral pattern can be determined from the inner and the fainter outer arm on one side of the image.

The redshift is $v_{0}=1785 \mathrm{~km} \mathrm{~s}^{-1}$.
NGC 3666
ScII-III

H-2270-H
May 5/6, 194
$103 a O$
40 min
Hll-region candidates are visible over the image of NGC 3666: the sense of the spira pattern can thereby be determined.

The redshift is $v_{0}=926 \mathrm{~km} \mathrm{~s} \sim^{1}$
NGC 4085 ScIII
S-1834-H
Jail 17/18, 1939
Imp. Eel
60 min
NGC 4085 forms a physical pair with NGC 4088 (Se/SBc; panel 271) at a separation of 11.2'. The redshifts are $\mathrm{u}_{0}(4085)=823 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}$ and $\mathrm{u}_{0}(4088)=820 \mathrm{~km} \mathrm{~s}^{\prime}$. At the redshift distance of $16 \mathrm{Mpc}(H=50)$ the projected linear separation is 52 kpc .

JL he Se section is concluded on this panel with four nearly edge on galaxies, continuing the illustrations begun on panel 285. The section is concluded with lkk> final galaxies that have peculiar morphologies, combining features of Sa and Sc systems.

NGC 1511
 CD-759-S

Feb 20/21, 197
$103 \mathrm{aO}+\mathrm{GG} 385$
45 niin
NGC 1511 insert
CD-1744-S
Jaii 12/13, 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
7 mill
NGC 1511 is an apparent triplet with NGC 1511 A (Amorphous or BCD; not in the RSA) at a separation of 11.1' and NGC 151 IB (Sd or Sm on edge; also not in the RSA) at a separation of 7.6'. The known redshifts arc $\mathrm{u}_{0}(1511)=1142$ $\mathrm{km} \mathrm{s} \mathrm{s}^{\prime \prime}$ and $\mathrm{u}_{0}(1511 \mathrm{~B})=1101 \mathrm{~km} \mathrm{~s} \sim^{\prime}$. At the redshift distance of $22 \mathrm{Mpc}\left(\mathrm{H}_{\mathrm{l}}=50\right)$ the projected linear separations from NGC 1511 are 71 kpc and 49 kpc

The complex line of presumed HI! regions at the edge of the thick opaque dust lane is well seen in the short-exposure insert print.

NGC $5088 \quad$ Se(s)II
CD-1874-HB
April 10/11, 1981
103aO
75 niin
NGC 5088 is in the neighborhood of the NGC 5077 group (mean redshift of about $v_{0}=$ $2500 \mathrm{~km} \mathrm{~s}^{-1}$: Humason, Mayall, and Sandage 1956), but is in the foreground with a redshift of $v_{o}=1230 \mathrm{~km} \mathrm{~s} \sim$. Hll-region candidates are abundant but are probably unresolved at the $1.5 "$ level.

NGC 4605
S-1921-H
April 3/4, 1946
103 aO
55 niin
The sense of the spiral pattern can be determined from the lower-surface-brightness side of the image where the multiple-arm pattern can be seen opening up.

The redshift is $\mathrm{t}_{0}^{\prime}=273 \mathrm{~km} \mathrm{~s}^{-1}$
NGC $3067 \quad$ Sc(dust)
PH-7992-S
Feb 2/3, 1981
103 aO
2 niin
The classification of NGC 3067 is difficult because of the dust and the inclination. Sta formation is obviously occurring. Several HII region candidates are visible

The redshift is $v_{n_{2}}=1429 \mathrm{~km} \mathrm{~s} \sim$.

NGC. 7679	Sc(s)/Sa(lides?)
PII-7816-S	pair
Sep2/3, 1980	
103aO	
12 mill	
NGC 7679 , also illustrated in the Sa section	

NGC 7679, also illustrated in the Sa section panel 86), forms a physical pair with NGC 7682 (SBa) at a separation of -1.5 . The redshifts arc $\mathrm{km} \mathrm{s}^{-1}$. At the mean redshift distance of 107 Mpc $(H=50)$ the projected linear separation is 139 kp.

The smooth outer arm that is pulled out on one side of NGC 7679 may be due to a tidal encounter with NGC 7682. However, the morphology of NGC 4682 is undistorted.

NGC 5665

Sa/Sc
panel 86
CD-1868-HB
April 9/10, 1981
103aO
NGC 5665 is also illustrated in the Sa section (panel 86).

The smooth outer arms art* devoid of starforming regions but the inner parts of the image are filled with Hill-region candidates. There is no nucleus or central bulge. There is a thin, single-nner-arm pattern that can be traced for ! 12 revolutions.

The SBc Classification Section

T phological boxes is arbitrary and therefore subjective, defined by the examples themselves. There is considerable width to the SBc section from early, near the SBbc section, to late, merging into the SBcd section.

The characteristics of SBc galaxies are (1) a high degree of resolution of the bar and of the spiral arms into knots (HH-region candidates) and associations, (2) smallness or absence
of a high-surface-brightness inner disk associated with the central regions, and (3) openness of the spiral arms.

The 76 SBc galaxies on the next 21 panels are generally arranged in order of luminosity class, from the mostregular arm patterns of the class I galaxies to patterns with the most chaos (high geometrical entropy) of class III near the end of the section at panel 313 .

NGC521	$\mathbf{S B c}(\mathbf{r s}) \mathbf{I}$ group	NGC 3367	SBC (s) II. 2	HA, p. 49
PH-7547-S		CD-1731-S		
Nov 6/7, 197		Jan 10/11,		
103 aO		103a0		
12 min		75 min		
NGC 521	e earliest of the SBc galaxies	NGC 3	is in the fiel	Leo Group

NGC 521 is the earliest of the SBc galaxies in this atlas, close to the edge of the SBbc morphological section. It may form a physical pair 14.5' The redshifts pane 4.5. T53) $5664 \mathrm{kn}_{0}$ (521) 5223 km s and $\mathrm{r}_{\mathrm{o}}(533)=5664 \mathrm{~km} \mathrm{~s}^{-1}$. At a mean redshift distance of $109 \mathrm{Mpc}(H=50)$ the projected hnear separation is 460 kpc if the association is real. NGC 533 is the brightest member of a rich group of fainter E and SO galaxies within a radiu of about 20^{\prime}

NGC 3367 is in the field of the Leo Group (Ferguson and Sandage 1990) but is judged to be in the background based on its high redshift of v_{o} $=2906 \mathrm{~km} \mathrm{~s}^{-1}$. The mean redshift of the Leo Group proper is $\left\langle v_{o}\right\rangle=909 \mathrm{~km} \mathrm{~s}^{-1}$
Many bright HII regions are strung along the inner parts of the two major arms that begin at the ends of the bar in the (s) configuration whose prototype is NGC 1300 (SBb; panels 154, S8). The two major arms fragment after about half a revolution, creating the multiple-arm pattern in the outer regions

NGC 1073	SU:(is)Il	NGC1068Gr
PH-7892-S		HA, p. $\mathbf{4 9}$
Nov6/7,1980		
103uO		

103 uO
2 niiu
NGC 1073 is the prototype SBc galaxy. The
arm pattern is open. The bar contains IIII regions, unlike the situation in most SBD galaxies where no recent star* formation occurs, evidenced by the smoothness of the bar light.

The redshift lisleil for NGC L073 in the RSA2 is i_{o}, $=\mathbf{L 3 1 8} \mathbf{~ k m ~ s " 1}$; evidently the velocity listed in Humason, Mayall, and Sandage (1956) is incorrect.

NGC 1073 has been considered a member of the NGC 1068 group, which also contains the of the NGC 1068 group, which also contains the RSA galaxies NGC 1055 (Sbc; panel 194). NGC 1087 (Sc: panel 279). and perhaps NGC 936 3 15).

The arms in NGC 1073 are well resolved into bright Mil regions, the largest of which have halo diameters of about 2". Individual brightest stars appear to resolve starting at about $B-21$,
but unambiguous discrimination of Mil regions but unambiguous discrimination of Mil regions from stars has not been done by the standard methods at this writing (199 I).
phology. In each, the arm pattern begins near the ends ol the bar, thereafter fragmenting into the multiple-arm pattern in the outer regions.

NGC 7424 Sc(rs)II.3/SBc(s)II.3	panel S9	NGC 1179	SBc(r)II.2
CD-1511-S/Br		CD-1653-S	
Aug 4/5, 1980		Dec 29/30, 1980	
103aO + GG385		103aO + GG385	
ID mi		45min	

ID min
NGC 7424 is of very large angular diameter (D95 $=7.6^{\prime}$) and clearly is nearby, judging from the high degree of resolution of the arms into Mil regions and individual stars. The largest of the many HH-region candidates have angular diameters (halo) of about 2 ". The individual stars that can be guessed not to be HII regions start to resolve at about $B=22$. The stars and the $\mathbf{H I I}$ regions have yet (199 1) to be identified by standard means.

The redshift is $v_{(J}=925 \mathrm{~km} \mathrm{~s}^{-1}$
NGC $3359 \quad$ SBe(s)I. 8 pec
HA, p. 49
PH-1144-S
Oct 23/24, 1955
$103 \mathrm{aO}+$
25 min
Hll-region candidates and perhaps brightest stars are present in the well-developed but late-type bar in NGC 3359. The thin, multiple arms are full of Hll-region candidates, only two of which resolve into disks at the 1.5 " level Individual stars have not yet been distinguished from the HII regions by standard methods.

The redshift is $v_{0}=1138 \mathrm{~km} \mathrm{~s} \sim$.

Hll-region candidates exist in the central bar as well as in all the arm fragments of NGC 1179. Three particularly bright bill-region candidates are very compact and do not resolve at he 1.5 " level. No individual stars resolve to the plate limit. $B=23$.

The redshift is $v_{0}=1776 \mathrm{~km} \mathrm{~s}^{-1}$.
New 1 = A 0102-06 $\operatorname{SBc}(\mathrm{s}) \mathrm{II} .2 \quad$ Racine wedge PH-7673-S
Sep 25/26, 1979
103aO
10 mill
The image here is from an underexposed original plate which, nevertheless, shows a number of HII regions in the weak central bar and in the several multiple arms.

A low-surface-brightness shred (Im on edge) exists at a separation of 4.1^{\prime}. Its HIl-region candidates are of comparable brightness to those in the main galaxy. The redshift of New 1 is $v_{o}=$ $1116 \mathrm{~km} \mathrm{~s} \sim^{\prime}$. At the redshift distance of 22 Mpc $(/ /=50)$ the projected linear separation of the shred from New 1 is small at 26 kpc .

6	$\%$
6	8

NGC $2835 \quad \operatorname{SBc}(\mathrm{rs})$ I. 2
CD-767-S
Feb 21/22, 1979
103aO + GG385
45 inin
NGC 2835 at a redshilt of $v_{o}=624 \mathrm{~km} \mathrm{a}^{\text {"1 }}$ may form a wide physical pair with the $\mathrm{SOi}(4$ galaxy NGC 2784, which has a similar redshift of $v_{o}=451 \mathrm{~km} \mathrm{~s} \sim^{1}$. The separation of the galaxies is 2.2°, giving a projected linear separation of 422 kpc at a mean redshift distance of I 0.8 Mpc (similar to separation within the Local Gioup).

The arms of NGC 2835 are filled with 1111region candidates and stellar associations. The several largest of the Hll-rcgion complexe resolve into halo diameters of 5". Individual star begin to resolve at about $B-21$.

The Galactic latitude is low at $b=18.5^{\circ}$ suggesting that some Galactic obscuration may be present over the field.

NGC $2835 \quad \operatorname{SBc}(\mathrm{rs}) \mathrm{I} .2$
CD-767-S
Feb 21/22, 1979
103aO + GG385
45 niin
This light print from the same original plate used above shows the high incidence of IIIl regions in the high-surface-brightness inner arm as well as in the bar

NGC 33
 H-14-S

Jan 5/6, 1951
103aO
0 min
The twit principal arms begin as a partial ing upon which the bar terminates. On one side of the bar the ring-segment begins about 30° downstream (relative to the direction of rotation determined from the sense of the spiral arms) from tin^{1} end of the bar; on the other ${ }^{1}$ end of the bar the ring begins 90° downstream. Upon winding outward for less than half a revolution, each ing outward for less than half a revolution, each covers the outer disk.

The redshift is $v_{0}=I 138 \mathrm{~km} \mathrm{a}{ }^{\prime \prime}$. The IIII regions are unresolved. Individual stare are undoubtedly present beginning at about $B=22$, but a proper separation from the Hll-region candidates has not been done (c. 1991).

NGC 1090	SBc(s)I.8	Racine wedge
PH-7916-S		
Nov 7/8, 1980		

Nov 7/8, 1980
nin
The bar in NGC 1090 is weak and subtle. However, two thin, straight dust lanes exist starting from the center: one dust lane crosses in front of the nucleus and the other behind, as in the classical dust pattern in SBb galaxies such as a prototype example NGC 5383 (SBb; panel 168). The presence of these dust lanes, thought to be shock patterns in the gas resulting from highly non-circular motions in the neighborhood of a bar, accounts for the SBc classification.

The two principal inner arms begin at the ends of the bar in the (s) configuration of the NGC 1300 type. A few Hll-region candidates exist. The redshift is $v_{o}=2835 \mathrm{~km} \mathrm{~s}^{-1}$.
-801-S
CD-801-S
Feb 24/25, 1979
$103 \mathrm{aO}+\mathrm{Wr} 2 \mathrm{c}$
45 niin
NGC 4535 is one of the largest spirals conidered to be a member of the Virgo Cluster. It is shown with other cluster members, enlarged to a common scale, in the Virgo Cluster atlas Santiago. Binggeli. and Tamiliann 1985 a), where it is evident that this galaxy is among the seven largest galaxies associated with the cluster.

HI1 regions are prevalent in the thin, wellformed, regular arms, the largest of which begin to resolve at about 1 "

The nucleus is bright and is star like (unesolved at $0.11^{\prime \prime}$. similar to Seyfert (AGN) nuclei.

Two thin dust lanes winding outward from the central regions are evident. They are curved rather than straight, as in the prototype Sb galaxy NGC 1300. but the pattern as a shock in the central oval potential seems clear

| NGC 7741 | SBc(s)H. 2 |
| :--- | ---: |\quad| HA, p. 49 |
| :--- |
| PH-66-H |
| Oct $13 / 14,1950$ |
| panel S10 |

Star formation is occurring throughout the well-formed bar in NGC 7741 . It is also occurring everywhere in the arms, which are massive in the sense of Reynolds ($1927 \mathrm{a}, \mathrm{b}$), in contras to the thin arms in NGC 4535 shown at the left.

Individual stars are easily resolved and are
identified as stars by comparing red plates (sensitive to the HIl-region Ha emission) and yellow plates (insensitive to emission lines but sensitive to the stellar continuum light). The brightest stars begin to resolve at about $B=21.5$.

The largest HII complex is a superposition of two regions. It has a (halo) major axis diamete of about 3 ".

The redshift is $v_{o}=1030 \mathrm{~km} \mathrm{~s}^{11}$.

NGC 5597 \quad SBc(s)II pair	NGC 2525 SBc(s)II \quad HA, p. 49
CD-1569-S/Br panel S10	CD-779-S panelS 10
Aug 10/11, 1980	Feb 22/23, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$	103aO + GG385
45 niin	45 niin
NGC 5597 forms a dose physical pair with	The two principal arms in iNGC 2525 are
NGC 5595 (Sc; panel 253) at a separation of	classic prototypical (s) type in the sense of NGC
4.0'. The redshifts are $u_{o}(5595)=2501 \mathrm{~km} \mathrm{~s} \sim^{\prime}$ and $\mathrm{w}_{\mathrm{o}}(5597)=2444 \mathrm{~km} \mathrm{~s}^{-1}$. AL the mean red-	1300 hut are much later in the classification sequence. The arms arc massive in tin* sense of Reynolds (1927a.li)-
shift distance of $49 \mathrm{Mpc}(/ /=50)$ the projected linear separation is small at 58 kpc .	The surface brightness ol the arms is very
The largest of the several HII regions in	high, making study of the evidently numerous
NGC 5597 appears to he complex; its halo diameter is about 1.5°. Star formation is occurring throughout the arms and in the central bar.	HII regions difficult. The III! regions arc unresolved al $1^{\prime \prime}$. Individual stars are undoubtedly observed starting at about $B=22$. The redshift of NGC 2525 is $v_{0}-1395 \mathrm{~km} \mathrm{a}^{-1}$.

NGC $1559 \quad$ SBc(s)II. 2

CD-1676-S
an 1/2, 1981
103aO + GG385
7 niiii
NGC 1559 is in the complex Dorado region. It is located about 6° south of the center of the ense Dorado Group (de Vaucouleurs 1975, No G16) and has about the same redshift. Ferguse S S (1990) list $\left\langle v_{0}\right\rangle=1056 \mathrm{~km}$, the mean redshift of the Group. The redshift of NGC 1559 is $v_{0}=1093 \mathrm{~km} \mathrm{~s} \sim$.

NGC 1559 may form a wide physical pair with 1C 2056 (Sc; panel 253) at a separation of 2.6 ${ }^{\circ}$. The redshift of IC 2056 is $u_{o}=934 \mathrm{kms}^{\prime \prime}$ '. At the mean redshift distance of $20 \mathrm{Mpc}(H=50)$ he projected linear separation is 909 kpc , somewhat larger than the distance from our Galaxy to M3 1 in the Local Group.

HII regions exist throughout the spiral patern in NGC 15 59. The largest are complex, with halo diameters of about 6 ". Individual stars appear to resolve out of the background at about B $=22$.

NGC $5669 \quad$ SBc(s) $)$ II
companion
CD-2113-
March 19/20, 1982
$103 \mathrm{aO}+\mathrm{GG} 385$
35 min
Current star formation is occurring in the ar: Hll-region candidates exist there. The brightest Hill-region candidate in the arms is compact, bright, and unresolved at the 1.5 F level.

The redshift is $v_{u}=1304 \mathrm{~km} \mathrm{~s}^{-1}$. A dwarf (BCD?) candidate companion exists at a separation of 6.2^{\prime} which, at the redshift distance of 26 Mpc ($H=50$), corresponds with a projected linear separation of 47 kpc

NGC 3513
SBc(s)II. 2
CD-722-S
103aO + GG38
103 aO
45 min
NGC 3513 has a similar morphology to NGC 1559 at the upper left.

The galaxy forms a close physical pair witli NGC 3511 (Sc: panel 273) at a separation of $\mathbf{1 0 . 5}$ '. The redshifts arc $\mathbf{u}_{\mathbf{0}}(\mathbf{3 5} 11)=95 \mathbf{1} \mathrm{~km} \mathrm{~s}^{\prime \prime \prime}$ and $u_{0}(3513)=845 \mathrm{~km} \mathrm{~s}^{-1}$. At the mean redshift distance of I H Mpc $(I I=50)$ the projected linear separation is small, at 55 kpc .

The brightest part of the stellar content in NGC 3513 resolves well. The brightest stars individually begin to resolve at about B-21.5. The largest of the numerous HII regions resolve into disks at the $2^{\prime \prime}$ level.

NGC 168
CD-1683-S
Jan 2/3, 1980
103aO + GG385
43 min
As with NGC 1559 at the left, NGC 1688 is in the complex Dorado region and is listed as an extended member of the Dorado Group by Sandage (1975a). The man redhift of the andage (1975a). Thedshift of the central part of this group is given by Ferguson and Sadage (10 1688 is $v_{o}=1040 \mathrm{~km} \mathrm{~s} \tau^{\prime}$.

The galaxy is listed by Maia, da Costa, an Latham (1989) as a member of their group num ber 7 in the Dorado region.

Hll-region candidates exist in the central bar. The largest of the several HII regions in the arms are unresolved at the $1.5^{\prime \prime}$ level. Individua stars have not begun to resolve to the limit of the available plate material at about $\mathbf{B}=\mathbf{2 3}$.

NGC 268

$\mathbf{S B c}(\mathbf{s}) \mathbf{I}-\mathrm{H}$
CD-1557-S/Br
Aug 8/9, 1980
103aO + GG385
45 min
The thinness, order, and regularity of the arms in this distant galaxy require the early luminosity classification. The nucleus is brigh and starlike at the $1 "$ level, as in AGNV

The redshift is $\boldsymbol{v}_{\boldsymbol{o}}=\mathbf{5 6 5 9} \mathbf{~ k m ~ s "}{ }^{11}$.

NGC 2339

Jan 27/28, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
45 mi
The bar is very weak in NGC 2339 , and there is no evidence for recent star formation in it. Few HII regions exist in the multiple-arm pattern. An alternate, better classification migh be SBbcII.2, as in the RSA2

The redshift of NGC 2339 is $v_{n}=2229 \mathrm{~km}$

C 2522
$\mathbf{S c} / \mathbf{S B c}(\mathbf{s}) \mathbf{I}-\mathbf{I I}$
pair
CD-198-S
Feh 8/9, 1978
103aO + GG385
40 nùn
IC 2522 forms a close apparent physical pair with IC 2523 (ScII-III: not in the RSA) at a pair with IC 2523 (Scir-IIf: not in the RSA) at a p 523 , but the brightness of the H11-reg candidates is similar in both galaxies, suggesting equal distances.

The redshift of IC 2522 isu $_{0}=2701 \mathrm{kms}^{11}$ At a redshift distance of $54 \mathrm{Mpc}(/ /=50)$, the projected linear separation is small at 69 kpc .

IC 1933
$\mathbf{S B c}(\mathbf{s}) \mathrm{II}-\mathrm{III}$

CD-200-S

Feb 9/10, 1978
103aO + GG385
45 min
The largest HII regions in IC 1933 are complex with a combined (overlapping) diameter of about 3". Star formation is occurring in the bar as well as robustly in the arms.

The redshift of IC 1933 is $v_{o}=914 \mathrm{~km} \mathrm{~s} \sim^{\prime}$

NGC 3287 PH-8018-S
 PH-8018-S

Feb 3/4, 1981
103 aO
12 min
The redshift is $v_{, 2}=1219 \mathrm{~km} \mathrm{~s}^{\prime \prime}$ '

5236 -1320-S/Hr HA, p. 28 arch 12/13, 1980 M83 3aO + GG385 panel 301 miii NGC 5236 is the brightest spiral in tinarby group whose brightest member is NGC 28 (Cen A; SO + S pec; panels 45, 46). The redshift of the group is about $\left\langle v_{o}\right\rangle=2 \mathrm{HO}$ s^{-1}. Because the group is so nearby, most mbers are highly resolved and are important the calibration of the extragalactic distance le. The surface brightness of iNGC 5236 is exdingly high in the arms, which are massive in sense of Reynolds (192 7a,b) and therefore er most of the disk. The dust lanes are intricate and, in general, closely associated with the luminous arms on insides of these arms, as usual. The range of the surface-brightness scale is large that two levels of the image from the ginal negative are illustrated. The heavy image on this panel; a lighter print showing the dust es and the central regions is on the following nel. Far-outlying associations exist beyond the rders of this print. They are similar to the ociations in M3 1 Field TV of Baade and Swope (1963), which is 96^{\prime} from the center of M3 1.11 in these outlying fields, where the surface ghtness of the background disk of M83 is low the dust is negligible, that searches for pheids will be made. Several such remote asiations exist; the farthest, easily visible on the Campanas 100 -inch plates, is at a radial tance of 11^{\prime} from the center, off the borders this print. At the estimated distance of 6 Mpc M83 this angular distance corresponds to n ear distance from the center of 20 kpc The

NGC $5236 \quad \operatorname{SBc}(\mathbf{s}) \mathrm{H} \quad$ Cen A Gr
CD-1320-S/Br
March 12/13, 19
$\mathbf{1 0 3 a O}+\mathbf{G G 3 8 5}$ panel 300
45 mill
This light print of M83 shows the intricate dust lanes and the central oval luminosity distribution requiring the barred classification Consistent with this classification are the two major thin dust lanes in the central oval. The dust lane pattern, the signature of a bar potential, is due to the response of the interstellar gas to that potential, resulting in two hydrodynamic shock fronts that appear as straight dust lanes The pattern has been discussed in many of the previous descriptions of prototypical SBb galaxies such as NGC 1300 (panels 154. S8)

One of the central dust lanes cuts across the front of the nuclear region; the other appears to duck behind. The pattern is identical to that in the prototypical SBb galaxy NGC 5383 (panel 168).

The brightest individual stars are easily resolved throughout the image of M83. However, their photometry in the high-surface-brightnes central regions is difficult to interpret because o the evident high internal absorption throughout inner disk and arms. Vie estimate that the rightest stars begin to resolve at about $B=17$

NGC 5334
CD-1514-S/Br
Aug 5/6, 1980
$103 \mathrm{aO}+$ GG385
45 min
NGC 5334 may be IC 4338 listed in Dreyer's Second Index Catalog, although the RA positions differ by 15 seconds of time.

The surface brightness of NGC 5334 is exceptionally low. enhanced in this print by contrast control in the darkroom in progressing from the original negative to the final image

There are a few IHI-rcgion candidates in the bar and in the arms, but none are resolved at the 1.5 " level. The redshift of NGC 5334 is $v_{0}=$ $1237 \mathrm{~km} \mathrm{a}^{\text {" }}$

NGC 685
 $\mathrm{SBc}(\mathrm{rs})$ II

CD-2016-Bedke/Gregory
Oct 25/26, 1981
$103 \mathrm{aO}+$ GG385
45 min
Many individual knots are present in the bar and in the massive arms of NGC 685. These are likely to be HII regions and brightest resolved stars, but the distinctions have not yet been made (1991) by standard techniques. The resolution is sufficiently promising and the surface brightness is low enough in the arms to make NGC 685 a prime galaxy for more-detailed study of its stellar content.

The largest Fill regions probably begin to resolve into disks at about the $1^{\prime \prime}$ level. The redshift of NGC 685 is $v_{n}=1306 \mathrm{~km} \mathrm{~s} \sim^{1}$.

NGC4654
 $\mathbf{S B c}(\mathbf{r s}) \mathbf{I I}-\mathbf{I H}$
 VCC 19JS7
 March 28/29, 1982

I03nO
NGC 4654 is among the- 15 largest spirals onsidered to be members of the Virgo Cluster Its isophotal diameter is large at $l) \rightarrow r_{t}=4.7^{\prime}$. A comparison of its angular size with oilier large spirals in the cluster can be seen in the alias of Virgo Cluster spirals (Sandage, Binggeli, and Tammaun I 985a, panel 6).

As with the other large spirals in tin ${ }^{1}$ cluster NGC 4654- is in the outskirts of the cluster, away from either subcluster A or B (compare Binggeli, Tammann, and Sandage 1987). It is located 3.3° east (and slightly north) of NGC. 4486, which is associated with Virgo subcluster A.

Mil regions are present in the bar. The acleus is brilliant and starlike at the I" level. he brightest Hil regions in the arms arc abu ant and have a helerochromatie blue magnitude of about $B=20$. The galaxy is a good candidate for resolution into individual stars using a highresolution telescope

The redshift is $v_{o}=926 \mathrm{~km} \mathrm{~s}^{-1}$ but. being in the Virgo Cluster, this is as much a virial velocity as a distance indicator

NGC 5885
CD-1392-S/Br
March 21/22, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
45 inin
NGC 5885 is a beautifully symmetric barred spiral, similar to but not quite as regular as its Sel counterpart NGC 1232 (Sc; panels 2 16. SI 3). or more closely similar to NGC. 3184 (Sc; panels 23 7, S5) or IC 5332 (Sc; panel 259).

The bar is short. The two principal inner arms spring from the ends of the bar. as in NGC 1300 (SBb; panels 154. S8). They then branch into the thick multiple-armed structure in the outer regions.

Many Mil regions exist, defining the centers of the luminous arms. The regions are unresolved at the 0.7 " level. The redshift of NGC 5885 is v_{o} $=1879 \mathrm{~km} \mathrm{~s}^{\mathrm{N}}$.

NGC $3319 \quad$ SBc(s)II. 4
PH-7126-S
Jan 31/Feb 1, 1976
$103 \mathrm{aO}+\mathrm{GG} 385$
35 niin
NGC 3319 is a highly resolved, nearby galaxy, in which robust star formation is occurring in the high-surface-brightness, lumpy bar. The two spiral arms spring from the ends of the bar in the (s) configuration of the NGC 1300 (SBb: panels 154, S8) type. The arms are moderately chaotic; hence the late luminosity class is shown.

Individual brightest stars are clearly resolved in the arms, starting at about $B=19$, but more-precise data require photometry and the separation of stars from the several bright HII-region candidates using standard methods.

The largest of the HII regions probably resolve into disks at the 2 " level. The redshift of NGC 3319 is $\boldsymbol{v}_{o}=776 \mathbf{~ k m ~ s "}$.
$\begin{array}{lr}\text { NGC 7496 } & \text { SBc(s)II.8 } \\ \text { CD-1163-Br } & \text { MCL Gr \#40 } \\ \text { Aug 22/23, 1979 } & \text { panel S10 } \\ \text { 103aO }+ \text { GG385 } & \end{array}$
45 niin
niin
NGC 7496 is in a complex region of galaxies whose redshifts are about $u_{0}=1400 \mathrm{~km} \mathrm{~s}^{-1}$. The region has been mapped in redshift space by Maia, da Costa, and Latham (1989). They assign NGC 7496 to a group of more than 30 galaxies for which they have redshifts within projected linear distances of less than 2 Mpc . Among the RSA galaxies assigned to the group are IC 5325 (Se; panel 268), NGC 7462 (SBc; panel 311), NGC 7496 (here), NGC 7531 (She: panel 175) NGC 7552 (SBb; panel 156), NGC 7582 (SBab panel 122), NGC 7590 (Sc), and NGC 7599 (Sell). The mean redshift assigned to the group by Maia. da Costa, and Latham is $\left\langle v_{f f}\right\rangle=1390$ km s

HII regions are abundant in one of the arms near one end of the bar of NGC 7496. This is the region where the maximum shock pressure oc region where the maximum shock pressure oc
curs, often seen in the hydrodynamic simulation curs, often seen in the hydrodynamic simulations (compare Prendergast 1962. 1983: Huntley Sanders, and Roberts 1978: Huntley 1978 980).

A lew individual brightest stars are probably identifiable, starting al about $/\}=20$. The redshift of NGC 7496 is $\gamma=1444 \mathrm{~km} \mathrm{~s}$ "

IC 5273
$\mathbf{S B c}(\mathbf{s})$ II-III
Grus $\mathbf{G r}$
CD-1546-S/Br
Aug 7/8, 1980
103aO + GG385
45 nuin
IC 5273 has high-surface-brightness, tighty wound massive arms that cover most of the disk. It has been assigned to the loose, widely separated Grus Group (Sandage 1975 b) whose par redshift is listed as $\langle v\rangle=1581 \mathrm{~km} \mathrm{~s}^{-1}$ The redshift of IC 5273 is $v_{0}=1296 \mathrm{~km} \mathrm{~s}^{\prime \prime}$

Several of the brightest HII regions are complex and resolve at about the 2 " level.
NGC 925
SBe(s)II-III
HA, p. 37 PH-71-S

Dec 26/27, 1951
$103 \mathrm{aO}+\mathrm{WG} 2$
15 niin
NGC 925 is one of the gems in the sky. It is highly resolved into individual stars starting at about $B=20$. Numerous Hll-region complexes exist, the largest of which have angular diameters of about 5 ".

Stellar associations can be identified in the rms. The bar is full of HII regions and resolved stars. NGC 925 is one of the premier galaxies not far beyond the Local Group where studies of the tellar content will he important for the distancescale problem. Cepheids should be easy to detect if the photometry can be pushed to $B=26$.

The redshift of NGC 925 is v_{n} - 792 kmss '.

NGC $6412 \quad \mathrm{SBc}(\mathrm{s}) / \mathrm{Sc}(\mathrm{s}) \mathrm{I}-\mathrm{I}$
 PH-7685-S
 Sep 26/27, 1979
 $103 a \mathrm{a}$

inin
The arms of the multiple-spiral pattern NGC 6412 are thin and regular, similar to th pattern in NGC 1232 (Se; panels 216, S13); hence the early luminosity class is required. The surface brightness of the arm pattern is low.

The bar is short. The two principal arms near the center spring from the ends of the ba in the (s) pattern.

The largest of the several HII regions has a halo diameter of about $3^{\prime \prime}$. The redshift of NGC 6412 is $v,=1568 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC $1341 \quad$ SBc(s)H-III
FCC 62

CD-1667-S

Dec 31/Jan 1, 198
103aO
NGC 1341 is listed as a member of the Fornax Cluster in the Fornax Cluster Catalo (Ferguson 1989). It is located 2.7° (which is 3.8 cluster core radii) southwest of NGC 1399 which is the cluster center. The redshift at $v_{o}=$ $1793 \mathrm{~km} \mathrm{~s}^{-1}$ is high compared with the adopted mean velocity of $\left\langle v_{0}\right\rangle=1366 \mathrm{~km} \mathrm{~s} \sim$ (Ferguso and Sandage 1990).

NGC $4519 \quad$ SBc(rs)H. $2 \quad$ VCC 1508
CD-801-S
Feb 24/25, 1979
$103 a O+W r 2 c$
45 min
NGC 4519 is near NGC 4472, which is the entral galaxy of subcluster B of the Virgo Cluster (Binggeli, Tammann, and Sandage 1987). It is illustrated in the Atlas of Virgo Cluster Spiral Galaxies (Sandage, Binggeli, and Tammann 1985a), where it can be compared with other cluster members because all images are enlarged to a common scale.

The spiral pattern is similar to that in NGC 5997, below, and NGC 5398, shown in the two prints at the right. A central bar exists from which the arms spring, but the arms exist on both ides of the ends of the bar. It is the same pattern of a broken (incomplete) ring seen in earlier barred SBa and $\operatorname{SBb}(\mathrm{rs})$ types, but the stellar content is much later in NGC 4519 here and in he two remaining galaxies on this page.

Many HII regions exist in the bar and in the arms of NGC 4519. The largest of these resolve at about the 2 " level. The redshift is $v_{0}=1094$ $\mathrm{km} \mathrm{s}^{-1}$, close to the adopted mean redshift of the Virgo Cluster, < $\left.v_{o}\right\rangle=976 \mathrm{~km} \mathrm{~s}^{-1}$ (Sandage and Tammann 1990).

NGC 4597

$\mathbf{S B c}(\mathrm{r})$ III:
CD-1400-S/Br
March 22/23, 1980
103aO

75 min

NGC 4597 is in the complex region once called the southern extension of the Virgo Cluster but now called the ridge-line region of the Local Supercluster, south of subcluster B of the Virgo Cluster.

The brightest parts of the stellar content of NGC 4597 are highly resolved into many HII regions and perhaps even brightest stars. The largest HII region, similar to NGC 604 in M33, has a core diameter of $5^{\prime \prime}$ and a halo diameter of $11 \mathrm{\prime}$. The redshift is $v_{o}=851 \mathrm{~km} \mathrm{~s} \sim$ '.

Because the disk surface brightness is low, NGC 4597 is a prime candidate for a major effort to study its bright stellar content for cab'bration purposes.

NGC 5398
CD-1364-S/Br
March 16/17, 1980
103aO + GG385

50 mi

NGC 5398 has a spiral-arm morphology that is remarkably similar lo that of NGC 45 I at tin- left and NGC 4597. below in the middl column.

The heavy print here shows tin resolution to stars and 1111 regions in the thick massive rms, which, nevertheless iiave a low surface brightness. The resolution into stars begins ; about $/\{=21$.

The largest of the many 1111 regions is complex, with a halo diameter of about $6^{\prime \prime}$. Measure ment of the short-exposure plate used for the print below shows each of the components lo have diameters of about 2 ". The redshift of NGC $539!!$ is $[\mathrm{\prime},,=984 \mathrm{~km} \mathrm{~s} \sim 1$

NGC 5398

CD-1365-S/Br
March 16/17, 1980
103aO + GG385
10 min
The bar is oval-like and is of low surface brightness. The nucleus is unresolved at the 0.7 level. It and the oval (which is the bar) resemble the dE,N dwarf elliptical morphology. The form would be classified as dE, N if the spiral arms were absent

T

A he two galaxies on this panel are the SBc prototype examples of the multiple-arm pattern seen in the Sc counterparts NGC 1232 (Scl; panels 216, S13) and M101 (Sd; panel 218).
NGC 5643 \quad SBc(s)II-III
CD-1342-S/Br
March 14/15, 1980
103aO + GG385

March 14/15, 1980
40 niin
Although NGC 5643 is in low Calactie atitude ($b=15^{\circ}$) with tin- attendant high foreground contamination, it is nevertheless clear that robust current star formation is occurring in the nearly circular arms; very many Milregion candidates exist. Individual stars also begin to resolve at about $B=22$.

The central region is oval rather than barlike. The straight, thin dust lane on one side of the center, characteristic of barred spirals, is evidence for strong noncircular motions in the neighborhood of the central oval potential; the lane is the response of the gas to hydrodynamic shocks due to these noncircular motions.

The faintness of a corresponding straight lane on the opposite side of the center may be an aspect effect: these lanes may not lie entirely in the plane of the disk, evidenced also by their crossing over and under the nuclear region, as is clear in NGC 5383 (SBb: Hubble Atlas, p. 46: panel 168 here).

The redshift of NGC 5643 is $v_{n}=947 \mathrm{~km}$ s^{-1}.

NGC 5556 $\quad \mathrm{SBc}(\mathrm{sr})$ II-III \quad compamions
CD-1353-S/Br
March 15/16, 1980
$103 \mathrm{aO}+$ GG385
45 iiiin
The bar in NGC 5556 is short but real. Current star formation is occurring in it. The two main inner arms spring from the ends of the bar and thereafter fragment almost immediately into the multiple-arm pattern of moderate geometrical entropy in the outer regions.

Very many HII regions exist in the spiral pattern, the largest of which begin to resolve at pattern, the largest of which begin to resolve at about the 1 level. Individual brightest stars are evident in the image beginning at about $B=22$ A likely companion (Anonymous; SniIII). with similar resolution of its stellar content, exists at a separation of 9.4^{\prime}. The projected linear separation is 64 kpc at a redshift distance of 23 $\mathrm{Mpc}(/ /=50)$. Several additional dwarf can didate companions exist in the immediate field. The galaxy and its companions are prime objects to study at higher resolution and brightness levels for the calibration of the extragalactic distance scale.

any of the galaxies on this panel are highly resolved into individual stars, and are therefore useful for calibration studies of the extra^alactic distance scale.

NGC 1637	SBc(s)II. 3	HA, p. 30
PH-68-MH		
Feb 15/16, 1950		
103aO		
30 niin		

The central region of NGC 1637 has no bar but has an oval luminosity distribution. One nearly straight dust lane exists on one side of the center, characteristic of barred spirals.

Individual brightest stars clearly begin to resolve at B brighter than 22 mag , but the confusion with very many Hll-region candidates must be solved before precise data can be interpreted

The largest HII regions resolve into disks at about the $1.5^{\prime \prime}$ level. The redshift of NGC 1637 is $v_{o}=715 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 5068
 SBc(s)II-III
 CD-1855-HB
 April 4/5, 198
 103 aO

75 niin
The angular size of NGC 5068 is large at $£ 25=6.9^{\prime}$. It is highly resolved into H1l-region candidates and individual brightest stars that could be as bright as $B=18.5$ but which must be individually separated from the Hll-region can didates before the data can be interpreted.

Star formation is occurring in the bar. Many classical OB associations can be identified in the arms. The largest HII region resolves at a diameter (halo) of about 4 ". The redshift of NGC 5068 is $v_{n}=443 \mathrm{~km} \mathrm{s"}$.

IC 749
PH-7641-S
April 28/29, 1979
103aO
12 min
IC 749 forms a close physical pair with IC $750(\mathrm{Sb}$?; panel 195) at a separation of 3.3'. The respective v_{o} redshilts are $\mathrm{u}_{0}(749)=827 \mathrm{~km} \mathrm{~s}^{-1}$ and $\mathrm{i} ?_{0}(750)=742 \mathrm{~km} \mathrm{~s}^{-1}$. The pair may be part of the extended $\left\langle\mathrm{i}^{\circ}\right\rangle=750 \mathrm{~km} \mathrm{~s}^{-1}$ group in the Ursa Major region that also contains NGC 3675 (Sb; panels 139, S4, S13, S14), NGC 3769 (SBc; panel 311), NGC 3782 (SBcd; panel 328), NGC 3949 (Sc: panel 265), NGC 4051 (Sbc; panel 180), NGC 4242 (SBd; panel 322), and others listed in Group 10 by de Vaucouleurs (1975) and called the CVn II Cloud there.

At an adopted redshift distance of 16 Mpc $(77=50)$, the projected linear separation of IC 749 and IC 750 is small at 15 kpe . There is little or no evidence for tidal interaction between the pair; the true linear separation must be considerably larger than this minimum projected distance.

Many Hll-region candidates exist in the ell-formed arms of IC 749. Resolution into individual stars is also present, starting probably near $B=22$.

NGC 7070

$\mathrm{SBc}(\mathrm{s}) \mathrm{H}$
pair
CD-1155-Br
April 22/23, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
45 niin
NGC 7070 forms an apparent pair with NGC 7072 (Selll, high surface brightness) at a separation of 4.5^{\prime}. The redshift of NGC 7070 is $v_{o}-2365 \mathrm{~km} \mathrm{~s}^{\mathrm{s}}$. The redshift of NGC 7072 is unknown (c. 1990), but the resolution of its stellar content is similar to that in NGC 7070 , suggesting a common distance. At a redshift distance of $47 \mathrm{Mpc}(H=50)$ the projected linear separation would be 62 kpc .

The arms of NGC 7070 are thin and regular. The luminosity class of II, assigned here, differs from the 11-111 class listed in the RSA.

NGC $4116 \quad$ SB $«(\mathrm{i}) \mathrm{II}-111$
CD-1847-HB
April 3/1, 1981
103aO

75 mill

NGC II I 6 forms a physical pair with NGC 4123 (Sm.c: panels 201 . Hii) al a separation of 14 '. The respective redshifts are $(,, \ldots,(1116)=$ $1140 \mathrm{~km} \mathrm{~s}^{-1}$ and $\mathrm{u}_{0}(4123)=1157 \mathrm{~km} \mathrm{~s}^{11}$. At redshift distance of $23 \mathrm{Mpc}(/ /=50)$ the ersirt distance of $23 \mathrm{Mpc}(/ /=50)$ ke

Many Hll-region candidates exist in the ba and in the arm pattern. The nucleus in the center of the bar is starlike; it is unresolved at the 0.7 level.

NGC 255
PH-7836-S
Sep 3/4, 1980
Sep 3/4,
103 aO
103 aO
The many Hll-region candidates in NGC 255 are unresolved at the $1^{\prime \prime}$ level. Individual brightest stars may begin to resolve at about $B=$ 22.5. The redshift is $v_{o}=1726 \mathrm{~km} \mathrm{~s}^{-1}$.

Karachentsev 40
Sep 26/27, 1979
$103 a O+$ GG385
12 min
NGC 672 forms a close pair with IC 1727 shown at the right, at a separation of 8.3^{\prime}. The respective redshifts are $\mathrm{u}_{0}(672)=647 \mathrm{~km} \mathrm{~s}^{-1}$ and $v(1727)=576 \mathrm{~km}^{-1}$. At the mean redshift distance of I $2 \mathrm{Mpc}(77=50)$ the projected linear separation is small at 29 kpc .

The resolution into individual stars in the arms of NGC 672 is easy. The brightest begin to resolve near $B=22$. The bar also contains bright stars and several Hll-region candidates.

There are only a few HII regions in the arm
and none resolve into disks at the I.5" level.
Note that the bright stars in this reproduc ion have Racine wedge secondary images that arc 5 mag fainter and L 8 " removed from thei primaries.

IC 1727
PH-7697-S
SBed(s)III
Racine wedge Karachentsev 40
Sep 26/27, 1979
$103 \mathrm{aO}+$ GG385
12 min
The resolution into individual brightest stars occurs at the same level, about $B=22$, in C 1727 as in its companion NGC 672 . shown at he left. The surface brightness of the arms and f the underlying disk is low in both IC 1727 and GGC 672, making this nearby pair ideal for future studies of the brightest resolved stars, including Cepheids, useful for calibrations of the xtragalactic distance scale

The print of IC 1727 here is made from the same Palomar 200 -inch plate used for NGC 672 at the left. IC 1727 is near the edge of the plate whose coma-free field is smaller than the area covered by IC 1727. The images on one side of the print show coma at this break point in the field.

The original plate was taken with a Racine wedge, which produced secondary images to the bright, stars.

NGC 3059
 $\mathrm{SBc}(\mathrm{s}) \mathrm{II}$

CD-742-S
Feb 3/4, 1979
$103 \mathrm{aO}+\mathrm{Wr} 2 \mathrm{c}$
45 inin
The spiral arms in NGC 3059 are massive in the sense of Reynolds (1927a,b); they cover most of the disk and are of moderate surface brightness. The Galactic latitude of NGC 3059 is ow ($b=-15^{\circ}$), explaining tin* high density of foreground contaminating stars.

The redshift is $v_{o}=991 \mathrm{~km} \mathrm{a}^{11}$
NGC 1493
$\mathrm{SBc}(\mathrm{rs}) \amalg$
CD-201-S
Feb 9/10, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
Mi-region candidates exist throughout the bar and the multiple-arm spiral pattern. The argest of the MI candidates resolves at about the 1.5 level. Individual brightest stars are probably present starting at about $B=21.5$. The redshift of NGC 1493 is $v_{o}=910 \mathrm{~km} \mathrm{~s}{ }^{1}$

A probable companion (Anonymous: ImIV) exists at a separation of 9.6'. The companion has two Hll-region candidates, both of which have disks whose angular diameters are about $2^{\prime \prime}$. At the redshift distance of $18 \mathrm{Mpc}(\mathrm{H}=50)$ for NGC 1493 the projected linear separation of the pair would be 50 kpc .

NGC 4496A/149615	SBcIII-IV	VCC 1375
CD-2201-S	VCC 1376	
March 3 I/April 1, 1982	Karachentsev 343	
103aO		
50min		

The image of NGC 4496A overlaps thai of NGC 4496 H : the centers have an angular separation of 0.9^{\prime}. The redshifta listed by Karachentsev, $\mathrm{u},(4496 \mathrm{~A})=1$ J13 I km s \sim^{\prime} and $\mathrm{u}_{0}(4496 \mathrm{~B})=4509 \mathrm{~km} \mathrm{~s}^{-1}$ would put the com $\mathrm{u}_{0}(4496 \mathrm{~B})=4509 \mathrm{~km} \mathrm{~s}$. would put the companion far in the background. This is curious
because the brightnesses of the numerous IIII because the brightnesses of the numerous IIIregion candidates in both galaxies seem closely the same, suggesting that the two galaxies are at nearly the same distance. Additional data ar needed, but an apparent confirmation of the large redshift of NGC 4496B is given by the $21-\mathrm{cm}$ redshift listed in the VCC of $\mathrm{u}_{\mathrm{mn}}=1548$ $\mathrm{km} \mathrm{s}^{-1}$ (or $v_{o}=4391 \mathrm{~km} \mathrm{~s}^{-1}$) attributed unpublished observations by Hoffman. Helou and Salpeter (1984, private communication) This may be the same measurement published by Hoffman et al. (1989), where $v_{\text {sim }}=4546 \mathrm{~km} \mathrm{~s}^{\prime \prime}$ is listed for NGC 4496B.

Both NGC 4496A and 4496B are listed in the VCC as non-members of the Virgo Cluster.

NGC 1385
SBc(s)III
Ja $12 / 13$
Jan 12/13, 1981
30 .
Vigorous star formation is occurring throughout NGC 1385, as judged by the many bright HII regions in the bar and in the arm The detected candidates for brightest individua stars in the outer regions do not resolve brighte than $B=22$.

The redshift is $v_{n-1}=1968 \mathrm{~km} \mathrm{~s} \sim 1$

NGC 1313
 CD-564-S
 Oct4/5, 1978
 $103 \mathrm{aD}+\mathrm{Wrl} 2$
 0 niin

The resolution into individual stars in NGC 313 is exquisite. Brightest stars begin to resolve at about $B=17$, similar to the level in members
of the South Polar Group such as NGC 55, NGC of the South Polar Group such as NGC 55, NGC
247. and NGC 300 for which distance moduli of about in $-M=26.5$ have been adope mo
out $i n-M=26.5$ have been adopted.
The brightest stars occur in the bar and i
The brightest stars occur in the bar and in
compact association in one of the two stubby compact association in one of the two stubby
inner arms that start from the ends of the bar inner arms that start from the ends of the bar These arms, and the resolution of stars in the ar. are seen best in the shallow print on the right. Both prints here have been made from the same original plate taken in the V photometri passband

The chaotic nature of the outer regions of GC 1313 is seen in the heavy print on the left. A semicircular arc near the upper border of the print, similar to Constellation III in the LMC contains a bright association and provides good resolution into stars. Similar resolution into fainter stars continues to the plate limit over the entire face of the galaxy.

The small redshift <f $v_{o}=261 \mathrm{~km} \mathrm{~s}^{-1}$ is consistent with the small distance inferred from the magnitude of $B=17$ for the brightest resolved stars.

Note that the prints here have been made from a yellow-sensitive emulsion rather than lue. This tends to suppress the contrast between he young blue individual stars and the underly ing older disk.

NGC 6239

PH-59-H
April 27/28, 1949
103 aO
30 niin
The original plate from which this image was made was one of the earliest taken with the 200 -inch Palomar reflector, before the primefocus Ross corrector was installed. There is, therefore, appreciable coma extending to the center of the field because the//ratio of the primary mirror is so small. However, the angular size of NGC 6239 is small enough ($D_{2 s}=2.7^{\prime}$) to avoid much image degradation near the center, where the H1l-region candidates exist.

Current star formation is occurring in the ar but little exists in the faint arms. None of the HIl-region candidates resolve at the 1 " level. The redshift of NGC 6239 is $v_{o}=1110 \mathrm{~km} \mathrm{~s}^{\prime}$.

NGC 4294
$\mathrm{SBc}(\mathrm{s})$ IMII
VCC 465
CD-1318-S/Br
980
103aO
75 inin
NGC 4294 in the Virgo Cluster forms a close (probable) physical pair with NGC 4299 (Sd; panel 328) at a separation of 5.6^{\prime}. Both are in the Virgo Cluster and are located about a third of the distance between Virgo subclusters A and B.

Closeness of angular separation in the cluster region is not usually good evidence of physical association. However, the circumstance here is unusual because the redshifts of both galaxies are so nearly the same and each is far from the cluster mean redshift, showing the same (nearly 30) large virial velocity deviation from the mean. This is so improbable as to suggest that the galaxies are, in fact, a binary pair

The redshifts are $\mathrm{u}_{\mathrm{o}}(4294)=227 \mathrm{~km} \mathrm{~s}^{\prime}$ and $\mathrm{u}_{0}(4299)=107 \mathrm{~km} \mathrm{~s}^{11}$. At the cluster distance of 21.9 Mpc , the projected linear separation of the pair is small at 36 kpc .

Hll-region candidates exist both in the bar and in the arms of NGC 4294. However, none resolve into disks, nor is there evidence of resolution into brightest stars in the arms. This lack of resolution is consistent with membership in the Virgo Cluster, which lies at a much greater distance than that indicated by the small redshift of the two galaxies. This is direct evidence for the large virial velocity dispersion in the Virgo Cluster because, from the stellar content, there is no question that the two galaxies are cluster members.

The pair is shown in the Virgo Cluster Atlas of Spirals (Sandage, Binggeli, and Tammann 1985a, panel 15), enlarged to a common scale for other Virgo galaxies.
NGC 4231
SBcIII. 4

VCC 221
CD-2157-S
103aO
50 nii
NGC 4234 is in the Virgo Cluster Catalog but is listed there as a non-member. It is locate in the southwestern corner of the survey area; it may be a member of the background W Cloud (Binggeli, Tammann, and Sandage 1987). Its redshift is $v_{n}=1981 \mathrm{~km} \mathrm{~s}^{11}$.

NGC $4731 \quad \operatorname{SBc}(\mathrm{~s}) \mathrm{IH}($ lides? $)$
triplet? CD-2188-S
$\mathrm{SBc}(\mathrm{s}) \mathrm{IH}($ lides? $)$ CD-2188-S

03 aO
6 nii
NGC 4731 forms a wide pair with NGC 4697 (E6; panels 13, 19) at a separation of 36^{\prime} It also forms a closer pair with an anonymou BCD galaxy at 10.4^{\prime} that resolves into HII regions at the same brightness as in NGC 4731 The redshifts are $\mathrm{u}_{0}(4697)=1033 \mathrm{~km} \mathrm{~s} \sim^{\prime}$ and ${ }_{<0}(4731)=1303 \mathrm{~km} \mathrm{~s}^{11}$. If the galaxies are at a common redshift distance of $23 \mathrm{Mpc}(H=50$), their projected linear separation is 241 kpc .

The redshift of the closer BCD companion is not known (c. 1990) but there is little doubt that the pair forms a physical association. Their projected linear separation is small at 70 kpc . Many other dwarf E and Im candidate companions exist in the field of NGC 4697 and NGC 4731.

Star formation is occurring in the bar of NGC 473 1, judging by the Hll-region candidates there. The arm pattern is that of tidal plumes, perhaps due to a close encounter with the $B C D$ companion, which also has a near (so-called) starburst morphology.

NGC 4273
SBc(s)II
VCC 382
CD-1339-S/Br
March 14/15, 1980
103 aO
75 min
NGC 4-273 is in a busy region in the southwestern corner of the Virgo Cluster Catalog area. It and its companions are probably in the W cloud in the background (Binggeli. Sandage, anil Tammann 1985; Binggeli. Tammann, and Sandage 1987). The bright companion galaxies in the wide-angle view in the upper-right photograph are NGC 4277 (SBa; VCC 386; $v_{o}=$ 2345 kins"') and NGC 4268 [$\mathrm{SO}_{2}(6)$; VCC 371 ; $\left.v_{n}=2164 \mathrm{~km} \mathrm{a}^{\text {"1 }}\right]$. The redshift of NGC 4273 is $v_{o}=2232 \mathrm{~km} \mathrm{~s}^{-1}$. The dwarf elliptical galaxy $v_{o}=2232 \mathrm{~km} \mathrm{~s}$. The dwarf elliptical galaxy
VCC 390 (dE3) is also present in the field shown here.

NGC 4273
$\mathrm{SBc}(\mathrm{s}) \mathrm{H}$
VCC 382
CD-1339-S/Br
March 14/15, 1980
103 aO
75 min
The spiral arms of NGC 4273 terminate at a sharp outer boundary whose elliptical outline is not centered on the galaxy's center. The pattern of a sharp outer termination is moderately common, shared for example by NGC 95 (panel 248), NGC 491 (panel 2 11), NGC 1637 (panel 306), NGC 2701 (panel 271), and NGC 4647 (panels 51,278,314), among others.

The asymmetry in the arm brightness be tween the two sides of the major axis is not the normal pattern. Nevertheless there are numerous examples in this atlas. These include IC 1953 (panel 208), NGC 5065 (panel 246), NGC 95 (panel 248), NGC 1569 (panel 263), NCC 2276 (panel 263), NGC 2701 (panel 27 1), NGC 478 I (panel 273), NGC 4298 (panel 279), NGC 4096 (panel 287), NGC 3367 (panel 293), NGC 1637 (panel 306), the prototypes of NGC 5676 (pane 245) and NGC 5678 (panel 278), NGC. 1536 (panel 313), perhaps NGC 922 (panel 3 I 3), and NGC 5474 (panel 315).

T
he six galaxies on this panel have moderate-to-
high inclination. All feature a central bar, although the bar is less definite in the last three galaxies than in the first three.
NGC $7640 \quad$ SBc(s)II: HA, p. 49
PH-115-H
Sep 24/25, 1951
$103 a \mathrm{aO}$
30 niin
NGC 7640 is very highly resolved into in-
dividual stars and a few large Hll-region com-
plexes. From tile degree of resolution into stars,
the distance modulus must be smaller than $m-M$
$=31$ hut larger than $m-M=30$. The brightest
stars begin to resolve at about $B=21.5$. Star
formation is occurring in the central region as
well as in the two major arms. well as in the two major arms.

The redshift is $v_{0}=669 \mathrm{~km} \mathrm{~s}^{-1}$
NGC 4178
$\mathrm{SBc}(\mathrm{s}) \amalg$
VCC 66
CD-2100-S
March 18/19, 1982
$103 \mathrm{aO}+\mathrm{GG} 38$
75 niin
NGC 4178 is listed as a cluster member in the Virgo Cluster Catalog (Binggeli, Sandage, and Tammann 1985). It is illustrated on a common scale with other cluster members in the Atlas of Virgo Cluster Spirals (Sandage, Binggeli, and Tammann 1985a, panel 6). The angular diameter is large at $\mathrm{D}_{2 \cdot 5}=5.0^{\prime}$. The redshift of NGC 4178 is $v_{0}=224 \mathrm{~km} \mathrm{~s} \sim$ ', illustrating the large virial velocity variation among the Virgo Cluster members. From the characteristics of the HII regions and the lack of individual resolved Hil regions and the lack of individual resolved sars brighter than $B=23$, there is no question small redshift would indicate.

The bar consists of HII regions in a thin traight pattern. Two large IHI-region complexes exist in one of the arms. Halo diameters of these compound associations are about $5^{\prime \prime}$

NGC 124
CD-704-S
Jan 30/31, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
45 niin
The halo diameters of the largest of the Hil-region complexes in NGC 1249 are about 3". Resolution into individual stars is difficult but may begin at about $B=22.5$. The redshift of NGC 1249 is $v_{o}=887 \mathrm{~km} \mathrm{~s}^{\prime \prime}$

NGC 3769
SBc(s)II Karachentsev 294 PH-7633-S April 28/29, 197
103aO
12 min
NGC 3769 forms a close pair with a companion (NGC 3769 A ; Sin; not in the RSA) which is evidently at the same distance judging by its similar resolution into stars and HII regions. The separation of the pair is 1.2 '. The individual redshifts listed by Karachentsev are 791 km s for NGC 3769 and $845 \mathrm{~km} \mathrm{~s} \sim$ for its companion. At the mean redshift distance of $16 \mathrm{Mpc}(H=50)$ the projected linear distance or is very small at 6 kpc . It can be guessed from the distorted mor phology that a close encounter is, in fact, in progress.

NGC 7462
 $\mathrm{SBc}(\mathrm{s})$
 D- $1535-\mathrm{S} / \mathrm{Br}$
 Aug 6/7, 1980
 $103 \mathrm{aO}+\mathrm{GG} 385$

45 min
NGC 7462 is nearly on edge. The brightness istribution at the center suggests the presence of bar, but this is uncertain. HII regions exist, most easily seen on one side of the image in the uter region of lower projected surface bright ness.

The redshift is $v_{o}=1022 \mathrm{~km} \mathrm{~s}^{\prime \prime}$.
NGC $7307 \quad$ SBc(s)II
CD-1125-Br
Aug 20/21, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
Incipient resolution into stars and HII egions exists across the high-surface-brightness ace of NGC 7307, but the nearly edge on inclination to the line of sight makes this information only qualitative.

The redshift is $v_{n}=1865 \mathrm{~km} \mathrm{~s}^{11}$.

PANEL
311

Sbc Classification Section (continued)

NGC2139 $\mathrm{SBc}(\mathrm{s}) \mathrm{H} .3$
CD-766-S
Feb 21/22, 1979
$103 \mathrm{aO}+\mathrm{GG} 385$
15 iniii
NGC 2139 is ;i clear ruse of a merger in progress. The small satellite on one side of the arger galaxy near ils minor axis is seen besl in llir light print on the right. The nuclear region of Ihis smaller galaxy is intact, and it has many $111[-$ region candidates along with evidence of robust star formation. However its outer regions peal* to he tidally disrupted

The main galaxy is also generally inlact. having a strong, chaotic bar and massive spiral arms in which robust star formation is occurring. [owever, there is a low-surface-bTightness traight (tidal?) plume extending about one galaxy diameter beyond the main body of the large galaxy, starting near the apparent point of verlap of the two respective central regions.

The stellar content is about equally well resolved in both galaxies

The redshift, presumably of the central region of the larger galaxy, is $v_{o}=1688 \mathrm{~km} \mathrm{~s}^{-1}$.

TIT section of the classification. Most are moderately inclined to the sight line and/or are peculiar in some moderate fashion.

NGC 1796
CD-221-S
$\mathrm{SBc}(\mathrm{s})$ III
Feb 12/13, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
The disk of NGC 1796 is covered with star-producing regions, causing the high surface brightness over the entire image. A central bar is present; Hll-region candidates exist in it as well as in the tightly wrapped arms.

The redsbift is $r_{n}=771 \mathrm{~km} \mathrm{~s}^{-1}$.
NGC 4668
$\mathrm{SBc}(\mathrm{s})$ III
CD-1411-S/Br
March 23/24, 1980
103 aO
75 min
NGC 4668 forms a close pair with NGC 4666 (Sbc: $v_{0}=1474 \mathrm{~km} \mathrm{~s}{ }^{\prime \prime}$; panel 194) at a separation of 7.8^{\prime} : it also has a wider association with NGC 4632 (Sc: $v_{0}=1557 \mathrm{~km} \mathrm{~s}^{-1}$; panel 288) at a separation of 52^{\prime}. The redshift of NGC 4668 is $v_{0}=1530 \mathrm{~km} \mathrm{~s}^{-1}$. At the mean redshift distance of $30 \mathrm{Mpc}\left({ }^{\prime \prime} /=50\right)$ the projected linear separations of NGC 4666 and NGC 4632 from NGC 4668 are 68 kpc and 454 kpc , respectively.

Many HII regions exist over the face of NGC 4668, which is small and chaotic but has a high-surface-brightness disk. The resolution into IIII regions is at the same level as in the close companion NGC 4666 and in NGC 4632. There is little question that all three galaxies are at the same distance.

NGC 3912
PH-7607-S
April 3/4, 1979
IllaJ + GG385
30 inin
The bar and parts of one of the arms of NGC 3912 are filled with IIII regions. The redshift is $\mathrm{i}_{o}=1733 \mathrm{~km} \mathrm{~s}^{11}$.

NGC $1536 \quad$ SBc(s) pec
C D-2040-Bedke/Gregory
Nov 1/2, 1981
$103 \mathrm{aO}+\mathrm{GG} 385$
45 niiii
The bar and the region of each arm just beyond the ends of the bar contain many HIIregion candidates. The disk is covered with very broad, massive, ill-defined arms nearly devoid of IIII regions. The arms are not symmetrical about the bar: one side sweeps out more widely than the other, but there is no evidence for tidal interaction by a companion. NGC 1536 is isolated; its redshift is $v_{o}=1168 \mathrm{~km} \mathrm{~s} \sim^{1}$

NGC 5074
 SBC (s) II

PH-8092-S
Feb 6/7, 1981
3a
NGC 5074 has a small angular diamete (D95 = 1.0') and moderately high surface bright ness in its inner region. This region contains a bar and two bright arms that start from the ends of the bar. One arm remains bright for about one-quarter revolution; the other remains bright nly for a short stub of a beginning A fainter, nly for a short stub of a beginning. A fainte inner region.

The redshift of NGC 5074 is $v_{0}=5675 \mathrm{~km}$ s^{-1}; the absolute magnitude is bright, at $\mathrm{V} / \mathrm{g}=$ 21.3

NGC $4064 \quad \operatorname{SBc}(\mathrm{~s}):$
H-2213-H
May 17/18, 1942
103aO
0 min
NGC 4064 is difficult to classify because it is seen nearly edge on, but the existence of a bar is certain. HII regions define the bar in the same way as in NGC 1536 at the top of this column, in NGC 4731 (panel 310), and especially in NGC 4178 (panel 311).

Dust patches exist on either side of the major axis. The galaxy may resemble NGC 4389 , at the upper right, if it were viewed from an angle about 10° less nearly edge on
The redshift of NGC 4064 is $v_{o}=937 \mathrm{~km}$

NGC $4389 \quad$ SBc(s)III pec
PH-8059-S
Feb 4/5, 198
103 aO
12 min
NGC 4389 has a bright bar filled with discrete HII regions. Its spiral pattern is difficult to trace because of the large inclination angle. Its morphology may be similar to that of NGC 4178 (panel 311), NGC 3059 (panels 308. S9). NGC 4116 (panel 306), NGC 3319 (panel 303). and NGC 4654 (panel 302), all of which are shown in this SBc section and all of which have lesssteep inclination angles.

The redshift of NGC 4389 is $v_{n}=767 \mathrm{~km}$ s^{-1}.

NGC 922
$\mathrm{SBc}(\mathrm{s}) \mathrm{pec}$
CD-1600-S/Br
Aug 12/13, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
45 min
The morphology of NGC 922 is so peculiar as to be outside the classification system. It would be called a sport by nineteenth-century animal breeders. The reason for its inclusion in this section is because it appears to have a central bar section is because it appears to have a central bar from which spiral fragments are attached primarily on one side. These fragments spiral outward at very large pitch angles, abruptly stopping at an edge. IIII regions exist throughout this half of the image. The other half is devoid of high-surface-brightness features, altho smooth, low-luminosity plumes exist there.

Two prints of NGC 922 are shown here. In the heavy print above, the smooth, low-surfacebrightness features are easily seen. The light print below, made from the same original plate, shows well the Hll-region candidates in the bar and in the high-surface-brightness parts of the image.

NGC 922 has no evident companion at the same distance that can be blamed for the peculiar morphology from a supposed close encounter The redshift of NGC 922 is $v_{0}=3061 \mathrm{~km} \mathrm{~s} \sim 1$ The absolute magnitude of the galaxy is bright at $M_{B}=-21.7$.

The Scd and SBcd Classification Sections

NGC 45	Scd(s)III	HA, p. 37
CD-540-S		panel S6
Ocl 1/2, 197«		
103aO + GG385		
45 inin		

NGC 45 is very highly resolved into individual stars starting at about $V=19.5$. This level is only slightly fainter than the brightest stars in MI 01 (Sandage and Tammann 1974c Sandage L983b), but is 2 mag fainter than the brightest stars in NGC 300. NGC 55, and NCC 247 in the South Polar Group. The estimate that NGC 45 is located about two times the distance of the mean of the South Polar Group, based on the magnitude of the brightest stars in each (V 17.5 in the SPG; $\mathbf{K}=\mathbf{1 9}$ for NGC 45), is consis tent with the redshifts. NGC 45 has $\mathrm{i}_{1}=533 \mathrm{~km}$ $\mathrm{s}^{\text {"1 }}$; the mean of the SPG is $\left\langle v_{o}\right\rangle=201 \mathrm{~km} \mathrm{~s} \sim^{1}$ for the five group members NGC 55. NGC 247. NGC 253. NGC 300. and NGC 7793.

The morphology of NGC 45 is similar to that of NGC 300 (Sc; panels 26 1. S6) and NGC 598 (M33, panel 262) although it is later in the classification sequence than the latter. The sur face brightness of the inner disk of NGC 45 lower than in M33. As in M33 and NGC 300 wer has in in in many associations exist in the multiple arms. The largest of these has angeter of 30 which, at a distance of $6 \mathrm{Mpe}(\mathrm{m}-M=29)$

俗 900 psc
The resolution into stars is so complete, the rowding so small, the surface brightness of the disk so low, and the dust content so nearly negli gible as to make NGC 45 an ideal galaxy in which to measure photometrically its brightest stars and to search for Cepheids for calibration studie of the extragalactir distance scale

NCC 1494
 Scd(s)II

Jan 31/Feb 1, 1979
103aO + GG385
$4-5$ niin
The surface brightness of the disk and arms in NGC 1494 is higher than in NGC 45 shown on the preceding panel. The redshift is larger, at v_{0} $=957 \mathrm{~km} \overline{\mathrm{~s}}^{-1}$, consistent with the lack of resolu $=957 \mathrm{~km} \mathrm{~s}$, consistent with the lack of resolu tion into individual stars at a level brighter than about $V=22$. Brightest stars begin to resolve a about this level, but confusion with the numerou IIII regions that, are both brighter and fainter than this level is serious; the two types of object must be discriminated from one another by standard methods before their photometry can be interpreted.

No nucleus or central bulge is seen on the available plate material. The arms are moderate ly well formed and are easily traced: hence the relatively high luminosity classification is required.

NGC $5474 \quad$ Scd(s)IV pec M101 Gr PH-82-B
June 9/10, 1950
103 aO
30 min
NGC 5474 is one of the five late-type dwarf companions to M101. The others are NGC 520 (SdIV: panel 324), NGC 5477 (not in the RSA; panel 326 here). NGC 5585 (SdIV; panel 323) and Ho IV (not in the RSA or this atlas), all shown together for comparison, as enlarged nearly to a common scale (Sandage and Tammann 1974c. Fig. 1).

NGC 5474 is well resolved into individual stars beginning at $V=20.5$. This is about 2 mag fainter than in M1 01 , which is at the same distance. This magnitude difference for the brightest stars illustrates the dependence of M (brightest star) on the absolute luminosity of the parent galaxy.

Many Mil regions exist across the disk. The largest several are complex and have total (halo) diameters of about 10

The asymmetrical pattern of the multiplearmed system may be due to tidal interaction with M10] . at an angular separation of 44^{\prime}. At the distance of $7.2 \mathrm{Mpc}(\mathrm{m}-M=29.3)$ the projected linear separation is small at 92 kpc .

GC 4790
Scd(s)II
group
D-1848-HB
03aO
NGC 4790, with $v_{o}=1154 \mathrm{~km} \mathrm{~s}^{11}$, is in a complex field that also contains NGC 4742 (E4; panel $10 ; v_{o}=1114 \mathrm{~km} \mathrm{~s}^{-1}$) at a separation of 47^{\prime}, NGC 4781 (Sc; panel 273; $\mathrm{u}_{\mathrm{o}}=689 \mathrm{kins}^{\prime 1}$) at a separation of 18^{\prime}, and NGC 4760 (SO or cD; at a separation of 18, and NGC 4760 (SO or cD; panel 30. $v_{o}=4451 \mathrm{~km}$ s \sim), which obviously if in the background. Although the redshift difference between NGC 4790 and NGC 4781 is arge at 465 km s , suggesting different distanes, the stellar contents of each resolve ino in Vin V stars 21.5 : fill begning near $V=21.5$. furker, he inf regions in each are of about the same brightness, and the largest Mil regions in each resolve at about $3^{\prime \prime}$ diameter. In addition, there is a dwarf SmIII-IV galaxy between NGC 4790 and NGC 4781 , separated from NGC4790 by only 13.3'. It has HII regions at the same brightness level as the other two galaxies of the pair.

If NGC 4742 (E4), NGC 4781 (Sc), NGC 4790 (Scd), and the SmIII-IV dwarf arc in a group at a mean redshift of $\left\langle\mathrm{i}^{\prime}\right\rangle=986 \mathrm{~km} \mathrm{~s} \sim^{1}$, giving a redshift distance of $20 \mathrm{Mpc}(H=50)$, the respective projection linear separations from NGC 4790 are 273 kpc for NGC 4742 , 105 kpc for NGC 4781 , and 77 kpc for the SmIII-IV diller by factor of fou smir-IV diameter of the Local Group.

NGC 941

CD-494 S
ScdHI
group
Sep 26/27, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
45 niin
NGC 941 is in an apparent group with NGC $936\left(\mathrm{SBO}_{2 / 3} / \mathrm{SBa}\right.$; panels $\left.90,106, \mathrm{~S} 9\right)$ at a separation of 12.6'. and with an anonymous SBcd at a separation of 12.3' whose stellar content resolves at the same level as in NGC 941, and as a wide pair with NGC 955 (Sb ; panel 150) at a separation of 31^{\prime}. The redshifts are $U_{0}(936)$ $=1512 \mathrm{~km}$ s $\backslash>_{0}(941)=1717 \mathrm{~km} \mathrm{~s} \sim^{\prime}$, and $\mathrm{u}_{\mathrm{o}}(955)=1641 \mathrm{~km} \mathrm{~s} \sim$. At the mean redshift distance of $32 \mathrm{Mpc}(/ /=50)$, the respective projected linear separations from NGC 941 are 17 kpc for NGC 936. 288 kpc for NGC 955, and 1 I 4 kpc for the anonymous SBcd companion. These separations are all smaller than the radius of the Local Group.

Individual stars may begin to resolve in both NGC 941 and the SBcd companion at about $V=$ 22: discrimination and individual identification of the stars and the numerous Mil regions will be necessary by the standard methods.

IC5201
CD-1533-S/B
Aug 6/7, 1980
103aO + GG385
45 inin
The multiple thin arms are clearly resolved into individual stars beginning at about $\mathrm{B}=21.5$ and the arms are also filled with a multitude of Mil regions, the largest of which have diameters of about 5". The redshift from Huchtmeier and Richter (1989) is $v_{0}=875 \mathrm{~km} \mathrm{~s} \mathrm{\sim}$

NGC 7107 SBe(s)/SBmIH-IV
CD-529-S
Sep30/Oct 1, 1978
103aO + GG385
45 min
There is clear evidence of a bar containing HII-region candidates, indicating recent star for mation. The spiral structure is not well defined esembling more the pattern in the LMC than in a regular spiral; hence the mixed classification is equired

The redshift is $v_{n}=2446 \mathrm{~km} \mathrm{~s}^{\prime 1}$.

NGC 1744
SBcd(s)II-III
CD-1334-S/Br
March 14/15, L980
$103 \mathrm{nO}+\mathrm{GG} 385$
60 min
Brightest stars begin to resolve in abundance in NGC 1744 about I mag above the plate limit, which is near $H=23$. The very brightest star may have $i i=20.5$, but the numerous IIII regions must be separated from the stellar candidates before the brightest-star data are secure. Star-formation and IIII regions exisl over the centra] oval and inner disk.

The redshift is $v_{t i}=639 \mathrm{~km} \mathrm{~s}^{-1}$. The resolution into stars is not as pronounced as in NGC 45 (two panels back), which has a smaller redshift by a factor of I.2. If the redshift-distance rela tion were noiseless, the magnitude difference between the brightest stars in NGC 1744 and NGC 45 would be 0.4 mag. However, the observed difference in the resolution level of the brightes stars is about 1 mag, suggesting noise in the velocity field of about $\pm 100 \mathrm{~km} \mathrm{~s}^{-1}$. Such random velocity about the Hubble flow is. of course, small. This method has important promise and can be used out to distances of about three-fourths the distance to the Virgo Cluster.

New 3 = A 1246-09 SBed(s)II. 2
CD-1883-HB
April 11/12, 1981
$103 a O$
The surface brightness of New 3 is very low, which is the reason it was not included in the NCC listing. A small bar exists from whose end the multiple-arm pattern begins.

Many IIII regions cover the face of the disk
A few exist in the bar.
The redshift of New 3 is i- ${ }_{o}=1105 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.

NGC 4485/4490 S(tidal) Karachentsev 341 H-1458-B ScdIII pec
May 24/25, 1944
103 aO
niin
Both components of this obviously interact ing pair show massive, robust star formation over each of their faces. Individual stars begin to resolve at about $V=18$ in each galaxy, but the surface brightness is so high over most of their disks as to make the photometry of individual stars difficult. Also there is much dust over the face of NGC 4490, the brighter of the pair

The redshifts listed in the RSA2 are $: ; 0(4485)=817 \mathrm{~km} \mathrm{~s} \sim^{\prime}$ and $u_{0}(4490)=601 \mathrm{~km}$ s^{-1}. The plate used for the heavy exposure at the top left was taken by Baade with the Mount Wilson 100 -inch Hooker reflector.

NGC 4485/4490 S(tidal) Karachentsev 341 S-657-B ScdIII pec
March 3 I/April 1, 1938
E40
60 min
The light print of the NGC 4485/4490 pair at the bottom left was made from an original plate taken by Baade with the Mount Wilson 60 -inch reflector.

The morphologies of the galaxies are abnor mal, presumably due to the close encounter.

NGC 3691
Scd(s)HI

CD-2135-S

March 22/23, 1982
103aO + GG385
45 niin
NGC 3691 is small $\left(D_{2 s}=1.3^{\prime}\right)$ and is not well resolved into stars or Hll-region candidates. Its surface brightness is low.

Deeming that a weak spiral pattern is traceable, we have classified the galaxy as an Scd, but an Inilll classification would also be possible.

The redshift is $v_{0}=947 \mathrm{~km} \mathrm{~s}^{-1}$.
NGC 3274
ScdIII
PH-7934-S
Nov 7/8, 1980
103aO
NGC 3274 is resolved into individual stars beginning at about $B=19$. However, discriminabeginning at about $B=19$. However, discrimina-
tion of the stars from the Hll-region candidates tion of the stars from the Hll-region candidates
is necessary before secure photometry of the is necessary before

The redshift is $v_{n}=486 \mathrm{~km} \mathrm{~s}^{-1}$

NGC 2976 SdHI-IV

M81 Gr
PH-470-S
March 17/18, 1953
$103 \mathrm{aO}+\mathrm{GG} 385$
10 min
NGC 2976, long considered a member of the M81/NGC 2403 Group (Holmberg 1950), has a large angular diameter ($\mathrm{D}^{1} 5=4.9^{\prime}$) and a small redshift, $v_{0}=168 \mathrm{~km} \mathrm{~s}^{\sim^{-}}$, consistent with membership in the Group, whose mean redshift is $\left\langle\mathrm{u}_{0}\right\rangle=240 \mathrm{~km} \mathrm{~s} \sim^{\prime}$, as listed in the RSA2.

Both prints on the facing panel have been made from the same short-exposure blue plate taken at Palomar with the 200 -inch reflector The surface brightness is high, making photometry of the individual stars difficult, al though they begin to resolve as individuals at about $B=18.5$. A spiral pattern is difficult to trace but it does exist; hence the Sd classification is required.

TT are nearly edge on. All are classified as Sc. Sed. or Sd. based cm the absence of evidence for a nucleus and central bulge and. Ior the Sod and Sd types, by the lack of a discernible spiral pattern, often indicated in earlier on-edge $S c$ types by the particular luminosity distribution at the ends of the disk.
NGC $55 \quad$ Sc \quad South Polar Gr

CD-556-S
Oct $4 / 5,1978$
$103 \mathrm{aO}+\mathrm{GG} 385$
45 niin
NGC 55 is very highly resolved into in dividual stars, about equally well as other galaxies of the South Polar Group such as NGC 247 and NGC 300 . The resolution is also simila to that in the nearby galaxy NGC 3 109, where Cepheid variables give a modulus of $\mathrm{m}-M=26.4$ (Sandage and Carlson 1988). This is nearly the same value measured by Graham (1984) fo NGC 300, also using Cephcids

The brightest stars in NGC 55 begin to resolve at about $B=17.5$. The redshift is $v_{o}=$ $115 \mathrm{~km} \mathrm{~s} \sim^{1}$. Evidently, NGC 55 is just beyond the Local Group and has the small cosmologica expansion redshift characteristic of galaxies with distance moduli near $m-M=26$ (Sandag 1986a).

NGC 1507
PH-7845-S
Sep 3/4, 1980
$103 a O$
NGC I 507 is seen on edge and. therefore, is of uncertain morphological type. The Sd classification is made because of the absent...f both a nucleus and a central bulge, and because of the lack of the characteristic hooks at the ends of the edge-on image; such hooks are often seen in edge-on Se galaxies that have strong spiral pat terns

The redshift is $v_{0}=898 \mathrm{~km} \mathrm{~s}^{11}$. A few Hll-region candidates are present.
NGC 4144 ScdIII CVn II G PH-7147-S Raeiiie wedge
Feb 1/2, 1976
$103 \mathrm{aO}+\mathrm{GG} 13$
30 niin
NGC 4144 is very nearby, judged by the easy resolution inlo individual stars beginning at about $B=20$. The galaxy is in the complex Ursa Major region wherein at least three separate Krouos can be identified. The mean redshift is about $\left\langle v_{o}\right\rangle=285 \mathrm{~km} \mathrm{~s}^{-1}$ for the CVn I Group, as named by de Vaucouleurs (1975), where he lists five members. The group is called 134 by KraanKorteweg and Tammann (1979), where they list 21 members, including NGC 4144

The second group in the Ursa Major region, called the CVn II Cloud by de Vaucouleurs (1975), has $\left\langle v_{o}\right\rangle$ of about $750 \mathrm{~km} \mathrm{~s}^{-1}$. It contains such galaxies as NGC 3675 (Sb ; panels 139, S4, SI 3. SI 4) and NGC 4051 (She; panel 180) as listed by de Vaucouleurs (1975). It also contains others such as NGC 4242 (SBd: panel 322), IC 749/750 (SBc; Sb?; panels 195, 306), NGC 3782 (SBcd; panel 328). and NGC 3949 (Sc panel 265). The third aggregate in the region is the loose Ursa Major Cluster, with $\left\langle v_{o}\right\rangle$ of about $980 \mathrm{~km} \mathrm{~s} \sim$ '.

The redshift of NGC 4144 is small at 316 $\mathrm{km} \mathrm{s} \sim^{1}$. The galaxy is clearly in the nearby B4 (or CVn I) Group.

The spiral pattern can be discerned by the characteristic hooks that bend in opposite direc tions at the ends of the nearly edge on image.

Note that the plate was taken with a Racine wedge; the bright stars have secondary images 5 mag fainter at $188^{\prime \prime}$ separation.

NGC 2188
CD-141-S
Feb 1/2, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
50 niin
Individual stars are beginning to resolve at about $B=21$ in this nearly edge on galaxy, bu tile high-surface-brightness of the image will make photometry difficult.

The redshift is $v_{n}=555 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 4592
H-2271-H
May 5/6, 1946

03aO

0 niin
NGC 4592 resolves easily into fill-region candidates and brightest stars that begin to appear individually at about $B=20$. This is brighter by about 2 mag than the resolution level of the spirals associated with the Virgo Cluster (NGC 4321, NGC 4535, NGC 4303. NGC 4254 , etc.). The mean redshift of the Virgo Cluster of 〈\>,> $=976 \mathrm{~km} \mathrm{~s}^{1}$ is similar to the redshift of $v_{o}=903 \mathrm{~km} \mathrm{~s}^{-1}$ of NGC 4592 here, et the level of resolution of the stellar content is et the level of resolution of the stellar content is diferent, suggesting velory in the

The region is complex (NGC 4592 is in the outhern extension of the Virgo Cluster), and the redshifts there are not good distance indicators. From the resolution level in NGC 4592 one surmises that the distance modulus to this galaxy is about $m-M=30$ on the scale of $m-M=31.7$ adopted for the Virgo Cluster.
NGC 4244
ScdIII
CVn I Gr
PH-124-MH
HA, p. 25

103aO

30 min
NGC 4244 is a member of the very nearby CVn I Group (de Vaucouleurs 1975), which is the B4 Group of Kraan-Korteweg and Tammann (1979) in the Ursa Major complex. The redshift of NGC 4244 is $v_{a}=249 \mathrm{~km} \mathrm{~s} \sim^{\prime}$.

The galaxy is highly resolved into individual stars beginning at about $B=18$. However, study of its stellar content will be difficult because the galaxy is almost exactly edge on.
NGC 4244
ScdIII
CVn I Gr
H-2507-H
HA, p. 25

March 5/6, 1948
103 aO
30 min
The image of NGC 4244 in the light print at the bottom of the column was made from a different original plate than was used for the heavy print above it.

The dust lane nearly bisects the very thin plane, showing that the galaxy is closely edge on. There is neither a central bulge nor a luminous halo. HII regions arc present, the largest of which resolve at the $5^{\prime \prime}$ level.

The angular diameter of the NGC 4244 disk is large, at $\mathrm{D} 95=16^{\prime}$

NGC 3044
CD-1460-S/Br
May 10/11, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
45 nưn
NGC 3044 is nearly edge on. It has neither a central bulge nor luminous halo. A few individual knots are either HII regions or individual brightest stars. The magnitude of the brightest of these is about $\mathrm{B}=21.5$. The larges HII region resolves into a disk at about the 2 level.

The redshift is $v_{0}=1206 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 3432	Scd(on edge)	NGC 3368 Gr
PH-8077-S		Racine wedge
Feb 5/6, 1981		panel 320
103 aO		

Robust star formation is occurring in the high-surface-brightness disk of NGC 3432. High-surface-brightness HII knots dominate the image. Individual stars probably begin to resolve at about $B=21$.

A large, very-low-surface-brightness dwarf with an unresolved nucleus exists at a separation of 3.1 '. It resembles the huge dE.N type in the Virgo Cluster, illustrated elsewhere (Sandage and Binggeli 1984) and listed in the VCC, Table XIV

NGC 3432 is listed by de Vaucouleurs (1975) as a member of the NGC 3368 Group, whose mean redshift is about $\left\langle v_{o}\right\rangle=750 \mathrm{~km} \mathrm{~s}^{-1}$. The redshift of NGC 3432 itself is $v_{o}=607 \mathrm{~km}$ s^{-1}. At a redshift distance of 15 Mpc , the projected linear separation of the companion from NGC 3432 is small at 14 kpc .

${ }^{\mathrm{JL}} \mathrm{JL}_{\mathrm{h}}$
he six galaxies on this panel complete the illustrations of edge-on late-type $\mathrm{Sod}, \mathrm{Sd}$, and Sm galaxies in the RSA.

NGC $7064 \quad$ Scd(on edge)
CD-509-S
Sep 28/29, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
45 inin
Hll-region candidates begin to appear across the image of NGC 7064 at about $\mathrm{B}=19.5$. Individual stars are definitely present at $B-21$, but still-brighter stars are undoubtedly confused with HII regions and must be separately identified before conclusions as to the upper stellar luminosity are secure.

The redshift is $v_{0}=722 \mathrm{~km} \mathrm{~s}^{1}$.
NGC 4183 Scd(on edge) Ursa Major Cluster PH-8088-S
Feb 6/7, 1981
103aO
4 niin
The brightest individual Hll-region can-
didates in NGC 4183 begin to appear at about B $=20$. The two largest probably resolve at about the $1.5^{\prime \prime}$ level. Individual stars at least as bright as $B=22$ begin to resolve.

The redshift is $v_{n}=968 \mathrm{~km} \mathrm{~s}^{11}$.

NGC 3432	Scd(on edge)	NGC 3368 Gr
PH-8077-S		Racine wedge
Feb 5/6, 1981		panel 319
103 aO		
5 min		

The image of NGC 3432 is repeated here from the previous panel, taken from the same original plate.

The redshift is $v_{0}=$ fio $7 \mathrm{~km} \mathrm{a}^{\text {" }}$.
NGC 4700
Se or Sin
panel 291
CD-1444-S/Br
May 6/7, 1980
45 min
The surface brightness of NGC 4700 is so high as to mask most of the resolution into numerous HII regions seen on the original plate The galaxy is also illustrated in the Sc section on panel 291.

The redshift is $v_{n}=1193 \mathrm{~km} \mathrm{~s}^{\sim}$

1C5052
1C 5052
CD-489-S
Sep 26/27, 1978
103a(> + GG385
45 mill
The small redshifl $o_{0}=140 \mathrm{~km} \mathrm{~s}^{-1}$ listed in the RSA is evidently incorrect because one of the the RSA is evidently incorrect because one of the
redshifts used in calculating that mean is grossly wrong. An accurate observed $2 \mathrm{I}-\mathrm{cm}$ redshift of $v_{\text {sun }}=595 \mathrm{~km} \mathrm{~s}^{-1}$ listed by Huchtmeier and Richter (1989) leads to $v_{0}=428 \mathrm{~km} \mathrm{~s} \sim$. This larger redshift is consistent with the level of resolution into stars and HII regions, while the maller velocity is not.

The largest of the several HII regions resolve at the 2 " level. The brightest stars begin to resolve at about $B=21$.

PH-7487-S
May $11 / 12,1978$
$103 \mathrm{aO}+\mathrm{GG} 13$
20 min
The linear pattern of Hll-region candidates in the center of the image is the characteristic that suggests the barred morphological classification.

The redshift is $v_{0}=1122 \mathrm{~km} \mathrm{~s}^{\prime}$

The $S d$ and SBd Classification Sections

C

vXalaxies of types Sd and SBd at the very late end of the spiral sequence, together with galaxies that are late-type dwarfs of types Sm and Im are shown on the next 12 panels. A spiral pattern can still be traced in the Sd and SBd types, but it is more disorganized than in the earlier morphological boxes of the sequence. A spiral pattern is even less obvious in the Sm types whose prototype is the Large Magellanic Cloud. All traces of a spiral pattern have disappeared in the Im dwarf class.

NGC 7793	Sd(s)IV
CD-510-S	South Polar Gr panel S6
Sep 28/29, 1978	
103aO + GG385	
45 nlin	
NGC 7793 is highly resolved into individual	

NGC 7793 is highly resolved into individual stars beginning at about $B=18$. A spiral pattern can be discerned, but it is more disorganized than in M33 or NGC 300, which are earlier examples of the same type of massive-armed spiral features.

Associations of early-type stars are evident in the arms, similar to those in M33 and NGC 300.

The brightest stars may resolve starting about 0.5 mag fainter than the brightest stars in NGC 55, NGC 247, and NGC 300, also in the South Polar Group. From the characteristics of the Group set out in Table 2 in the introduction to the RSA2, NGC 7793 and NGC 253 are said to be more distant than NGC 55, NGC 247, and NGC 300. The redshift of NGC 7793 is $v_{0}=241$ $\mathrm{km} \mathrm{s} \sim 1$ The v_{o} redshifts of NGC 55, NGC 247, NGC 253. and NGC 300 are $115 \mathrm{~km} \mathrm{~s} \sim 1227$ $\mathrm{km} \mathrm{s}^{-1}, 293 \mathrm{~km} \mathrm{~s}^{-1}$. and $128 \mathrm{~km} \mathrm{~s}^{11}$.respectively. The order nf the luminosity level of resolution into stars in these galaxies is the same as the order of the redshifts, showing the extreme quietness of the local expansion velocity field and the extension of the South Polar Group in the line of sight. The velocity dispersion about an ideal linear velocity flow is at a level of only a few tens of $\mathrm{km} \mathrm{s}^{-1}$ in this region immediately beyond the Local Group. The same conclusion, based on other data for galaxies extending more than halfway to the Virgo Cluster, has been discussed elsewhere (Sandage 1986a)

PH-7924-S
Nov 7/8, 1980
103aO
15 inin
NGC 2552 is a member of a low-redshift loose group whose members include NGC 2500 (Sc; panel 262), NGC 2537 (Sc; panel 275), and NGC 2541 (Sc; panel 264). The respective v_{0} redshifts of the three companions are 615 km $\mathrm{s}^{-1}, 513 \mathrm{~km} \mathrm{~s}^{-1}$, and $646 \mathrm{~km} \mathrm{~s}^{-1}$. The redshift of NGC 2552 is i ,,, $=607 \mathrm{~km} \mathrm{s"'}$. The diameter of the circle that encloses these four galaxies is about 5° on the sky

At a mean redshift distance of $12 \mathrm{Mpc}(/ /=$ 0) the linear diameter of this circle is 1 Mpc , which is closely the diameter of the Local Group. The face of NGC 2552 is covered with HIIregion candidates that begin at about $B=19$. None are resolved at the $1.5^{\prime \prime}$ level. Individual stars are clearly present at a B magnitude of bout 21 and probably brighter, but they have about 21 and probably brighter, but they have regions by the standard methods.

A weak spiral pattern is present.

NGC 4242 SBillI PH-7665-S
April 29/30, 1979
103aO
12 mill
NGC 4242 is probably a member of the intermediate redshift group with $\left\langle r_{f f}\right\rangle=7 \pitchfork 0 \mathbf{k m}$ intermediate redshift group with $\left\langle r_{f f}\right\rangle=7>0 \mathrm{~km}$
$\mathrm{~s}^{-1}$ in the Ursa Major complex region, discussed in the description of NGC II II (Scd: panel in the description of NGC II II (Scd: panel
3 19). The group is called the CVn II Cloud by de 3 19). The group is called the CVn II Cloud by de
Vaiicouleurs (1975). Oilier members of the Vaiicouleurs (1975). Oilier members of the
group include NGC 3675 (panels 139, SI. S13, group include NGC
S14), NGC 3769 (panel 311). NGC 3782 (panel S14), NGC 3769 (panel 311). NGC 3782 (panel
328). NGC 3949 (panel 265). IC $749 / 750$ 328). NGC 3949

NGC 4242 is covered with 1111 regions starting at about $l i=19$. Individual stars arc clearly present at $H=2 \mathbf{1}$ and perhaps brighter There is an unresolved (pointlike at $0.8^{\prime \prime}$ resolution) nucleus. The redshift of NGC 4242 is $v_{0}=$ 564 km s"'.

NGC 5585
PH-76-B
PH-76-B
June 8/9, 1950
103 aO
30 niin
NGC 5585 is one of the four well-resolved satellite companions to M101 at a distance modulus of $m-M=29.3(D=7.2 \mathrm{Mpc})$. The four dwarf satellites, originally discussed by Holmberg (1950), are NGC 5204 (SdIV; panel 324), NGC 5474 (ScdIV pec; panel 315), NGC 5477 (Sd:)(nol in the RSA; panel 326 here), and NGC 5585 here. The redshift of NGC 5585 is v_{o} $=441 \mathrm{~km} \mathrm{~s}{ }^{1}$. A discussion of the M1 01 Group has been made by Sandage and Tammann (1974c).

NGC 5585 is highly resolved into individual stars and HII regions. The largest HII regions resolve into disks at about the $2^{\prime \prime}$ level. The resolve into disks at leasout as bright as $B=20$ and
brightest stars are at leasel. The may be brighter, but a study is necessary to may be brighter, but a study is necessary to
separate the stars from the HII regions by stand ard methods.

C 4710
CD-1472-S/Br
May 10/11, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
45 niin
IC 4710 is similar in appearance to NGC 4242 and NGC 2552 on the preceding panel. Each is of low surface brightness. Each has a central, pointlike nucleus. Each has an illdefined spiral pattern that is not entirely chaotic.

Stars begin to appear in IC 4710 at about $11=21$. The redshift of the galaxy is $v_{o}=508 \mathrm{~km}$

A probable companion (Imlll) is separated by 4.5 '. It shows about the same degree of resolution into stars and HIl-region candidates as IC 4710. At a redshift distance of $10 \mathrm{Mpc}(H=50)$ the projected linear separation from IC 4710 is small at 13 kpc .

NGC 4395	StilII-IV	B4 Gr
PH-7145-S	HA, p. 37	
Feb $1 / 2$, 1976		Racine wedge
103aD + GG11		panel S6
45 inin		

Parts of this single galaxy were catalogued separately as NGC 4395, NGC 4399, NGC 4400 , and NGC 4401 in the Dreyer NGC Catalog. The moderately high surface brightness center was given one NGC number; the several separate bright associations in the loose spiral pattern were the other three. The entire complex is called NGC 4395 here.

The galaxy is in the nearby, low-redsbift group in the complex Ursa Major region called Group B4 by Kraan-Korteweg and Tammann (1979) and CVn I by de Vaucouleurs (1975) The group is important for the distance scale problem because it contains NGC 4214 (SI3m panel 330) and IC 4182 (not in the RSA or this atlas), both of which produced supernovae whose absolute magnitudes can be calibrated once precise (Cepheid) distances to these galaxies are known.

The brightest stars in NGC 4395 begin to individually resolve at about $B=18$. Many as sociations of bright young stars exist in the several arms similar to the pattern of the as sociations in NGC 300 and in M3 3.

The nucleus is bright (S about 16) and is starlike at 0.8 " resolution.

The redshift of NGC 4395 is $v_{o}=304$. The distance modulus is estimated to be about $m-M$ distance modulus is estimated to be about $m-M$
$=28.5$ on the scale where $m-M=29.3$ for Ml 01 and $m-M$ « 31.7 for the Virgo Cluster core.

The bright stars show secondary images from the Racine wedge that are 5 mag fainte than the primaries and are separated by $18^{\prime \prime}$.

NGC 5204	SclIV
PH-18-H	M101 Gr
Jan 31/Fel) 1,1949	HA, p. 37
103aO	
30	

103aO

NGC 5204 is one of the four well-resolved late-type companions of MI 01. The others are NGC 5474 (ScdIV pec; panel 3 15), NCC 5477 (Sd:) (panel 326), and NGC 5585 (SdIV; pane 323). The M10I Group was mapped first by Hohnberg (1950). Photometry, kinematics, and illustrations of the group members are set out in Sandage and Tammann (1974c).

NGC 5204 is highly resolved into individual stars starting at about $B=20.5$.

The original plate from which the reproducion here is made was one of the earliest taken with the Hale 200 -inch telescope, before the Ross prime-focus corrector, which eliminates the com berration over a 15 ' field, was in place.

A description of NGC 5204 and the cirumstances of the first scheduled observing run with this telescope is given by Hubble (1949). This start of the routine observing program followed more than a year of testing and adjustment of the Palomar telescope by Dr. I. S. Bowen, Director of the Mount Wilson and Palomar Observatories. Bowen's heroic effort to complete the 200 -inch commissioning before astronomers had access to the telescope was highly successful but largely unknown. The unfortunate tone of Hubble'a article should be noted in that regard.

The redshift of NGC 5204 is $v_{n}=329 \mathrm{~km}$ s^{-1}

NGC 7162A
CD-1584-S/Br
SBod(s)III
CD-1584-S/Br
Aug 11/12, 1980
$103 \mathrm{aO}+$ GG385
45 mill
NCC 7 162A forms a physical triple! with NGC 7162 (She; panel 190) at a separation of 14.5'. and NGC 7166 (SO,: panel 34) at a separation of 14.9^{\prime}. The- redshifts are $u_{\mathrm{D}}(7 \mathrm{I} 62 \mathrm{~A})$ $=2238 \mathrm{~km} \mathrm{~s}^{11} \cdot 1 \cdot,,(7 \mathrm{I} 62)-2253 \mathrm{~km} \mathrm{a}^{\prime \prime}$, and $u_{0}(7166)=2376 \mathrm{~km} \mathrm{~s} \sim^{1}$. Al the mean redshift distance of $46 \mathrm{Mpc}(H \cdot \bullet 50)$, the projected linear separations from NGC 7 I 62 A arc 194 kpc fo NGC 7 I 62 and I 99 kpc for- NGC 7 I 66.

NGC 4236	SBdIV	M81 Gr
PH-45O6-S		panel S 10
April 13/14, 1964		
103aO		
20 min		

NGC 4236 is a highly resolved nearby galaxy that Holmberg (1950) placed just outside the border of his M81/NGC 2403 Croup. The resolution into stars in NGC 4236 is at the same high level as in those members of the group agreed upon by all. Both the RSA, anil KraanKorteweg and Tammann (1979) consider NGC 4236 to be in the group. The level of resolution into stars shows the distance to he nearly the same as that of NGC 2403, NGC 23 66. IC 2574 and other members of the group at $m-M=27.6$ (Tammann and Sandage 1968)

The brightest stars begin to resolve at about $B=19$. The largest HII regions have (halo) diameters of $14^{\prime \prime}$. The angular diameter of the galaxy itself is large at $\mathrm{D}_{2} 5=19^{\prime}$

The redshift is $u_{0}=157 \mathrm{~km} \mathrm{~s}^{-1}$. consistent with the very high level of resolution into star and a nearly noiseless Hubble expansion flow just beyond the Local Group (Sandage 1 986a).

The Sm, SBm, and Im Classification Sections

TI

I he Large Magellanic Cloud is the prototype galaxy of the Sm and SBm morphological type. In galaxies of this type there is cither a very weak spiral pattern or some other indication of weak regularity, rather than general chaos. Whatever regularity is present in galaxies of this type is undoubtedly associated with the observed small but finite rotational velocity. Such a kinematic field is needed to set up a shear velocity field that imparts regularity to the pattern, no matter how weak: the stronger the field, the greater the regularity.

The Sm and SBm galaxies in the RSA are illustrated on this and the next five panels. Galaxies with no indication of regularity in a coherent spiral pattern are in the final morphological box of the Im type, shown on panels 329-332.
LMC
SBmIII
HA, p. 38

Bex-164-Henize
Nov4/5, 1951
$103 \mathrm{aE}+$ Red Plexiglas
240 niin
The print of the LMC here is made from an original Ha plate taken by Henize with the Mount Wilson 10 -inch refractor. This telescope had set up by Henize in South Africa in cooperative arrangement between the Carnegic Institution, the University of Michigan, and the South African Science Research Council.

The LMC is a satellite of our own Galaxy at a distance modulus of $m-M=18.5(D=50 \mathrm{kpc})$ determined from Cepheids.
weak spiral features exist (de Vaucouleurs 1955). The galaxy is also rotating with a peak velocity for young disk objects of 40 km s (reviewed by Andrews and Evans 19 72, and by Freeman, lllingworth, and Oemler 1983 with references to previous data). The smallness of the rotational velocity is presumed to be the reaso that the spiral pattern is so poorly developed (compare Kennicutt 1 9IS 1).

H-523-B	B4 Gr
June 26/27, 1935	HA, p. 40
Imp. Eel.	panel S6
20 min	

NGC 4449 is a member of the very nearby B4 Group (Kraan-Korteweg and Tammann 1979: hereafter KKT), also called the CVn I Cloud by de Vaucouleurs (1975). The group described earlier on panel 324 with NGC 4395 has $\left\langle v_{o}\right\rangle$ of about $250 \mathrm{~km} \mathrm{~s}^{\prime \prime}$. It includes NGC 4144. NGC 4190 (at the right on this panel). NGC 4214, NGC 4244. IC41H2. and a number of Im dwarfs listed in KKT.

The surface brightness of NGC 4449 is ab normally high. The face of the galaxy is covered with bright Mil regions and undoubtedly very bright stars which have not yet (199 1) been distinguished from the IHI-region candidates Brightest individual stars resolve out of the back Brightest individual stars resolve out of the back 19.

The face of the galaxy is covered with Hex streamers and filaments. Its morphology is mildly similar to that of the Amorphous types, such as NGC 625 (panel 336), NGC 1569 (panel 336), and NGC 3034 (M82; panels 333, 334), some times called starburst galaxies.

The redshift is $v_{0}=250 \mathrm{~km} \mathrm{~s}^{-1}$.
NGC 1156
SmlV
HA, p. 39

PH-1078-S
Aug 25/26, 1955
103 aO
30 min
NGC 1156 is a well-resolved dwarf galaxy of the Magellanic Cloud type. Its brightest stars of the Magellanic Cloud type. Its brightest stars begin to resolve at about $B=21$. Very bright III regions exist, confusing the identification of the diameters (halo) of about 3 ".

The redshift is $v_{(>)}=558 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 1190
PH-7664-S
April 29/30, 1979
1O:iaO
0 mill
NGC I $19(1$ is highly resolved into individual ars beginning al aboul $I t=20.5$. The surfac brightness of the disk is also moderately high, indicating a relatively high recent star-formation rate.

NGC 4190 is a member of the nearby B4 Group, also known as the CVn I Cloud (compare the paragraphs on NGC 1119 al the left)

The icdshii't is,$\ldots=231 \mathrm{~km} \mathrm{~s}$.
NGC 5477
PH-102-B
M101 Gr not in IISA

July 1 1/12, 1950
103 aO
NGC 5477 is the hist of the lour highly resolved satellites of MIDI to be shown. The other three satellites are NGC 5171 (ScdIV pec: panel 3 15). NGC 5204 (SdIV: panel 324). and NCC 5585 (SdIV: panel 323).

The brightest stars begin to resolve in NGC 5477 at about B $=20.5$.

The redshift is $v_{0}=442 \mathrm{~km} \mathrm{~s}^{-1}$

NGC 4656/4657 Im	pair
H-3633-S	HA, p. 40
Feb 18/19, 1963	panel S6
103aO + GG13	
27 niiii	

27 niiii
The complex system of NGC 4656/4657 is listed as two galaxies in the Dreyer NGC Catalog. It may be a single galaxy in the process of (or having just completed) a close encounter with NGC 4631 (Sc on edge; panel 290), which is 31^{\prime} distant. NGC 4631 is obviously at the same distance, shown by the near equality of the redshifts and the nearly identical levels of resolution into individual brightest stars. The redshifts are $v_{0}=606 \mathrm{~km}$ s"' for NGC 4631 and $v_{0}=624 \mathrm{~km}$ $v_{0}=606 \mathrm{~km} \mathrm{~s}^{\prime \prime}$ for NGC 4631 and $v_{o}=624 \mathrm{~km}$ s for NGC 4656/4657. The galaxies resolve L9.

The largest IIl1 region in NGC 4656/4657 is complex and has an angular diameter (halo) of $11^{\prime \prime}$. At an assumed disLance of 5 Mpc (Sandage and Tammann 1974 a) the linear diameter of this HII complex is about 270 psc . At this distance the projected linear separation of the NGC $4656 / 4631$ pair is small, at 44 kpc . The $21-\mathrm{cm}$ content of the pair has been measured by Weliachew, Sancisi, and Guélin (1978). A mode of the tidal interaction is discussed by Combes (1978).

The resolution into individual stars is so pronounced in part of NGC $4656 / 4657$ as to make this ualaxy a prime candidate for detailed study of its stellar content.

NGC $4532 \quad$ SmIII
VCC 1554
CD-2111-S
March 19/20, 1982
$103 \mathrm{aO}+\mathrm{GG} 385$
50 niin
NGC 4532 is listed as a cluster member in the Virgo Cluster Catalog. It is located about 1.5 south of the center of subcluster B centered on NGC 4472. It is illustrated on the same enlarge ment scale as other galaxies in the Virgo region in the Atlas of Virgo Cluster Spirals (Sandage Binggeli, and Tammann 1985a, panel 11).

The surface brightness of the nearly edge disk is very high, making reconnaissance of the stellar content difficult. Robust star formation is evidently occurring. One particularly brigh region with a complex of candidate HII region has an apparent diameter (halo) of $8{ }^{\prime \prime}$. Individual stars are not seen, but the surface brightness i so high on the available plate material as to overwhelm the image here

The redshift is $v_{0}=1858 \mathrm{~km} \mathrm{~s} \sim 1$ hut redhifts of individual Virgo Cluster galaxies ar dominated by large virial velocities rather than by cosmological expansion velocities

NGC 4861

PH-8033-S
Feb 3/4, 1981
03 aO
2 nún
NGC 4861 is similar to NGC 2366 below. It is highly resolved into individual stars beginning t about $B=21$. The most unusual feature of the tellar content is the enormous Hll-region con plex (similar to that in NGC 2366, but much arger here) at one end of the image. Its angula diameter (halo) is about 12

The redshift is $v_{0}=836 \mathrm{~km} \mathrm{s"'}$. At the redshift distance of 17 Mpe the linear diamete of this complex is large, at 1000 psc . It is one of the largest Hil-region complexes known.

NGC 2366 SBmIV-V HA, p. 39 PH-555-B M81/NGC 2403 Gr Oct 31/Nov 1, 1951
$103 \mathrm{aO}+\mathrm{GG} 1$
30 min
NGC 2366 is a member of the M81/NGC 2403 Group, as originally defined and catalogued by Holmberg (1950). It resolves into stars as easily as other members of the group, such as NGC 2403, M81, IC 2574. Hoi, HoII, and NGC 4236. The brightest stars begin to resolve at about $B=19$. The distance modulus of he group is $m-M=27.6$ (Tammann and Sandage 1968). The value has been confirmed (Freedman and Madore 1988)

The largest of the HII regions at one end of the major axis has a diameter of about 12 " for its high-surface-brightness main body. The extent of its outer associated filaments is $18^{\prime \prime}$. These angular diameters correspond to linear diameters of 190 psc and 290 psc , respectively, at a distance of 3.3 Mpc (Tammann and Sandage 1968).

The redshift is $v_{n_{0}}=281 \mathrm{~km} \mathrm{~s}^{-1}$.

NGC 1602	SBm	
CD-676-Br		not ill RS
Jan 25/26, 1979		panel 5
$\mathrm{IlaO}+\mathrm{GG} 385$		
180 niin		

NGC 1602 is resolved into many HII regions. There is a complex of six such regions (unresolved in the print here) near the end of the major axis. The envelope of this complex has an angular diameter of $10^{\prime \prime}$, which, at the distance of 27 Mpc . is a linear diameter of 1300 psc , similar to the diameter of the complex in NGC 4861 on the preceding panel. At higher spatial resolution, this complex would presumably appear as an association of early-type stars and HII regions.

The NGC $1596 / 1602$ pair is of particular interest because of the large difference in morphological type. The SO and Im types span the total range of the classification sequence (see the diagram of the dwarf classification sequence in Chapter II here). Pairs with such diverse types are of obvious importance in studies of the meaning of the Hubble sequence for galaxy formation and possible evolution within the sequence. Does one morphological type change into the othe with time or with the type of environment, or ar the morphological types of individual galaxies stable over most of a Hubble time, as suggested by the calculations of Roberts (1963) and of Sandage (1986d)? These central points are discussed in Chapter IV here, "The Meaning of the Classification."

NGC 3738	SdHI	BI Cr	NGC 3782	SBcd(s)III	CVn [I Cloud?
PH-7106-S		Racine wedge	PH-8026-S		Racine wedge
Jim 7/8, 1976			Feb3/4, 1981		
103aO + GG13			103 aO		

niin

NGC 3782 is probably a member of the CVn I Cloud (Sandage and Tammann 1975a). which has a mean redshift of about $\left\langle v_{o}\right\rangle=750 \mathrm{~km} \mathrm{~s}$ The redshift of NCC 3782 is $»$, , $=785 \mathrm{~km} \mathrm{~s}^{\prime \prime}$.

The Mil-region candidates are unresolved at he $1.5^{\prime \prime}$ level. Brightest stars may exist starting about $B=21$ but they have not yet been distinguished From the Illl-region confusion by the standard methods

NGC 4299
Sd(s)III
VCC 491 CD-1318-S/Br Karachentsev 330 March 12/13, 1980
103aO
75 inin
The spiral pattern in NGC 4299 is better formed than in other galaxies on this and several of the preceding panels: hence, the classification of NGC 4299 is Sd rather than Sm .

The galaxy is listed as a cluster member in the Virgo Cluster Catalog. It is illustrated in the Atlas of Virgo Cluster Spirals (Sandage, Binggeli, and Tammann 1985a, panel 15) on a common scale with other Virgo Cluster spirals

NGC 4299 forms an apparent pair with NGC 4294 (SBcII-III) at the separation of 5.5' Small angular separations in the Virgo Cluste region do not always mean a physical pair be cause of the depth effect of the cluster. However the near-equality of the redshifts and their ab normally low value make the case for a bina pair strong here. The redshifts listed in the RSA are i> (4294) $=232 \mathrm{~km}$ s and i> (4299) 107 $\mathrm{km} s \sim^{\circ}$. At a common distance of $21.9 \mathrm{Mpc}(\mathrm{m}$ $M=31.7$ for the Virgo Cluster) the projected linear separation of the pair would be small at 3 kpc.

NGC 366. 1 SBmlll pai
CD-1858-HB
April 6/7. 1981
$103 \mathrm{aO}+\mathrm{GG} 385$

...in

Many Illl-region candidates exisl in the ba of the disturbed morphology of NGC 3664. A smaller compun inn (NGC 3664A; type Slim) with the same disturbed morphology and the sam high degree of resolution into IIIl-region can didates exists at a separation of 6.3'. 'The red shil't of NGC 3661 is ! \quad, , L231 km »"'. If. n seems likely, the two galaxies form a pair at the same redshift distance of 25 Mpc . their projected linea* separation is small at 16 kpc . This, and their disturbed morphology, suggest that j close encounter may have occurred.

None of the many Illl-region candidates are resolved at the $1 "$ level.

NGC 5464
SBmIII
C-1355-S/Br
March 15/16, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
5 nưn
NGC 5464 and NGC 178. below, are similar. Both have small angular diameters, high surface brightness, HH-region candidates, spiral patterns that are difficult to tract, and brigh absolute magnitudes for the SBm morphology.

The redshift of NGC 5464 is $v_{o}=2455 \mathrm{~km}$ s^{II}. The largest Illl-region candidate appeal's to resolve at the $2^{\prime \prime}$ level, corresponding to a linear diameter of about 475 pse. The absolute magnitude, corresponding to the apparent magnitude of $B_{T}=13.2$. is bright, at $M_{B}=-20.6$

NGC 178
SBmlll
CD-1567-S/Br
Aug9/10, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
8 niin
The redshift of NGC 178 is r , $=1599 \mathrm{~km}$ s^{-1}. The largest of the Illl-region candidates in he narrow plume away from the main body may resolve at about the $1.5^{\prime \prime}$ level. The high surface brightness of the main body and the bright knot it contains show that a robust star-formation rale is occurring.

The absolute magnitude of NGC 178. based on $B_{T}=13.1$. is bright for SBm types, at $M j=$ 19.9.
_L he remaining late-type RSA galaxies in the regular sequence of the classification, shown in the next four panels, are mostly of type Im. (A few are still of the slightly earlier SBm type.) Im types have no discernible spiral pattern. They are dwarfs (mostly fainter than absolute magnitude $\mathrm{M} ; \mathrm{j}=-17$ where $\mathrm{H}=50$).

The Im dwarfs listed in the RSA, where the apparent magnitude limit is $m_{p g}=13$, must be very nearby. Because of their closeness, the galaxies on the next four panels are highly resolved into individual stars. They are prime candidates for studies of stellar content.

IC4662
 CD-2198-S

March 30/31, 1982
103aO + GG385
35 niin
IC 4662 is highly resolved into individual stars beginning at about $B=19$. Because the galaxy is at low galactic latitude $\left(b=-18^{\circ}\right)$ contamination of the faint stellar content of IC 4662 with foreground stars is appreciable.

The redshift of IC 4662 is $v_{0}=240 \mathrm{~km} \mathrm{a}^{11}$. The angular diameter is small at $\mathrm{D}-2.5=2.2^{\prime}$ Assuming a distance of 5 Mpc , the absolute magnitude is $\mathrm{Mg}=-17.2$ and the linear diameter is 3.2 kpc .

IC5152 SdmlV-V
CD-57-D
Aug 19/20, 1977
$103 \mathrm{aO}+\mathrm{GG} 385$
75 min
From kinematic arguments alone, IC 5152 is a member of the Local Group (Sandage 1986a). Its measured heliocentric redshift is $v_{\text {sum }}$ $=119 \mathrm{~km} \mathrm{~s}^{-1}$. It is well known that the direction of the solar motion relative to the Local Group is toward Galactic coordinates of approximately / = $97^{\circ}, 6=-5^{\circ}$, with an amplitude of approximatel $295 \mathrm{~km} \mathrm{~s}^{-1}$ (Yahil, Tammann, and Sandage 1977: Sandage 1986a). Subtracting this vector of the solar motion from the heliocentric redshift of IC 5152 gives a negligible cosmological redshift vector for IC 5152 of $\mathrm{i}_{\mathrm{o}}=47 \mathrm{~km} \mathrm{~s}^{-1}$: hence, IC 5152 is at rest relative to the Local Group to within the errors of the determination (compare Fig. 9 of Sandage 1986 a)

Local Group membership is consistent with the proximity required by the profound resolution of IC 5152 into stars beginning at about B $=17$. Cepheid variables have been found (Sandage and Carlson, unpublished 1988), but a precise distance based on them is not yet available (c. 1991). The estimated distance modulus is $m-M=26(\mathbf{D}=1.6 \mathrm{Mpc})$.

NGC 3377A = UGC 588
PH-711-B

Jail 19/20, 195

$103 \mathrm{aO}+\mathrm{GGl}$
0 niin
niin
This dwarf companion to NGC 3377 (E6; panel 19) is separated from the principal galaxy by 6.8^{\prime}. The 1950 coordinates of this dwarf are $R A=10^{1} 44.73^{\prime \prime}$, Dec $=14^{\circ} 20.2^{\prime}$. Its angular RAameter is Large at $\mathrm{D} 95=2.0^{\prime}$. Its surface brighthess is low, at about $24 B \mathrm{mag} \mathrm{sec}^{-2}$

A pointlike knot exists close to the center. This may be a nucleus similar to the bright nuclei in dE.N galaxies. Other starlike images exist over he face, similar to the prototype large Im galaxy IC 3475 in the Virgo Cluster, illustrated in the Atlas of Virgo Cluster Dwarfs (Sandage and Binggeli 1984).

HI $21-\mathrm{cm}$ radiation has been detected in NGC 3377 A at a redshift (corrected to the centroid of the Local Group) of $v_{0}=446 \mathrm{~km} \mathrm{~s}^{-1}$ (Lewis 1987). The redshift of NGC 3377 is $v_{o}=$ $591 \mathrm{~km} \mathrm{~s}^{11}$, suggesting that NGC 3377 and NGC 3377 A form a binary pair. At the redshift distance of 10 Mpe, the linear diameter of NGC 3377 A would be very large at 5.8 kpc , and the projected linear separation from NGC 3377 would be small at 20 kpc . If the distance were larger at 18 Mpc as assumed by Ferguson and Sandage (1990) for members of the Leo Group, the diameter would be 10.4 kpc and the separation from NGC 3377 would be 36 kpc .

In either case, the linear diameter of NGC 3377 A is huge, as in the class of huge dE and/or Im dwarfs that exist in the Virgo Cluster (Binggeli, Sandage, and Tammann 1985, Table XIV; Sandage and Binggeli 1984, panels 6. 18 and 19).

A case has been made (Sandage and Hoffman 1991) that NGC 3377A is in a state of transition between a gas-rich Im dwarf and a gas-poor dE.N by self-transformation caused by gas sweeping from stellar winds. The winds are generated by super star clusters similar" to those observed in NGC 625 (panel 336), NGC 1569 (panel 336), and NGC 1705 (panel 335) described in the next section on Amorphous galaxies

NGC 7764
CD-1064-Br
Aug 16/17, 1979
$103 \mathrm{aO}+$ GG385
45 niin
NGC 7764 has high surface brightness, many Hll-region candidates, and a poorly defined spiral pattern. The redshift is $v_{o}=1674$ $\mathrm{km} \mathrm{s}^{-1}$. The absolute magnitude of this SBm galaxy is bright at $\mathrm{iW}_{\mathrm{n}}=-20.1$. The absolute magnitude of the LMC, which is the prototype galaxy of the SBm class, is five times fainter a $M_{B}=-18.4$.

NGC 6822

PH-103-S
Aug 19/20, 1952
103aO + GG1
30 min
NGC 6822 is the first external galaxy for which Hubble (1925) published details of the discovery and photometry of Cepheid variables. This low-surface-brightness Im dwarf shows no evidence of a spiral pattern. It is in the Local Group at a distance modulus of $(m-M)_{t t}=$ 23.95 , corresponding to a distance of $6 \mathbf{I} 6 \mathrm{kpc}$ (Kayser 1967).

The brightest stars resolve at $B=17$ (Kayser 1967, Fig. 3). Large resolved IIII regions exist; the largest has an angular diameter of $50^{\prime \prime}$. corresponding to a lineal- diameter of 150 psc.

SMC

ImIV-V

Local $\mathbf{G r}$ V10-Bex-115-Henizc

The Small Magellanic Cloud is a satellite of our Galaxy in the Local Group at a mean distance modulus of $m-M=18.85$ determined from Cepheids. However, the galaxy is extended in the ne of sight due to its tidal disruption in a recent close encounter with the LMC (Murai and Fujimoto 1980). The extension in the sight line, determined by Mathewson, Ford, and Visvanathan (1986. 1988) is from a near distance of 43 kpc to a far distance of 75 kpc . The main oncentration of the SMC is at a distance of 59 kpc from the Sun.

The brightest blue stars begin to resolve at $B=10.2$. The brightest red supergiants resolve individually at $\mathrm{V}=11.8$ at a color of $l i-V=1.7$.

NGC 3109
CD-155-S
Feh 3/1, 1978
$103 \mathrm{aO}+$ GG385
min
NGC 3109 is a highly resolve,! nearby galaxy immediately outside the Local Group, I has a redshift, corrected to the centroid of the Local Group, of $\boldsymbol{v}_{\boldsymbol{o}}=\mathbf{1 2 2} \mathbf{~ k m ~ s}{ }^{-1}$. Evidently il is at ;i distance where the local expansion field ha become evident, just beyond the zero velocity surface of the Local Group (Sandage $\mathbf{1 9 8 6 a}$, Fig.

The distance modulus determined from Cepheids is $\mathrm{m}-M=26.4$, or $/$) -1.9 Mpc (Sandage and Carlson 1988). The brightest blue stars begin to resolve at $B=18.0$. Tin- brightest red stars begin to resolve at $\mathbf{V}=18.8$ al a colo of $/$; $-\nu=1.7$

NGC 4214	SBmIII
PH-3563-S	CVn I Cloud
April 15/16, 1960	B4 Gr
103aO + GG13	HA, p. 40

HA, p. 103aO + GG13

NGC 4214 is a highly resolved Magellanic Cloud-type galaxy in the nearby $\mathrm{CVn}_{\mathrm{I}}$ Clou (the B4 Group), which also contains NGC : 1190 NGC 4395, NGC 4449. and [C 4 182. among other well-resolved very-late-type galaxies. A description of the group is in the paragraphs for NGC 4395 (panel 324). The redshift of NGC 4214 is $v_{,},=290 \mathrm{~km} \mathrm{~s}^{-1}$.

Preliminary photometry of the brightest resolved stars in NGC 4214 gives a distance modulus of $m-M=28.4$ based on $V=20.4$ fo he brightest red supergiants. The apparent mag nitude for the brightest blue supergiants is B 18.8, also from this preliminary photometry
HoII
ImlV-V HA, p. 39 PH-1600-B M81/NGC 2403 Gr Nov 30/Dee 1,
$103 \mathrm{aO}+\mathrm{GG} 1$
25 niiii
Hul
Hull was first identified by Holmberg (1950) in his catalog and study of the M81/NGC 2403 Group. The resolution into individual stars is at the same bright level as in other members of the Group, such as NGC 2403 (Sc; panel 273), NGC 2366 (SBmlV-V: panel 327), and NGC 4236 (SBdIV: panels 324, S10)

Photometry of the brightest red and blue stars has been done by Sandage and Tammann (1974b) and by Hoessell and Danielson (1984). The blue stars begin to resolve at about $B=19.7$ in the photometry of Santiago and Tammann. The brightest red supergiants begin to resolve at about $\mathrm{V}^{\prime}=20.2$

In the photometry of Hoessell and Daniel son, the brightest blue stars resolve at $B=17.8$ The identification of the brightest stars differs between the two studies. Finding charts of the individual stars are given in both. New photometry is required (c. 1991) to remove this important discrepancy.

HoII has a maximum "rotational velocity" of $58 \mathrm{~km} \mathrm{~s}^{-1}$, determined from the $21-\mathrm{cm}$ line profile (Huchtmeir, Seiradakis, and Materne 1981). Its heliocentric systemic velocity is $\mathrm{r}_{\mathrm{sl}(\mathrm{J},}=$ $159 \mathrm{~km} \mathrm{~s}^{-1}$. Correction to the centroid of the Local Group gives $v_{0}=329 \mathrm{~km} \mathrm{~s}^{-1}$, clearly beyond the zero velocity surface of the Local Group. HoII is, beyond doubt, in the near expansion field (see Fig. 9 of Sandage 1986a) of th very local Hubble flow

Leo A
PH-95-S
Jaii 3/4, 1952
$103 \mathrm{aO}+\mathrm{WG} 2$
15 min
The dwarf galaxy Leo A ($\mathrm{RA}_{50}=9^{1 '} 57.55^{\prime}$ ", Dec5Q $=+30^{\circ} 59.2^{\prime}$) was discovered by Zwicky 1942) in one of the first surveys done with the Palomar 18-inch Schmidt beginning in 1936 Photometry of the stellar content (Sandag 1986b) shows that the brightest blue stars begi to resolve at $B-19$ and the brightest red supe giants at $V-19$. Leo A is one of the faintes dwarfs of type Im in or near the Local Group. I he distance modulus is $m-M=26$ (Sandag 1986 b), its absolute magnitude is $M g=-13$.

Leo A has a redshift relative to the centroid the Local Group of $v_{0}=-32 \mathrm{~km} \mathrm{~s}$ (Sandage 986a). It is, therefore, a Local Group member near the zero velocity surface that separates the Local Group from the cosmologieal expansion field. It is evident from the velocity and distance data that the kinematic radius of the Local Group in the direction of Leo A extends to a distance of about 1.6 Mpc from the Sun.
Sextans A

CD-156-S
Feb 3/4, 1978
103 aO
60 min
Sextans A and B are just beyond the zero velocity surface of the Local Group at a distance modulus common to both at $m-M=26.2$ ($D=$ 1.7 Mpc), determined from Cepheids (Sandage and Carlson 1982, 1985). The redshift of Sextans A, corrected to the centroid of the Local Group, is $v_{o}=102 \mathrm{~km} \mathrm{~s}^{-1}$. Hence, Sextans A is in the very nearby expansion field, immediately beyond the zero velocity surface (Sandage 1986a, Fig. 9); it is not a kinematic member of the Local Group.

Photometry of the brightest resolved stars (Sandage and Carlson 1985: Hoessell, Schommer, and Danielson 1983) shows that the brightest blue supergiants in Sextans A begin to resolve at $B=18.5$: the brightest red supergiants begin to resolve at $\mathrm{V}=18.2$.

Pegasus Dwarf
PH-7288-S
Nov 20/21, 1976
$103 \mathrm{aO}+$ GG13
30 min
The Pegasus Dwarf $\left(\mathrm{RA}_{50}=23^{1{ }^{1}} 26.05{ }^{\prime \prime}\right.$, Dee $50=+14^{\circ} 29^{\prime}$) was discovered by A.G. Wilson during the early stages of the original National Geographic-Palomar Sky Survey. Photometry of the brightest stars has been done by Hoessell and Mould (1982) and by Sandage (1986b). The photometry of Cepheid variables (Hoessell et at. 1990) has led to a distance modulus of $m-\mathrm{M}=$ 26.2.

The brightest blue stars begin to resolve at about $B=20$. The brightest red supergiants begin to resolve at about $V=20.4$

The redshift, corrected to the centroid of the Local Group, is $v_{0}=43 \mathrm{~km} \mathrm{~s}^{-1}$ (Sandage 1986a): hence, as with Leo A, the Pegasus dwarf at a distance of 1.7 Mpc is close to the zerovelocity surface of the Local Group

Sextans B
PH-7105-S
Jan 7/8, 1976
$103 \mathrm{aO}+\mathrm{GG13}$
30 min
Sextans B, at the same distance as Sextan A based on a study of Cepheids in both galaxie (Sandage and Carlson 1985), has a redshift cor rected to the centroid of the Local Group of v_{0} $+114 \mathrm{~km} \mathrm{~s} \sim^{1}$. The Cepheid distance modulus is m $M=26.2$. Hence in the direction of Sextan A an B the zero-velocity sufface of the Lo Group is closer to the Sun than 1.7 Mpc .

The brightest blue stars begin to resolve at $B=19:$ the brightest red supergiants begin to resolve at about $V=19$.

Hoi

ImV M81/NGC 2403 G
PH-5740-S
Jan 18/19, 1971
$103 \mathrm{aO}+\mathrm{GG} 13$
20 mi
Hoi was first catalogued by Holmber 1950) in his study of the M81/NGC 2403 Group. The $21-\mathrm{cm}$ systemic velocity of Hoi is ${ }^{v}$ sun $=140 \mathrm{~km} \mathrm{~s}^{-1}$. Reduction to the centroid of the Local Group gives $v_{o}=300 \mathrm{~km} \mathrm{~s}^{-1}$, placing the object well beyond the zero-velocity surface of the Local Group. The distance of the M81/NGC 2403 Group, based on Cepheids in NGC 2403, is m $-M=27.6$ (Tammen NGC 2403, is $\mathrm{m}-M=27.6$ (Tammann and Sandage 1968). This distance was confirmed by (1988)

Hoi is less active in its star formation than HoII, shown at the upper left panel. From the photometry and color-magnitude diagram of Hoessell and Danielson (1984), stars of 15 sola masses are currently forming in Hoi, compare with 25 -solar-mass stars in HoII.

Sin, SBm, and Iin Classification Sections (continued)

HoIX + NGC $303 \mathrm{I} \quad \mathrm{ImV}+\mathrm{Sb}(\mathrm{r}) \mathrm{I}-\mathrm{H} \quad \mathrm{HA}, \mathrm{p} .19$ PH-7140-S
$103 \mathrm{aO}+\mathrm{GG} 13$
30 niin
HoIX, a dwarf companion In M8 I , has I catalogued by van den Bergh (19 ">9; listed a duO 66) and by Holmberg (1969). The low-sur face-brightness Im dwarf is 10^{\prime} nearly due eas of MB I. Bertola and Maffei (1974) measured a magnitude within an isophote of 26 It ina^ per see ${ }^{-1 "}$ of $l i=1-1.7$. Kraan-Korteweg and Tamniaim ($1 * \mathrm{~J} 79$) adopt a total magnitude of $I S=$ 14.6. The distance modulus of $m-M=27.6$ for 14.6. The distance modulus of $m-M=27.6$ for MH 1 (Tammann and Sandage 196B). as confirmed freed an HoIX.

HoIX

ImV M81/NGC 2403 G

PH-7110-S

Feb 1/2,1976
103aO + GG13
30 niin
Photometry of the stellar content (Sandag 1984a) shows thai the brightest blue stars begin to resolve at about $B=19.5$. The brightest red supergiants begin at about $V=\mathbf{2 0 . 5}$ although there are red star candidates whose membership is unknown as bright as $\mathrm{V}^{\prime}=19.4$.

A $21-\mathrm{em}$ study of MSI and the region of HoIX has been made by Gotten m an and Weliaehew (1975) where III radiation wa deteeted at the position of HoIX.

The Amorphous Classification Section

$\underset{\text { L }}{\text { L }}$ ollowing definitions and a discussion given elsewhere (Sandage and Brucato 1979), we have classified galaxies as Amorphous based on an amorphous appearance to the unresolved light, the generally high surface brightness of the image, and the Ha filaments that often cover the disk. Examples are M82, NGC

1569, NGC 625 , NGC 1705, and others shown in this section. Many of the galaxies of this new morphological type have variously been called "starburst" galaxies; the connection may be important in understanding the physical processes giving rise to the morphological form.

NGC 3034 Amorphous	HA, p. 41	
PH-3921-S	Karachentsev 218	
March 29/30, 1962	M81/NGC 2403 Gr	
(103aE + Intfer $)$	$-(\mathbf{1 0 3 a D}+$ GG11 $)$	M82
60 niin		panel 334

$\mathbf{1 0 3 a}$ niin panel 334
Amorphous class. It is a companion of M8 1 at a separation of 37^{\prime}. At a distance of 3.3 Mpc determined from 37^{\prime}. At a distance of 3.3 Mpc determined from
Cepheids, the projected linear separation of M81 Cepheids, the projected $\mathbf{n n e}$

The image on the left is a combination of an Ha interference filter photograph and a 103aD + GG11 yellow continuum image that has been photographically subtracted from it. The exten sive series of Ha emission filaments perpendicular to the plane is emphasized in this ubtraction image

The Hex emission is polarized to the same high degree (identical intensity and positio angle) as the continuum radiation at the same locations, showing that the high filaments are due to scattered Hoc emission light from the more central regions (Visvanathan and Sandage 1972).

Nevertheless, there is an expansion of material from the center that is real, as shown from long-slit spectroscopy (Lynds and Sandag 1963). O'Conncll and Mangano (1978) have suggested that the expulsion of material from the central regions may be due to massive star forma ion in the center. Extensive early discussions of the process have been made by many authors. A listing of the initial references is given by Kron berg el id. (1979).

The hoi OB stars, and probably supernovae as well, excite and extrude the gas along the minor axis. This process is a favorite hypothesis to explain the amorphous form. Many galaxies in this class (e.g., NGC 625 and NGC 1569 later in his section) show the same features of emission filaments and explosive motions. Such galaxies, and therefore those members of the Amorphous class similar to M82, have been called starburst galaxies.

NGC 3034 Amorphous HA, p. 41 Masked Ha interference Karachentsev 218 PH-3921-S M81/NGC 2403 Gr March 29/30, 1962 M81/NGC 2403 Gr 103aE + interference filter panel 334 180 min

The image on the right is from an Hex photograph taken with an interference filter of $80 \AA$ total half-width, dodged to increase the atitude of the print. Spectra with the slit along he minor axis show that the Ha gas mass is xpanding from the center on both sides of the major axis (Lynds and Sandage 1963). Confirmation, and a more detailed mapping of the expansion velocity field along the minor axis, were made by Burbidge, Burbidge, and Rubin (1964).

As mentioned in the paragraphs at the left, light from the base of the minor-axis filaments is highly polarized, as was discovered by Elvius (1962, 1967. 1969). The outer filaments are also highly polarized (Sandage and Miller 1964; Sandage and Visvanathan 1969: Visvanathan and Sandage 1972).

NGC 3034 Amorphous	HA, p. 41
PH-51-S	M82
Nov 29/30, 1951	panel 333
103aO + WG2	
30 min	

The four views of M82 on this panel show
the features progressively deeper into the center The heavily printed image at the upper left is from a broad-band blue plate showing primari ly continuum radiation. The delicate filaments high along the major axis are polarized (Sandagc and Miller 1964). As described on the preceding panel, the identical polarization in the Ha emission line in the same regions shows that these filaments are made visible by light from the center that is scattered by dust, illuminating the filamentary structure from below.

NGC 3034 Amorphous	HA, p. 41
PH-51-S	1V82
Nov 29/30, 1951	panel 333

Nov 29/30, 1951 panel 333

30 min
This image is from the same original plat used in the print above, but printed to a different contrast by control in the darkroom. The pur pose of this print is to begin to show the intricate and extensive dust pattern in the central regions of M82. Very few individual objects are visible over the face of the image. The light is still amorphous.

[NGC 3031 \quad Amorphous	HA, p. 41
PH-214-S	M82
Nov 10/11, 1952	panel 333
103al) + GG1 1	
2 min	

2 min
The positive print at the lop right is made from a short-exposure yellow plate. 1 few individual knots that may hi ${ }^{1}$ stars or star clusters appear close to the center. 1 ml most of the lumpy Structure is due to dust lanes and patches cutting up the amorphous light. 'The few individual disrete objects may be giant clusters such as in NGC 625 (panel 336), NGC L569 (panel 336), and NGC 1705 (panel 335)

Radio observation at high spatial resolution over a lime span suggest that many supernovae are present in the central region (Kronberg, Biermaiin. and Schwab 1981). consistent with Lhe starburst hypothesis. If true, the inferred supernova frequency in M82 would be exceedingly high.
NGC 3034
Amorphous
HA, p. 41
H-52-S

M82
el 333
Nov 29/30, 1951 panel 333
$103 \mathrm{aO}+\mathrm{WG} 2$
5 min
The dust pattern in the center of MH2 is well right.

NGC 3077 Amorphous HA, p. 41 PH-896-S \quad M81/NGC 2403 Gr Jaii 23/24, 1955
103aD + GGll
30 niin
NGC 3077 was catalogued as a member of the M81/NGC 2403 Group by Holmberg (1950) in his identification and study of the group. The original Hubble type was Irr. Holmberg's (1958) type for NGC 3077 , in dividing the Irr types into two groups (by analogy with Baade's two population types), was Irr II, based on color.

The unusual feature in both M82 and NGC 3077 is that neither are well resolved into stars despite the small distance of 3.3 Mpc , based on Cepheids in NGC 2403 and in M81. The small redshifts of M82 and NGC 3077 confirm membership in the group. The redshifts are $\mathrm{f}_{0}(82)=$ $409 \mathrm{~km} \mathrm{~s}^{-1}$ and $\mathrm{u}_{0}(3077)=165 \mathrm{~km} \mathrm{~s}^{-1}$,

Both galaxies have high surface brightness and a smooth texture to their surface luminosity, as if there is a veiling of the stellar content. In addition, both have emission-line spectra.

The heavy print of NGC 3077 at the upper left shows the lack of resolution into individual stars. Compare this feature with the very high stellar resolution level in NGC 2403 (panel 273). M81 (panel 1 29). NGC 2366 (panel 327) HoII (panel 331), and NGC 4236 (panel 324), which are other members of the group. If NGC 3077 is a starburst galaxy like M82, the activity is hidden (as in M82) presumably by dust and/or by a dominating continuum luminosity that floods the image. These characteristics define the Amorphous class.
NGC 3077

Amorphous
HA, p. 41 PH-867-S M81/NGC 2403 Gr Nov 3/4, 1954
103 aO
20 niin
The positive print of NGC 3077 at the botom left is from a blue plate rather than a yellow plate as in the image above it. Heavy dust absorption lanes exist throughout the image. A few knots are present near the center. These are either individual stars or are star clusters such as are known in other galaxies of this class including NGC 1705 on this panel and NGC I 569 and NGC 625 on the next.

These few individual starlike objects in NGC 3077 begin to appear at about $B=18$. Three are very vt'il. appearing at about $V=17$. Two of the others are moderately blue, found by comparing red and blue plates. At a distance modulus of m - $M=27.6$, these apparent magnitudes translate into absolute magnitudes of about -1 0 and -1] similar to the luminosities of super star clusters in other galaxies of this type, discussed in the remaining panels of this section.

NGC 5253 Amorphous Centaurus Gr
CD-245-S
CD-245-S
Feb 14/15, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
35 niin
NGC 5253 is a member of the nearby Centaurus Group, whose central member is NGC 5128. The mean redshift of the group is near $\left\langle v_{o}\right\rangle=280 \mathrm{~km} \mathrm{~s}^{-1}$. The group has a diameter of approximately 20° on the plane of the sky. The distance to the group is presently (1991) controversial, ranging betwrecn 3 Mpc (Tonry and Schechter 1991) and 8 Mpc (Sandage and Tammann 1975a). At a distance of $5 \mathrm{Mpc}(\mathrm{m}-\mathrm{M}=$ 28.5) the projected linear diameter of the group, 28.5) the projected linear diameter of the group,
corresponding to 20° angular diameter, is 1.7 Mpc , similar to the Local Group.

The heavy print at the top of the middle column shows the characteristic high-surfacebrightness, smooth-structured envelope luminosity of the main body that defines part of the features of the Amorphous class. On smallscale photographs with low spatial resolution, such forms would incorrectly be classed as E or SO types because of this enveloping light. Yet we know that such galaxies are copious current producers of high-luminosity stars. The case is particularly clear in NGC 5253 because of evidence that two very bright supernovae have occurred within the past hundred years (SN 1895B = Z Cen: SN 1972E). The 1972 supernova, discovered by Kowai, probably reached B $=8.5$ magnitude at maximum.

NGC 5253 Amorphous
Centaurus Gr CD-2123-S

Amorphous
Centaurus Gr
March 20/21, 1982
$103 \mathrm{aO}+$ GG385

5 min

The thin positive print at the bottom of the middle column is made from a different original plate than was used above. The high surface brightness of the amorphous light still dominates the central part of the image, but the individual stars in this starburst galaxy are now visible, starting at about $B=18.5$. At a distance modulus of $m-M=28.5$, the corresponding absolute magnitudes of these objects are $\mathrm{M} / \mathrm{j}=-10$, in agreement with the calibration made of such .stars at the Eddington limit using galaxies with known Cepheid distances (Sandage and Carlson 1988).

Note that the dust lanes in NGC 5253 are similar to those in NGC 3077 but are less opaque.
-1 The redshift of NGC 5253 is $v_{n}=147 \mathrm{~km}$

NGC 1705
CD-140-S
Feb 1/2, 1978
$103 \mathrm{aO}+\mathrm{GG} 385$
50 min
NGC 1705 was classed as an SO pec in both the RC 1 and the RC 2 based on small-scale plates taken at Mount Stromlo with the 30 -inch Reynolds Telescope. This classification is inappropriate; the problem is caused by the high surface brightness of the amorphous light, as described in the paragraphs on NGC 5253 in the middle column here.

The spectrum is rich in emission lines across the entire disk (Sandage 1978). The strongest lines are Ha, 11(3, and N1 and N2. Objects presumed to be stars are embedded in the intense disk light. They are numerous at $B=20$, and the brightest are undoubtedly brighter than this. The color of the disk light is very blue. Robust current star formation is occurring.

NGC 1705 Amorphous
CD-145-S
Feb 2/3, 1978
$103 \mathrm{aO}+$ GG385
20 min
The most curious feature in the image is the presence of an intense blue object displaced from the center by about a third the disk length. The object has a hydrogen absorption spectrum showing the same velocity as the disk emission. The spectrum resembles those of the super star clusters in NGC 1569 (Arp and Sandage 1985) that have absolute magnitudes of $M g=-13$

The redshift of NGC 1705 is $v_{o}=445 \mathrm{~km}$ $\mathrm{s} \sim$. At the redshift distance of $9 \mathrm{Mpc}(\mathrm{m}-M=$ 29.8) the compact blue object with an apparent magnitude of $B=16$ must have an absolute magnitude of $M_{B}=-14$. Such super clusters are known in NGC 625 (panel 336), NGC 1705 here, NGC 1569 (panel 336), and perhaps NGC 1140.

Spectra (Meurer et al. 1988, 1992) showthat gas is being expelled from NGC 1705 by super-galactic winds created by the momentum transfer of the photon energy from the super star cluster to the gas. This is the characteristic process in starburst galaxies and may be a common feature throughout the Amorphous type.

NGC 1569 SmlV/Ainorplious
PH-147-H
Oct 13/14, 1952
103 aO
25 mill
The distance modulus of NGC 1569 is about $m-M » 29(D=6 \mathrm{Mpc})$ from arguments based on its stellar content (Arp and Sandage 1985). Holmberg (1958) classified the galaxy as Irr I. similar to, for example, NGC 2366. However, the image is dominated by a high-surface-brightness mage is dominated by a high-surface-brightness amorphous light over much of the central region, shown in the heavy print at the lop left. The spectrum of the disk light is dominated by emis-
sion lines (Mayall 1935; de Vaucouleurs, de Vaucouleurs, and Pence 1974).

Stars begin to resolve over the image at about $B=20$ (Abies 1971). Tin- redsbifl of NGC 1569 is $u_{B}=144 \mathrm{~km} \mathrm{~s} \sim^{1}$. The extragalactic nature of the galaxy was first recognized by Baade (1931), who made the suggestion that its type is similar to the Magellanic Clouds, one of the first of the type to be identified in the general field.

NGC 1569
PH-150-H
Oct 13/14, 1952
103aO
5 min
The print here, from a short-exposure plate by Hubble, shows the resolution of the inner region into stars, beginning at about $B=20$. However, two very bright objects of $B=15.7$ and $B=16.5$ exist in the image. These are members of the galaxy, as shown from the equality of their velocities with the emission velocities of the gas in the disk (Arp and Sandage 1985). The spectra also show that these bright objects are super star clusters, as also described in the discussion of NGC 1705 on the preceding panel. The absolute magnitude of these bright young clusters is unusually high (but matched in NGC 1705 and NGC 625) at $\mathrm{B}=-13$

A discussion and a series of stepped exposure prints of NGC 1569 showing these clusters is given by Arp and Sandage (1985, Fig. ".

A discussion of the role of supergalactic winds in the self-transformation of Im and BCD galaxies into dE,N dwarf elliptical and dSO,N dwarf SO galaxies is given by Sandage and Hoffman (1991).

NGC 625 Amorphous or Imll
 CD-526-S
 Sep 29/30, 1978
 $103 \mathrm{aO}+$ GG385

45 min
NGC 625 shares the Amorphous feature that have been described on this and the preced ing panel for NGC 5253, NGC 1705. and NGC 1569. The very-high-surface-brighlncss disk ha an emission-line spectrum thai contains [In standard high excitation lines ol 3727. Hell [Nelll1], Hel, H, NI, N2, [Nil], [SII], [AMI] and [A1V]. These lines are evidently excited by the high current star-formation rale of massiv stars, evidenced by the resolution ol these star beginning at about $B=\mathrm{If}!$

The redshift of NGC 625 is $v_{o}=352$. The istance modulus is about $m-f t^{\prime} I=2 \mathrm{Ji}$. judged from the stellar content.

NGC 625 Amorphous or Imll
CD-526-S
Sep 29/30, 1978

$103 \mathrm{aO}+\mathrm{GG} 3$

45 min

The light print made from the same plate above, shows some of the resolution into stars. In addition, visual inspection of the image at the Mount Slromlo 74-inch reflector showed the presence of a bright blue object displaced from the center (as in NGC 1705) at about $i i=15$ (Sandage 1978). This object is a super star cluster similar to those in NGC 1705 and NGC 1569. previously described on this a nil the preceding panel. The absolute magnitude of the super star cluster in NGC 625 is near $/ \mathrm{W} / \mathrm{j}=-13$ similar to the values in the other cases just cited.

NGC 1691 H Amorphous pec
 p. 44

CD-1873-HB
April 10/11, 198
HA, p. 44
103aO
75 niin
NGC 4691 forms a wide apparent pair with NGC 4684 (SO2/3: panel 42) at a separation of 19'. The redshifts are $\mathrm{i}>,,(4684)=1411 \mathrm{~km} \mathrm{~s}$ " and $u_{0}(4691)=942 \mathrm{~km} \mathrm{~s} \sim$. At the mean redshift distance of $24 \mathrm{Mpc}(H=50)$ the projected linear separation is 135 kpc if they form a kinematic pair. However, the redshift difference of 470 km $s \sim{ }^{1}$ is high and fails to establish a definite case.

The heavy print at the tol) left shows the external ring; of low surface brightness, interpreted by Hubble as smooth arms; hence his classification was SBa.

The classification here is based on the intri cate dusl pattern in the central regions, simila to the dust in NGC 3077 . However, the Amor phous classification is less certain than in the prototype galaxies on the preceding lour panels

NGC 4691 R Amorphous pec

pair?
CD-1873-HB
HA, p. 4
April 10/11, 1981
103 aO
The light print here, from the same plat used for the heavy print above, shows the dust pattern in the central regions. The dust lanes are generally perpendicular to the major axis similar to part of the pattern in NGC 1808 (Sb pec: panel 193), attributed in the descriptio here to a galactic fountain activity. By analogy, this has been taken to suggest the possibility that the gas and dust of NGC 4691 might have a tarburst property. Supporting evidence is the emission-line spectrum throughout the disk (Sandage 1978). composed of strong 3727 strong Balmer series emission, strong N2, and weaker Nl .

GGC 2968 Amorphous or SO3 pec panel 49 H-7603-S Karachentsev 210 April 3/4, 1979 HaJ + GG385

30 niin
NGC 2968 is also illustrated and described in the SO section on panel 49. H forms a triplet with NGC 2964 (Sc; panels 240,251) at a eparation of 6.3' and with NGC $2970\left(\mathrm{SO}_{3}\right.$. not the RSA) at a separation of 50' The redshift i> (2968) $=1551 \mathrm{~km} \sim^{\prime}, \mathrm{u}_{(2970)}=1629$
 m , and $\mathrm{u}_{0}(2964)=1292 \mathrm{kms}$. At the mean rid lior OCC 2968 i 55 paral of NGC 2964 NOC
 970 from NGC 2968 is 44 kpe. A physical ssociation between NGC 2968 and 2970 is assured by the circumstance that a supernova occurred (SN 1970L, discovered by Wild) on the luminous bridge connecting NGC 2968 and NGC 2970. A photograph of the configuration is in Tammann (1973).

The Amorphous classification of NGC 2968 based on the character of the dust (similar to that in M82 and NGC 3077).

NGC 4383 Amorphous? (not SO) VCC 801 CD-1854-HB
April 4/5, 1981
103aO
NGC4383 is listed as a member of the Virgo Cluster in the Virgo Cluster Catalog. Its redshift is small at $v_{0}=284 \mathrm{~km} \mathrm{~s}^{-1}$, but its distance is much larger than would be implied by this small alue consistent with cluster membership and he high virial velocities of cluster members. Resolution into stars and HIl-region candidates does not occur, indicating a distance that must be similar to that of the Virgo Cluster core.

The classification of NGC 4383 as Amorphous is indicated by the high surface brightness

NGC 1531 Amorphous	group
CD-1669-S	panel 197
Dec 31/Jan 1, 1980/1981	
103aO + GG385	

103aO + GG385

NGC 1531, here, is a close companion of NGC 1532 (Sbc; panel 197); the pair is presently in a close encounter.

The enlargement of this print is great enough to exclude any part of NGC 1532 (panel 197) which is at an angular separation greater than 1.8'. A description of the pair and the peculiar morphology of NGC 1532 is on panel 197.

NGC 1531 has an amorphous texture to it luminosity distribution: there is evidence of dust in the image.

NGC 4765 Amorphous?

CD-2165-S
March 27/28, 1982
103aO + GG385
45
NGC 4765 is just outside the boundary of the Virgo Cluster survey region (Binggeli, Sandage, and Tammann 1985). The region is complex; it is near the supergalactic ridge-line in a confused kinematic area where redshifts do not indicate distance.

The redshift is $v_{o}=626 \mathrm{~km} \mathrm{~s} \sim^{1}$. Resolution into knots is visible at the periphery of the disk. It is probable that such resolution is presen throughout the disk but is hidden by the high surface brightness.

The morphological classification is uncer tain

NGC 3125 Amorphous

CD-721-S
Feb 1/2, 1979
1.5 mill

NGC 3125 has an outer envelope morphology similar to those in NGC 625 , NGC 1705, and NGC 5253. The disk is of high surface brightness. There is a hint of resolution into individual objects (stars?) in the outer envelope. The most telling feature suggesting the Amorphous classification is the two very bright objects near the center (seen in the insert), of magnitude $B=17$.

The redshift is $\rangle_{0}=827 \mathrm{~km} \mathrm{~s}^{\prime \prime 1}$. At the redshift distance of $16 \mathrm{Mpc}(\mathrm{m}-M=31)$ the absolute magnitudes of the knots are $\mathrm{A}^{\prime} / \mathrm{g}=-14$, similar to the luminosities of the four super star clusters in NGC 625. NGC 1705, and NGC 1569 , described on the preceding panels.

The spectrum of the disk of NGC 3125 shows extremely hard, high-excitation emission lines including Hell at 4686 (Penston, Fosbury, Ward, and Wilson 1977). The three amorphous galaxies just mentioned also have high excitation emission spectra.

The presence of the super star clusters, the hard emission radiation, and the amorphous light of the envelope are the reasons for assigning the Amorphous classification.

NGC 3773 Amorphous; pec jet
CD-2184-S
March 29/30, 1982
$103 \mathrm{aO}+\mathrm{GG} 385$
30 mill

NGC 3773 insert
CD-2183-S
March 29/30, 1982
$103 \mathrm{aO}+\mathrm{GG} 385$
5 min
The morphology of NGC 3773 is similar to that of NGC 3125 , above. The surface brightness of the smooth disk light is very high. The spectrum of the disk shows a strong ultraviolet continuum and intense emission lines of 3727 hydrogen Balmer f3, N1, and N2 (Sandage 1978).

The two very bright objects at the center each have an apparent magnitude of about $B=$ 16. These show in the insert print as a merged pair. The redshift of NGC 3773 is $v_{o}=851 \mathrm{~km}$ s^{\prime}. At the redshift distance of $17 \mathrm{Mpc}(\mathrm{m}-M=$ 31), the absolute magnitude of each of the objects is $\mathrm{Mg}=-15$, similar to the bright objects in NGC 3125 and other galaxies of this class.

The insert print is made from a different original plate than is used in the heavy main print, but is not of short-enough exposure to separate the images of the pair of central objects that still overlap here.
six galaxies on lliis page do not fit into the morphological boxes of the standard classification system. Each, at the resolution available on the existing plate material, has certain features common to the Amorphous galaxies shown on the preceding five panels. Therefore these galaxies have been put at the end of this section

Most have intense emission spectra. Several (NGC 3125 , NGC 3773 , etc.) have possible superluminous star clusters at absolute magnitudes of about $N / j=-15$.

NGC 1800

Amorphous
D-527-S
Sep 29/30, 1978
103aO + GG385
45 min
NGC 1800 insert
CD-1345-S/Br
March 15/16, 1980
$103 \mathrm{aO}+\mathrm{GG} 385$
0 min
The optical morphology of NGC 1800 is similar to that of NGC 625 . The surface brightness is high. The light is amorphous. Individual stars resolve in the outer regions of the disk, utside the high-surface-brightness the disk, ats like high-sura-bil). Brighs area (and ery likely inside as well). Bright knots exist that ay be super lisk light thows high rextation spectrum of he disk light shows high excitation N 2 , and [Nil] emissions are present. The radiation is hard, judged by the greater intensity of the N2 line than that of $11(3$ (Sandage 1978).

The redshift is $v_{Q}=586 \mathrm{~km} \mathrm{~s}^{-1}$.
The bright knots in the outer regions show in the insert print. The surface brightness in the center is still too high to see the center where other possible superluminous star clusters may exist.

NGC 3353 Amorphous? Ursa Major Cluster PH-7978-S
Feb 1/2, 1981
103 aO
12 nin

NGC 3353 insert
PH-7979-S
Feb 1/2, 1981
103 aO
2 min
The optical morphology of NGC 3353 is similar to that of other galaxies on this and the preceding panels. The surface brightness of the amorphous light is high. The optical spectrum of the disk shows intense high-excitation emission lines and many lines of the Balmer series, also in emission (Sandage 1978)

The redshift is $v_{o}=1089 \mathrm{~km} \mathrm{~s}^{\wedge}$.
A bright knot exists close to the center embedded in the high-surfacc-brightness image and not seen in this insert print. On the available plate material the object is not circular. (It may be double, similar to the double "cluster" in NGC 3773, at the left). The apparent brightness is B $=15$ (or if double, $B=16$ for a single image).

At a distance modulus of $m-M-31.7$ ($H=$ 50) the absolute magnitude of the object(s) would be $. \mathrm{V} / \mathrm{g}=-16$. Hence, the objects are candidate for super star clusters, similar to such objects in other galaxies of this class.

NGC 4694
Amorphous
VCC. 2066
CD-802-S
Feb 24/25, 1979
$103 \mathrm{aO}+\mathrm{Wr} 2 \mathrm{c}$
45 min
NGC 4694 is at the eastern edge of the Virgo Cluster survey field (Binggeli, Sandage. and Tammann 1985). It is listed as a cluster member in the cluster catalog. Its redshift is $v_{0}=1059 \mathrm{~km}$ s^{-1} 。

The spectrum shows a strong UV continuum and a pronounced hydrogen absorption spectrum in the center. Several features, all similar to the various characteristics of other Amorphous galaxies in this section such as M82 and NGC 3077. arc (1) the early-type absorption spectrum, indicating recent star formation, (2) the character of the amorphous light in the image, and (3) the nature of the evident dust patches.

NGC 3043	S pec
PH-7956-S	
Nov 8/9, 1980	
103aO	

103 aO
The classification of NGC 3043 is uncertain because of the high inclination and poor spatial resolution. The surface brightness is low. limis sion lines of 3727 and Ha extend across the image (Sandage 1978). The galaxy is shown here for completeness.

NGC 3418	Amorphous	pair PII-8049-S
Feb 4/5, 1981		Racine wedge
103aO		
120		

12 min \quad NGC 3448 is the brightest member of a pair that is evidently in a close encounter. What appears to he a tidal plume exisLs on one side of the main body (toward the upper-right corner of the prints on the right).

A close companion exists on the other side, at a separation of 3.9' (near the lower-left corner of the two). This anonymous galaxy of very low surface brightness is of morphological type Scd with some suggestion of a tidal perturbation in one of its arms. There is also a shred (tidal debris?) between the main body of NGC 3448 and the companion.

The v_{0} redshifts for each segment of the configuration listed by Palumbo, Tanzella-Nitti, and Vettolani (1983) arc about 1440 km s "' for the main body of NGC 3448 itself. $1325 \mathrm{~km} \mathrm{~s}^{-1}$ for the Scd companion, and $1494 \mathrm{~km} \mathrm{~s}^{-1}$ for the tidal plume of NGC 3448 on the opposite side of the image from the companion. At the mean redshift distance of $28 \mathrm{Mpc}(H=50)$ the projected linear separation of the Scd companion from NGC 3448 is small at 32 kpc .

The three prints here have been made from the same original Palomar plate, printed to dif ferent contrast and scale.

The plate was taken with a Racine wedge in the optical path. The bright stars have secondary images 5 mag fainter than the primary and are separated by $1^{\prime \prime}$ in a direction south and slightly east of the primary.

NGC 520
PH-176-H
Sep 3/4, 1953
$103 \mathrm{aD}+\mathrm{GC}$
0 min
The morphology of NGC 520 has always been described as unusual, not fitting into any of he morphological boxes of the standard clas ification sequence. Hubble (as reported by Pet il 1954) classified NGC 520 as Irr. Holmber 1958) placed NGC 520 into his new Irr II clas ased on the amorphous appearance of its uminous image, the absence of resolved stars, and its red color. These are the same features, long with the dust pattern similar to that in M82 (panels 333, 334) and NGC 3077 (panel 335) used in classifying the galaxy Amorphous here.

However, the faint plumes on opposite sides of the center suggest either tidal interaction or, following Toomre and Toomre (1972), the result of a merger, as in NGC 4038/4039 (panel 280)

Images of what may be individual stars ap pear in the main plume beginning at about $B=$ 2.5. The redshift is $v_{o}=2350 \mathrm{~km} \mathrm{~s}^{-}$. At redshift distance of 47 Mpc ($\mathrm{H}=50, \mathrm{~m}-\mathrm{M}$ 33.4), the absolute magnitude of such objects is bright, at $M_{B}=-11$.

NGC 520 Amorphous
HA, p. 41 H-1674-H
Nov 28/29, 1935
Imp. Ee
60 min
The light print of NGC 520 made from a plate taken with the Mount Wilson Hooker 100 inch telescope shows no evidence for the double nucleus that might he expected from a recent merger, although some theories suggest that none need be expected. Based simply on the morphology of the image, the idea that a merger has occurred remains an unproved hypothesis.

NGC 7252 Merger or SO, pec
CD-1564-S/Br
$103 \mathrm{aO}+\mathrm{GG} 385$
103 aO
NGC 7252. with its two principal long, thin plumes and its many shorter plumes near the main body, was originally suggested by Toomre and Toomre (1972) to he the product of a merger. Schweizcr $(1982,1983)$ argued the rase for a merger of two disk galaxies using data on surface brightness, spectroscopy, and internal kinematic structure. Dynamical interaction simulations by Borne and Richstone (1982, 1991) support this interpretation.

The heavy exposure in the lop print with a wide view shows the principal plumes. These features are shown particularly well in the series of images by Schweizer (1982). Star formation (HH-region candidates) in each of the outer plumes is also suggested there.

NGC 7252 Merger or SOi pec
CD-1564-S/Br
Aug 9/10, 1980
45 min
Thin
This light print is made from the same original plate used for the heavy print above. The inner image shows an SO-like luminosity distribution, and the central core is clearly SO; there is an apparent break in the gradient of the profile two-thirds the way out the disk, giving the twozone look characteristic of the SO class often discussed in the SO section

REFERENCES

Abell, G. O. 1958,Ap. J. Suppl. 3,211.
Abies, II. D. 1971, Pub. U. S. Naval Obs. 20, part IV, 60.
Andrews, P. J., and Evans, L. T. 1972, M. N. R. A. S. 759,445 .

Arp, H. C. 1966, Atlas of Peculiar Galaxies, Ap. J. Suppl. 14,1.

Arp, H. C, and Sandage, A. 1985, A. ./. 90, 1163.

Athanassoula, E. 19 84, Phys. Reports 114, 319.

Baade, W. 1931, Astron. Nachr. 243, 303.
Baade, W. 1944a, Ap. ./. 100, 137.
Baade, W. 1944b, Ap. ./. 100, 147.
Baade, W. 195 1, Publ. Univ. Michigan Obs. 10 , i.

Baade, W. 1963, in Evolution of Stars and Galaxies (Harvard Univ. Press), p. 15.
Baade, W., and Minkowski, R. 1954, Ap. J. 119, 215.
Baade, W., and Swope, II. H. 1963, A. J. 68, 435.

Bacon, F. 1620, Novuni Organum, many editions.
Baura, W. A. 1955, Publ. A. S. P. 67, 328.
Bertola, F., and Gallelta, G. 1978. Ap. J. Lett. 226, L115.
Bertola, F., Galletta, G., and Zeilinger. W. W. 1985,Ap. ./. Lett. 292, L5 1.
Bertola, F., and Mállei, P. 19 74, Astron. Astrophys. 32, 117.
Binggeli, B., Sandage, A., and Tammann, G. A. 1985, A. ./ $90,1681$.
Binggeli, B., Sandage, A., and Tarengbi, M. 1984, A. ./. 89, 64.

Binggeli, B., Tammann, G. A., and Sandage, A. 1987.A. ./.94. 251

Binney, J. 1978, M. N. R. A. S. 183, 501
Blanco, V. M., Graham,.T. A., Lasker, B. M., and Osmer, P. S. 1975, Ap. ./. Lett. 198. L63.
Borne, K. D., and Richstone, D. O. 1982. Bull. A. A. S. 14, 972.

Borne, K. D.. and Richstone. D. 0. 199 1. Ap. .1. 369, 111.

Börngen, F., Karachentseva, V. E., et al. 1982, Astron. Nachr. 303, 287.
Börngen, F., and Karachentseva, V. E. 1982, Astron. Nachr. 303, 189

Börngen, F., Karachentseva, V. E., and Karachentsev, I. D. 1984, Astron. Nachr. 305,53.
Boroson, T. 1980. Ph.D. Thesis. Univ. of Arizona
Brosch. N. 1985, Astron. Astrophys. 153. 199. Burbidge, E. M., and Burbidge. G. R. 1959a, Ap. J. 129, 271
Burbidge, E. M., and Burbidge, G. R. 1959b, Ap. ./. 130, 20.
Burbidge, E. M., and Burbidge, G. R. 1960, Ap. ./ 131,224

Burbidge, E. M., and Burbidge. G. R. 1965 , Ap. ./. 142, 351 .
Burbidge, E. M., Burbidge, G. R., and Prendergast, K. II. 1961 , Ap. ./. 134. 236.
Burbidge, E. M., Burbidge. G.. and Rubin. V. C 1964, Ap. ./. 140, 942.
Burbidge, G. R., Burbidge, E. M., and Sandage, A. 1963, Rev. Mod. Phys. 35, 947

Burkhead, M. S. 1980. in Photometry Kinematics, and Dynamics of Galaxies, ed D. S. Evans (Univ. of Texas Press, Austin), p. 143 .

Caldwell. N.,and Bothun, G. D. 1987..I. // 94, 1126.

Campbell, W. IV.. and Paddock. (;. F. I 9 I ii . Publ. A. S. P. 30. 68.
Capaccioli, M. 1986. in IAU Symposium 127. Structure and Dynamics of Elliptical Galaxies, ed. T. de Zeeuw (Reidel, Dordrecht), p. 17.
Chincarini, G.. and Rood. II. .1. 1971. Ap. . 1 168.321.

Combes. A. 1978 . Astron. Astrophys. 65. 17.
Curtis, II. D. 1918. Publ. Lick Obs. 13.29.
de Vaucouleurs, G. 1950. Ann. Astrophys. 13. 362.
de Vaucouleurs, G. 1955, A. ./. 60, 126.
de Vaucouleurs, G. 1956a. Mem. of the Commonwealth Obs. [Mount Stromlo), 13.
de Vaucouleurs, G. 195 6b, in Vistas in Astronomy, vol. 2, ed. A. Beer (Pergamon Press), p. 1584.
de Vaucouleurs, G. 1958, Ap. ./. 127. 487.
de Vaucouleurs, G. 1959a. Ap. ./. 230, 718.
de Vaucouleurs, G. 1959b. Handbuch tier Physik (Springer-Verlag, Berlin), p. 275.
de Vaucouleurs, G. 1963 . Mem. R. A. S. 611. I 1.
de Vaucouleurs, G. 1975, in Stars and Stellar Systems, vol. 9, chap. 14, eds. A. Sandage, M. Sandage, and J. Kristian (Univ. of Chicago Press, Chicago), p. 557.
de Vaucouleurs. G., de Vaucouleurs. A., and Nielo.,1. L. 1979,.4. ./. 84, 1811.
de Vaucouleurs, G., de Vaucouleurs, A., and Pence, W. 1974, Ap. ./. Lett. 191. Li 19.
Dickens. R. .(.. Currie, M. .]., and Lucey, .1. R. 1986. M. N. R.A. S. 220,679.

Doyle, A. (!. 1887, in Beeton's Christmas Annutil (Ward. Lock \& Co., London. New York, Melbourne).

Dressier, A. I 980, Ap. ./. 236, 351
Dressier. A., and Sandage, A. 1983, ф. ./. 265, 664.

Eddington, A. S. 1926. The Internal Constitution oj the Stars (Cambridge Univ. Press. Cambridge), p. I 6.
Eggen, 0. .1.. Lynden-Bell, D., and Sandage. A. $1962, A p$. ./. Z36, 748.
Elmegreen, 1). M. 1981 . Ap. ./. Suppl. 47,229.
Elmegreen, I). M.. and Elmegreen, B. G. 1982 M. N. R. A. S. 201, 1021.

Elmegreen. I). 111.. and Elmegreen. 15. G. L987, Ap. ./. 314, 3.
Elvius. A. 1962. Lowell Obs. Bull. 5. 281
Elvius, A. 1967. A. ,/. 72. 79 A.
Elvius, A. 1969. Loucll Obs. Hull. 7. 117.
Faber, S. M.. and Gallagher, .1. S. 1976. Ap. ./ 204. 668.

Ferguson. B.C. 1989, A. J. 89, 367
Ferguson, II. ('... and Sandage. A. 1988. A. ./ 96, I 520.
Ferguson. 11. C. and Sandage, A. 1990., 1. ./ 100, I .
Ferguson, II. C, and Sandage, A. 1991 . 1. ./ 101,765.
Field, G. 1975, in Stars and Stellar Systems vol. 9. chap. 10, eds. A. Sandage, M Sandage. and .). Kristian (Univ. ol Chicago Press, Chicago), p. 359.
Ford, 11. C. Jacob)'. C. and Jenner, I). C 1977. Ap. ./. 22 3, I 8.

Freedraan, W. L. 1989.1 ./. 98, 1285

Freedman, W., and Madore, B. 1988, Ap. J. Lett. 332, L63.
Freeman, K. C. 1975, IAU Symposium 69, Dynamics of Stellar Systems, ed. A. Hayli (Reidel, Dordrecht), p. 367.
Freeman, K. C, Illingworth, G., and Oemler, A. 1983,Ap. J. 272, 488.
Gallagher. J. S.. Knapp, G. R., Faber, S. M., and Balick, B. 1977, Ap. J. 275,463.
Gottesman, S. T., and Weliachew, L. 1975, Ap. J. $195,23$.

Graham. J. A. 1979. Ap. .1. 232, 60.
Graham. J. A. 1984, A. J. 89, 1332.
Hanes, D. A., and Harris. W. E. 1986, Ap. J. 309.564

Harris, W. E. 1986, A. J. 9J. 822.
Harris, W. E. 1988, in IAU Symposium 126, Globular Cluster Systems in Galaxies, eds. J. E. Grindlay and A. G. Davis Philip (Reidel, Dordrecht), p. 237.
Harris, W. E.. and van den Bergh. S. 1981, A. J. 86. 1627.

Harwarden, T. G., Elson, R. A. W.. Longmore, A. J., Tritton. S. B-, and Corwin, H. G. 1981, M. N. R. A. S. 196, 747.
Herschel, W. 1785. Phil. Trans., p. 213.
Hoag, A. A. 1950, A. J. 55, 170.
Hodge, P. W. 1963, A. J. 68, 691.
Hodge, P. W., 1971 , Ann. Rev. Astron. Astrophys. 9,35.
Hodge, P. W. 1973. Ap. J. 182. 671.
Hodge, P. W. 1976. A. J. 81, 25.
Hoessell, J. G., Abbott. M. J., Saha, A., Mossman. A. E., and Danielson, G. E. 1990, A. J. 100,1151

Hoessell. J. G.. and Danielson, G. E. 1984, Ap. J. 286. 159.

Hoessell. J. G., and Mould, J. R. 1982, Ap. J. 254.38.

Hoessell. J. G.. Schommer, R. A., and Danielson, G. E. 1983. Ap. J. 274, 577.

Hoffman, G. L., Helou, G., Salpeter, E. E., Glosson, J., and Sandage, A. 1987, Ap. J. Suppl. 63, 247.
Hoffman, G. L., Lewis, B. M., Helou, G., Sal-
peter, E. E., and Williams, H. L. 1989, Ap J. Suppl. 69,65.

Hogg, D., Roberts, M. S., and Sandage, A. 1993, A. J. 106, in press (Sept issue).
Hohl, F., and Zang, T. A. 1979, A. J. 84, 585.
Holmberg, E. 1950, Medd. Lunds Astron. Obs. II, no. 128.
Holmberg, E. 1958, Medd. Lunds Astron. Obs. II, no. 136.
Holmberg, E. 1969, Ark. Astron. 5, 305
Hopp, U., and Materne, J. 1985, Astron. Astrophys. Suppl. 61. 93.
Hoyle, F. 1954, Ap. J. Suppl. 1, 121.
Hubble, E. 1922, Ap. J. 56, 162.
Hubble, E. 1925, Ap. J. 62, 409
Hubble, E. 1926, Ap. J. 64, 321.
Hubble, E. 1927, Observatory 50,276.
Hubble, E. 1929, Proc. Nat. Acad. Sci. U. S. A. 15,169.
Hubble, E. 1930, Ap. J. 71,231
Hubble, E. 1932, Ap. J. 76,44.
Hubble, E. 1936a, Ap. J. 84, 158.
Hubble, E. 1936b, Realm of the Nebulae (Yale Univ. Press, New Haven).
Hubble, E. 1943, Ap. J. 97, 112.
Hubble, E. 1949, Publ. A. S. P. 61, 121.
Hubble, E., and Humason, M. L. 1931, Ap. J. 74, table 1, 43.
Huchtmeier, W. K., and Richter, O. 1989, A General Catalog of HI Observations of Galaxies (Springer-Verlag, New York, Berlin).
Huchtmeier, W. K., Seiradakis, J. H., and Materne, J. 1981, Astron. Astrophys. 102, 134.

Humason, M. L. 1929, Proc. Nat. Acad. Sci. U. S. A. $15,167$.

Humason, M. L., Mayall, N. U., and Sandage, A. 1956, A. J. 61, 97.
Humphreys, R. M., and Sandage, A. 1980, Ap. J. Suppl. 44, 319.

Huntley, J. M. 1978, Ap. J. 225, L101.
Huntley, J. M. 1980, Ap. J. 238, 524.

Huntley, J. M., Sanders, R. H., and Roberts, W. W. 1978, Ap.]. 221,521.

Hutchings, J. B., Neff, S. G., Stanford, S. A. Lo, E., and Unger, S. W. 1990, A. J. 100 60.

Illingworth, G. 1977, Ap. J. Lett. 218, L43.
Jarvis, B. J. 1986, A. J. 91,65
Jarvis, B. J., and Freeman, K. C. 1985, Ap. J. 295,324.
Jeans, J. H. 1928, Astronomy and Cosmogony (Cambridge Univ. Press, Cambridge).
Johnson, D.W., and Gottesman, S. T. 1983, Ap. J. 275,549.

Kahn, F. D., and Woltjer, L. 1959, Ap. J. 130, 705.

Karachentsev, I. 1987, Catalog of Binary Galaxies (Moscow).
Kayser, S. E. 1967, A. J. 72, 134
Kennicutt, R. C. 1981, A. J. 86, 1847.
Kennicutt, R. C, and Edgar, B. K. 1986, Ap. J. 300,132.
Kinman, T. D. 1978, A. J. 83, 764.
Kormendy, J. 1983, Ap. J. 275, 529.
Kormendy, J. 1986 , in Nearly Normal Galaxies, ed. S. M. Faber (Springer-Verlag, London), p. 163.

Kormendy, J., and Illingworth, G. 1982, Ap. J 256,460.
Kormendy, J., and Norman, C. A. 1979, Ap. J 233, 539.
Kraan-Korteweg, R. C, and Tammann, G. A 1979, Astron. Nachr. 300, 181
Kronberg, P. P., Biermann, P., and Schwab, F R. 1981, Ap. J. 246,151.

Kronberg, P. P., Emerson, D. T., Klein, U., and Wielebinski, R. 1979, Ap.J. Lett. 230, L149.
Lewis, B. M. 1987, Ap. J. Suppl. 63, 515
Lindblad, B. 1951, Publ. A. S. P. 63, 133.
Lucey, J. R., Currie, M. J., and Dickens, R. J 1986, M. N. R. A. S. 222,427.
Lundmark, K. 1927, Medd. Astr. Obs. Uppsala no. 30.
Lynds, C. R. 1970, Ap. /. Lett. 159, L151.

Lynds, C. R., and Sandage, A. 1963, Ap. J. 137,1005.
Lynds, C.R., and Toomre, A. 1976, Ap.J. 209, 382.

Maia, M. A. G., da Costa, L. N., and Latham, D. W. 1989, Ap. J. Suppl. 69, 809.

Malin, D. F. 1979, Nature 277, 279.
Malin, D. F., and Carter, D. 1980, Nature 285, 643.

Mathewson, D. S., Ford, V. L., and Visvanathan, N. 1986,Ap. J. 301, 664.

Mathewson, D. S., Ford, V. L., and Visvanathan, N. 1988,Ap. J. 333, 617.

Matthews, T. A., and Sandage, A. 1963, Ap. J. 138,30.
Mayall, N. U. 1935, Publ. A. S. P. 47, 319.
Mayall, N. U., and Lindblad, P. 0. 1970 , Astron. Astrophys. 8, 364.
Meurer, G. H., Freeman, K. C, and Dopita, M A. 1988, Astrophys. and Space Science 156, 141.

Meurer, G. H., Freeman, K. C, Dopita, M. A., and Cacciari, C. 1992, A. J. 1 03, 60.
Miller, R. H., and Smith, B. F. 1979. Ap. J. 227,785.
Minkowski, R. 1957, in IAU Symposium 4, Radio Astronomy, ed. H. C. van de Hulst (Cambridge Univ. Press, Cambridge), p. 107.

Mould, J., Kristian, J., and Da Costa, G. S. 1984, Ap. J. 278,575.
Murai, T., and Fujimoto, M. 1980, Publ. Astr. Soc. Japan 32, 581

Noerdlinger, P. D. 1979, Ap. J. 234, 802.
O'Connell, R. W., and Mangano, J. J. 1978, Ap. J. 221, 62.

O'Connell, R. W., Scargle, J. D., and Sargent, W. W. 1974,Ap.J. 191,61.

Oemler, A. 1976, Ap. J. 209, 693.
Osterbrock, D. O. 1960, Ap. J. 132,325.
Palumbo, G. G. C, Tanzella-Nitti, G., and Vettolani, G. 1983, Catalog of Radial Velocities of Galaxies (Gordon and Breach Science Publishers).
Pease, F. 1917, Ap. J. 47, 24.

Pease, F. 1920, Ap. J. 51, 276.
Penston, M. V., Fosbury, R. A. E., Ward, M. J., and Wilson, A. S. 1977, M. N. R. A. S.180, 19.

Peterson, C. J., and Huntley, J. M. 1980, Ap. J. 242,913.
Pettit, E. 1954, Ap. J. 120,413.
Poe, E. A. 1849, Eureka, many eds.
Prendergast, K. 1962, in Interstellar Matter in Galaxies, ed. L. Woltjer (W. A. Benjamin, New York), p. 217.
Prendergast, K. H. 1983, in IAU Symposium 100, Internal Kinematics and Dynamics of Galaxies, ed. E. Athanassoula (Reidel, Dordrecht), p. 215.
Price, J. S., and Grasdalen, G. L. 1983, Ap. J. 275,559.
Quinn, P. J. 1984, Ap. J. 279, 596.
Radnitzky, G. 1973, Contemporary Schools of Metascience (Henry Regnery Co., Chicago), p. 215 .

Reaves, G. 1956, A. J. 61, 69.
Reif, K., Mebold, U., Goss, W. M., van Woerden, EL, and Siegman, B. 1982, Astron. Astrophys. Suppl. 50, 451.
Reynolds, J. H. 1927a, Observatory 50, 185.
Reynolds, J. H. 192 7b, Observatory 50, 308.
Richter, 0., and Huchtmeier, W. K. 1983, Astron. Astrophys. 125, 187.
Richter, O., Materne, J., and Huchtmeier, W. K. 1982, Astron. Astrophys. Ill, 193.
Ritchey, G. W. 1910, Ap. J. 32,26.
Roberts, M. S. 1963 Ann. Rev. Astron. Astrophys. $1,149$.
Roberts, M. S. 1969, A. J. 74, 859.
Roberts, M. S. 1975, in Galaxies and the Universe, chap. 9, eds. A. Sandage, M. Sandage, and J. Kristian (Univ. of Chicago Press, Chicago).
Roberts, W. W., Huntley, J. M., and van Albada, G. D. 1979, Ap. J. 233, 67.

Rogers, A. W. 19 78, Ap. J. Lett. 219, L7.
Rogstad, D. II., Wright, M. C. H., and Lockhart, I. A. 1976, Ap. J. 204, 703.

Rubin, V. C, Burstein, D., Ford, W. K., and Thonnard, N. 1985, Ap. J. 289, 81.
Saha, A., and Hoessel, J. G. 1987, A. ./. 94, 1556.

Saha, A., and Hoessel, J. G. 1990, A. J. 99,97. Sandage, A. 195 7, Ap. J. 125, 422.
Sandage, A. 1961, The Hubble Atlas of Galaxies (Carnegie Institution of Washington, Washington, D. C), Publ. 618.
Sandage, A. 1962, Ap. ./. 136. 319
Sandage, A. 1972, Ap. .1. 178, 25.
Sandage, A. 1975 a , in Galaxies and the Universe, chap. 1, eds. A. Sandage, M. Sandage, and J. Kristian (Univ. of Chicago Press, Chicago).
Sandage, A. 1975b, Ap. J. 202, 563.
Sandage, A. 1976, A. J. 81, 954.
Sandage, A. 1978, A. J. 83, 904.
Sandage, A. 1983a, in IAU Symposium 100, Internal Kinematics and Dynamics of Galaxies, ed. E. Athanassoula (Reidel, Dordrecht), p. 367.
Sandage, A. 1983b, A. J. 88, 1569.
Sandage, A. 1984a, A. ./. 89, 621.
Sandage, A. 1984b, A. J. 89, 630.
Sandage, A. 1986a, Ap. J. 307,1.
Sandage, A. 1986b, A. J. $91,496$.
Sandage, A. 1986c, Ann. Rev. Astron. Astrophys. 24, 421.
Sandage, A. 1986d, Astron. Astrophys. 161, 89.

Sandage, A. 1990, J. Roy. Astron. Soc. Canada 84,70.
Sandage, A., and Binggeli, B. 1984, A. J. 89 , 919.

Sandage, A., Binggeli, B., and Tammann, G. A. 1985a, A. J. 90, 395.
Sandage, A., Binggeli, B., and Tammann, G. A. 1985b, A. J. 90, 1759.
Sandage, A., and Brucato, R. 1979, A. J. 84, 472.

Sandage, A., and Carlson, G. 1982, Ap. J. 258. 439.

Samlage, A., and Carlson, G. 1985, A. ./. 90. 1019.

Sandage, A., and Carlson, G. 1988. A. .1. 96. 1599.

Sandage, A., and Fomalont, E. 1993, Ap. .I. 407, 14 .
Sandage, A., and Fouts, G. 1987. A. ./. 93. 74.
Sandage, A., Freeman, K. C, and Stokes, N. R. 1970, Ap. ./. 760.831.
Sandage, A., and Hoffman, G. L. 1991, Ap. .1. Lett. 379, L45.
Sandage, A., and Humphreys, R. M. 1980, Ap. J. Lett. 236, LI.

Sandage, A., and Miller. W. C. 1964, Science 144,382.
Sandage, A., and Perelmutler, J.-M. 1990, Ap. J. 361,1 .

Sandage, A., and Tammann, G. A. 1974a, Ap. J. 190,525.
Sandage, A., and Tammann, G. A. 1974b, Ap. J. 191,603.

Sandage, A., and Tammann, G. A. 1974 c, Ap. J. 194,223.
Sandage, A., and Tammann, G. A. 1974d, Ap. J. 194, 559.

Sandage, A., and Tammann, G. A. 1975a, Ap. J. 196,313.
Sandage, A., and Tammann, G. A. 1975b, Ap. J. 197,265.

Sandage, A., and Tammann, G. A. 1976a, Ap. J. Lett. 207, LI.
Sandage, A., and Tammann, G. A. 1976b, Ap. J. 210, 7.

Sandage, A., and Tammann, G. A. 1981. A Revised Shapley-Ames Catalog of Bright Galaxies (Carnegie Institution of ${ }^{\prime}$ Washington, Washington, D. C), Publ. 635 1 st ed.
Sandage, A., and Tammann, G. A. 1982, Ap. J. 256,339.
Sandage, A., and Tammann, G. A. 1985, in Supernovae as Distance Indicators, ed. N. Bartel (Springer. Berlin), p. 1.
Sandage, A., and Tammann, G. A. 1987. A

Revised Shapley-Ames Catalog of Bright Galaxies (Carnegie Institution ol Washington, Washington. I). C), Publ. 635. 2nded.
Sandage. A., and Tammann, C. A. I 990, Ap. J. 365, 1 .
Sandage. A., and Visvanathan. N. 196'). Ap. ./. 157,1065.
Sandage. A., am! Visvanathan, N. 1978a, Ap. J. 223, 707.
Sandage. A., and Visvanathan, N. 1978b. Ap. ./. 227.742.

Sargent, W. L. W.. Kowal, S. T.. Hartwick, F. D. A., and van den Bergh, S. 1977. A. ./. 82. 947.

Schechter, P. L., and Gunn, .1. E. 1978. A. ./. 83. 1360 .

Schwarzschild, M. 1982. Ap. ./. 263, 599.
Schweizer, F. 1977. in IAU Symposium 77, Structure and Properties of Nearby Galaxies, eds. E. M. Berkhuijsen and R. Wielebinski (Reidel, Dordrecht), p. 279.
Schweizer, F. 1980, Ap. ./. 237. 303.
Schweizer, F. 1981, Ap. ./. 246, 722.
Schweizer, F. 1982 . Ap. ./. 252. 455.
Schweizer, F. 1983. in IAU Symposium 100, Internal Kinematics and Dynamics of Galaxies, ed. E. Athanassoula (Reidel. Dordrecht), p. 319.
Schweizer, F. 1986, Science 231. 193.
Schweizer, F., Ford, W. K.. Jedrzejewski, R.. and Giovanelli, R. 1987. Ap. ./. $320,454$.
Schweizer, F. and Seitzer, P. 1988. Ap. .1. 328. 88.

Schweizer. F.. Whitmorc, B. C. and Rubin, V. (.. 1983. A. ./. 88. 909.

Searle, L., and Ziiin. R. 1978. Ap. ./. 225,357.
Sersic, J. L. 1958, Observatory 78, 125.
Sersic, J. L. 1967. Zs.f. Ap. 67. 306.
Sersic, J. L., and Pastoriza, M. 1965, Publ. A. S. P. 77. 287.

Seyfert, K. 19:13. Ap. ./. 97.28.
Shapley, H. 1950, Publ. Univ. Michigan Obs. 10.79 .

Shapley, 11.. and Ames. A. 19.32. Annals of the Harvard College Observatory 88. No. 2
Shapley, II., and Paraskevopoulous, ,1. S. L940, Proc. Nat. Acad. Sci. U. S. A. 26.31.
Shaya, E. .1. $1984, A p$. 1. 280. 470
Shobbrook, R. R. 1966. M. N. R. A. S. 131 , 365

Silva. D. R.. Boroson, T. A., and Thompson. I. B. 1 989. A. .1. 98. 131.

Simonson, G. F. 1982, Ph.D. Thesis, Yale University-
Smith. S. 1935,Ap. ./. 82. 192.
Spitzer, L.. and Baade, W. 1951. Ap. .l. 113. 413.

Steiman-Cameron, T. Y., and Durisen. R. 11. 1982, Ap. ./. Lett. 263. LSI.

Steiman-Cameron, T. Y., Kormendy, ,].. and Durisen, R. M. 1992. A. ,1. 104. 13.39.
Tammann. G. A. 1973. in Supernovae and Supernova Remnants, ed. C. B. Cosmovici (Reidel, Dordrecht), p. 215.
Tammann. G. A., and Leiundgut, B. 1990. Astron. Astrophys. 236. 9.
Tammann. G. A., and Sandage, A. 1968..Ap. .1. $151.82 \quad 5$.
Tammann. G. A., and Sandage. A. 1985, Ap. ./. 294.81.
ten Bruggencate. P. 1930. Is. f. Ap. 7.275
Theys, I. .1. C.. and Spiegel. E. A. 1976. .4/;. ./. 208. 650 .

Theys. I. J. C, and Spiegel. E. A. 1977. Ap. ./. 212.616.

Tonry, J. L.. and Schechter, P. L. 1991. A. ./. 100.1794.

Toomre, A. 1977. in The Evolution of Galaxies anil Stellar Populations, eds. B. M. Tinsley and R. B. Larson (Yale Univ. Observatory), p. 401 .

Toomre, A.. and Toomre. J. L972, Ap. ./. $1 \bar{f} 8$ 623.

Tubbs,A. D. L980, Ap. J. 241,969.
Ulrich, M. 1975. Publ. A. S. P. «7. 965
Usher. P. 1980. The Astronomy Quarterly 3 115.
van Albada. T. S., Kotanyi, C. G., and Schwarzschild. M. 1982, M. N. R.A.S. 198, 303.
van den Bergh, S. 1959. Publ. David Dunlop Obs. II, 147
van den Bergh. S. 1960a, Publ. David Dunlop Obs. II. no. 6.
van den Bergh, S. 19601), Ap. ./. 131. 215
van den Bergh. S. 1960c, Ap. ./. 131. 558
van den Bergh, S. 1976a. Ap. ./. 206. 883
van den Bergh. S. 1976b. Ap. ./. 208. 673
van den Bergh. S. 1989. Publ. A. S. P. 101, 1072.
van der Kruit, P. 1986, Astron. Astrophys. 157. 230.
van der Kruit. P. C and Searle, L. 1981, Astron. Astrophys. 95. 116
van der Kruit. P., and Searle. L. 1982, Astron. Astrophys. \quad 110.19.
van Houten. C. .1. 1961. Bull. Astr. Inst. Netherlands 16,1.
Varnas, S. R., Bertola, F., Galletta, G. F., Freeman, K. C., and Carter, D. 1987, Ap. J. 313,69.

Visvanathan, N., and Sandage, A. 1972. Ap. J. 1 76,57.
Vorontsov-Velyaminov, B. A., Krasnogorskaja, A., and Arkipova, V. 1962, 1963, 1964 , 19 68, Morphological Catalog of Galaxies
Vorontsov-Velyaminov, B. A. 1977, Astron. Astrophys. Suppl. 28, I.
Vorontsov-Velyaminov, B. A. 1987, Extragalactic Astronomy, trans. R. B. Rodman (Harwood Academic Publishers).
Welch, G. A., Chincarini, G., and Rood. II. J. 1975, A. ./. 80. 77.
Weliachew, L., Sancisi, R.. and Guélin, M. 1978. Astron. Astrophys. 65, 37.

Whitmore, B. C., and Bell. M. 1988, Ap. J. 324. 741.

Woltjer. L. 1959. Ap. J. 130. 38
Wolf. M. 1908, Pub. Ap. Inst. Konig. Heidelberg, vol. 3 , no. 5 .

Yahil, A., Tammann, G. A., and Sandage, A 1977, Ap. ./. 22 7, 903
Zinnecker, H., and Cannon, R. D. 1985, in Star Forming Dwarf Galaxies, eds. D. Kunth, T X. Thuan, and J. Trail Thanh Van (Frontières, Paris), p. 164
Zwicky, F. 1942, Phys. Rev. II 61. 489 Zwicky, F. 1955, Publ. A. S. P. 67,232

Index to all galaxies shown in the Carnegie Alias

name	PANEL	TYPE									
40147	152	Sb?(on edge)	IC 4662	329	Imll1	NGC 210	121	Sbd-sll	NCC 636	3	El
F-703	246	$\mathrm{Sc}(\mathrm{s}) 11.2$	IC 4710	323	Sd/SBcl	NGC214	185	$\mathrm{Sbc}(\mathrm{r}) \mathrm{I}-\mathrm{Il}$		131	SI)(s)1-II
HA 72	271	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$	IC 4721	246	$\mathrm{Sc}:(\mathrm{s})$ II	NGC221	6. H	cE2	NCC 672	307	SBc:
HA 85-1	236	$\mathrm{Sc}(\mathrm{s}) \mathrm{H}$	IC 4797	27	E5/SO\|(5)	NGC 224	149	S1.I-II	NGC 68]	152	SI.
HA 85-2	8	E3	IC 4837	284	S.,(s)II-III	NGC 227	12	E5 (E/SO)	NCC 685	302	$\mathrm{SBc}(\mathrm{rs}) \mathrm{M}$
Hoi	331	ImV	IC 4839	284	Sab(s) 1.2	NGC237	233	Sdsll-Il	NGC701	267	S. - 1s111-111
II oil	331	ImlV-v	IC 4889	38	SO i/2, (5)	NGC245	251	Se(s)l1 pec	NCC 7 If!	63. 81!	Sic
HoIX	332	ImV	IC 5039	258	s >(:s) 11	NGC 247	285	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$-IV	NGC 720	11	E5
Leo A	331	ImV	IC 5052	320	Srcl/SBc-cl	NCC253	286	Sc -1s)	NCC 711	21	E0
L.MC	325	SBmlll	IC 5063	75	Sa	NGC254	59	$\mathrm{RSO}_{2}(6) / \mathrm{a}$	NGC 750	21	E0
New 1	295	SBc(s)III. 2	IC 5105	1 I	E5	NGC 255	306	SISc-	NGC75 1	21	E0
New 3	316	Scd/SBcd	IC 5135	81	Sapec:	NGC 268	299	SBc:(s)MI	NGC753	233	Sc(s)I-II
New 4	264	$\mathrm{Sc}(\mathrm{s}) \mathrm{IM}$ II	IC 5152	329	SdmlV-v	NGC274	52	So ।(0)	NGC 772	125	Sblrsll
New 5	61	$\mathrm{Sa}(\mathrm{s})$	IC 5156	145	$\mathrm{Sb}(\mathrm{s}) \mathrm{II}-\mathrm{III}$	NCC275	52	Spec(tides)	NGC777	4. SI	El
New 6	215	$\mathrm{Sc}(\mathrm{s}) \mathrm{I}$	IC 5179	271	Sc (.s)II-III	NGC278	192	$\mathrm{Sbc}(\mathrm{s}) \mathrm{II} .2$	NGC779	149	Sb (rs) I -II
Peg Dwf	331	ImV	IC 518]	35	SOI(7)	NGC 289	206	SBbc(rs)I-H	NGC 782	161	$\mathrm{SBb}(\mathrm{r}) \mathrm{I}-\mathrm{IJ}$
SexA	331	ImlV	IC 5201	316. S1 0	SBcd(a)II	NGC 300	261. S6	$\mathrm{Sc}(\mathrm{s}) \mathrm{H} .8$	NGC788	65	Sii
Sex B	331	ImIV-V	IC 5240	99	SBa(r)	NGC309	221	$\mathrm{Sc}(\mathrm{r}) \mathrm{I}$	NGC821	13	E6
SmC	330	ImlV-v	IC 5267	78.79	$\mathrm{Sa}(\mathrm{r})$	NGC337	252	Sc -(s) 11.2 pec	NGC 864	192	Slic(r)II-III/SBI>c(r)II-III
IC 346	95	$\mathrm{SBO}_{2} / \mathrm{a}$	IC 5269	34	S0(7)/Sa	NGC 357	97	SBa	NGC877	232	$\mathrm{Sc}(\mathrm{s}) \mathrm{I}-\mathrm{IJ}$
IC 749	306	SBc:	IC 5271	141	$\mathrm{Sb}(\mathrm{rs}) \mathrm{II}$	NGC 404	43	SO.j(0)	NGC890	33	SII\|(5I
IC 750	195	Sbc:	IC 5273	303	SBc:(s)II-III	NGC 406	240	Sdsilit. 8	NGC 891	152.S11	Sb (on edge)
IC 764	215	$\mathrm{Sc}(\mathrm{s}) 1.2$	IC 5325	268	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$	NGC 428	266	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$	NGC895	237	$\mathrm{Sc}(\mathrm{s})$ I]
IC 1459	9	E4	IC 5328	52	SOi(3)	NCC 434	111	Sab(s)	NGC 908	227	$\mathrm{Sc}(\mathrm{s}) \mathrm{I}-\mathrm{II}$
IC 1727	307	SBc:	IC 5332	259	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$	NGC 439	12	E5	NGC 922	313	SBc-
IC 1783	190	Sbc:(rs)II	IC 750	195	Sbe	NGC 44]	95	SB02(rI/a	NGC 925	303	SBc(s)II-III
IC 1788	186	Sbe:(s)I-II	IC 750	306	S(b)	NGC 450	250	Sc-U)II. 3	NGC 936	911. 106. S9	SB09/3/SBa
IC 1933	299	SBc(s)II-III	IC 764	215	Sc:I	NGC470	84.189	$\mathrm{Sbc}(\mathrm{s}) \mathrm{II} .8$	NGC 94]	315	Sccl/SBcd
IC 1953	208	SBbc(rs)II	NGC 16	54	SB0!(4)	NGC 473	145	Sb (r)	NGC955	150	SI.
IC 1954	238	$\mathrm{Sc}(\mathrm{s}) \mathrm{II} .2$	NCC 23	134	Sbl-II	NCC474	81.189	RSO/a	NGC 958	215	Sc:(s) 1.2
IC 2006	3	El	NGC 24	288	$\mathrm{Sc}(\mathrm{s}) \mathrm{IM}$ II	NGC 488	115.1 I6,s: $/$ /I2	Sab (rs)I	NGC 972	148	Sb pec
IC 2035	54	SB0i(4) pec:	NGC 45	314. S6	Se<1(s)III	NGC 491	211	SBbe(r)ll	NGC976	186	$\mathrm{Sbc}(\mathrm{r}) 1$-II
IC 2056	253	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$	NGC 55	318	Scd/SBcd	NGC5 14	248	$\mathrm{Sc}(\mathrm{s}) \mathrm{H}$	NGC 986	158, 169, ITii	$\mathrm{SBb}(\mathrm{rs}) \mathrm{I}-\mathrm{Il}$
IC 2163	214	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$	NGC 95	248	$\mathrm{Sc}(\mathrm{s}) 1.8$	NGC 520	340	Amorph	NGC99 1	24 !	Sc(rs) ${ }^{\text {d }}$
IC 2522	299	Se/SB.:(s)I-II	NGC 128	52	S02(8) pec:	NCC 521	293	$\mathrm{SBc}(\mathrm{rs}){ }^{1}$	NGC 1022	92	SHii(i) pec
IC 2537	230	$\mathrm{Sc}(\mathrm{s}) \mathrm{I}$-II	NGC 134	194	$\mathrm{Sbc}(\mathrm{s})(\mathrm{II}-\mathrm{III})$	NGC 524	72	$\mathrm{SO}_{2} / \mathrm{Sa}$	NGC 1023	55	SHI)\|(5I
IC 2627	228	$\mathrm{Sc}(\mathrm{rs}) \mathrm{I}-\mathrm{II}$	NGC 147	12.16	cle5, N	NGC 533	8	E3	NGC 1035	291	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$
IC 2995	272	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$	NGC 148	40	S02(r)(6)	NGC578	238	$\mathrm{Sc}(\mathrm{s}) \mathrm{I}]$	NGC 1042	227	$\mathrm{Sc}(\mathrm{rs}) \mathrm{I}-\mathrm{II}$
IC 3253	267	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$	NGC 150	190	Sbc-(s)II pee	NCC584	32	SO](3.51	NGC 1052	27	E3/SO \| (3)
IC 3290	23	SBa	NGC 151	210	SBbc(rs)II	NGC596	26	E0/SOi(disk)	NGC 1055	194	$\mathrm{Sbc}(\mathrm{s}) \mathrm{I}]$
IC 3370	5	E2 pec	NGC 157	225	Sc:(s)II-III	NGC 598	262	Sc(s)II-in	NGC 1058	268	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-1 \mathrm{II}$
IC 3896	3	El	NGC 175	123	SBab(s)1-II	NGC 613	167	$\mathrm{SBb}(\mathrm{rs})$] $]$	NCC 1068	138	Sb (rs) II
IC 4296	2. SI	E0	NGC 178	328	SBmlll	NGC615	131	-Sl. (i) 1 1-11	NGC 1073	291	SBc(rs)IJ
IC 4351	150	Sb	NGC 185	15	dE3	NGC625	336	Amorph or Imlll	NGC 1079	67	Sa (s)
IC 4444	253	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$ pec	NGC2 05	25	SO/E pec	NGC628	220	Sc:(s)I	NGC 1084	238	$\mathrm{Sc}(\mathrm{s}) \mathrm{II} .2$
							745				

NAME		PANEL	TYPE									
NGC	1087	279	$\mathrm{Sc}(\mathrm{s}) \mathrm{III} .3$	NGC 1400	43	$\mathrm{SO}_{3}(1)$	NGC 1800	338	Amorph	NGC 2681	62, 87	Sa
NGC	1090	296	$\mathrm{SBc}(\mathrm{s}) \mathrm{I} .8$	NGC 1404	5	E2	NGC 1808	193	She pec	NGC 2683] 49	Sl,(nearly on edge)
NGC	1097	201	RSBbc(s)I-n	NGC 1406	291	Sc	NGC 1832	160	$\mathrm{SBb}(\mathrm{r}) \mathrm{I}$	NGC 2685	45	SO3(7) pec
NGC 1	1156	326	SmIV	NGC 1411	40	SO2(4)	NGC 1947	45	SO 3(0) pec	NGC 2693	22	
NGC	1169	96.106.S9	SBa(r)]	NGC 1415	77	$\mathrm{Sa} / \mathrm{SBa}$ (late)	NGC 1961	137	Sb (rs) II pec	NGC 2701	271	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$
NGC	1172	31	SO i (0.3)	NGC 1417	128	$\mathrm{Sb}(\mathrm{s}) 1.3$	NGC 1964	131	Sb (s)I-II	NGC 2712	165	SBb (s)I-II
NGC	1175	40	$\mathrm{SO}_{2}(8)$	NGC 1421	291	Sc	NGC2082	270	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$	NGC 2713	174	$\mathrm{Sbc}(\mathrm{s}) \mathrm{I}$
NGC	1179	295	$\mathrm{SBc}(\mathrm{r}) \mathrm{II} .2$	NGC 1425	139	$\mathrm{Sb}(\mathrm{r}) \mathrm{II}$	NGC 2090	250. 257	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$	NGC 2715	246	$\mathrm{Sc}(\mathrm{s})$ II
NGC	1187	182	$\mathrm{Sbc}(\mathrm{s}) \mathrm{II}$	NGC 1433	158.169.170	$\mathrm{SBb}(\mathrm{s})$ I-II	NGC 2139	312	SBc	NGC2732	36	S0i(8)
NGC	1199	22	E2	NGC 1437	254	$\mathrm{Sc}(\mathrm{s})$ II	NGC 2146	146	Sbll pec	NGC 2742	250	$\mathrm{Sc}(\mathrm{rs}) \mathrm{II}$
NGC	1201	33	SO! (6)	NGC 1440	57	SBOj/2/a	NGC2179	64	Sa	NGC 2748	288	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$
NGC	1209	13	E6	NGC 1448	287	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$	NGC 2188	319	Scd/SBcd	NGC 2749	8	E3
NGC	1232	216. S13	$\mathrm{Sc}(\mathrm{rs}) \mathrm{I}$	NGC 1452	97.107	SBa(r)	NGC 2196	111	Sab(s)I	NGC 2763	243	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$
NCG	1232A	A 16	SBmlll	NGC 1453	2	E0	NGC 2207	214	$\mathrm{Sc}(\mathrm{s}) 1.2$	NGC2764	145.195	Amorph or Sli pec
NGC	1241	206	SBbc(rs)I. 2	NGC 1461	40	$\mathrm{S} 0 \mathrm{i} / 2$ (7)	NGC 2217	101, 104, 107	SBa(s)	NGC 2768	38, 53	S0i/2(6)
NGC	1249	311	SBc	NGC 1493	308	SBc	NGC 2223	205	SBbe(r)I. 3	NGC2775	78,87, S 12	$\mathrm{Sa}(\mathrm{r})$
NGC	1255	250	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$	NGC 1494	315	Scd/SBcd	NGC 2268	188	$\mathrm{Sbc}(\mathrm{s}) \mathrm{II}$	NGC 2776	221	$\mathrm{Sc}(\mathrm{rs}) \mathrm{I}$
NGC	1275	24	E pec	NGC 1507	318	Scd/SBcd	NGC 2276	263	$\mathrm{Sc}(\mathrm{r}) \mathrm{II}-\mathrm{III}$	NGC 2781	67	$\mathrm{Sa}(\mathrm{r})$
NGC	1288	134	$\mathrm{Sb}(\mathrm{r}) \mathrm{I}-\mathrm{II}$	NGC 1511	292	Sc pec or Amorph?	NGC 2280	221	$\mathrm{Sc}(\mathrm{s}) 1.2$	NGC 2782	82	$\mathrm{Sa}(\mathrm{s}) \mathrm{pec}$
NGC	1291	100.102.S8	SBa	NGC 1512	161	SBb(rs)I pec	NGC 2300	6	E3	NGC 2784	32	$\mathrm{S} 0 \mathrm{i}(0,4)$
NGC	1292	249	$\mathrm{Sc}(\mathrm{s})$ II	NGC 1515	139	$\mathbf{S b}(\mathbf{s})$ II	NGC 2310	42	$\mathrm{SO}_{2 / 3}(8)$	NGC 2787	57. 95	SBO/a
NGC	1297	42	$\mathrm{SO}_{2} / 3(0)$	NGC 1518	272	ScIII	NGC 2314	8	E3	NGC 2793	252	Sell pec
NGC	1300	154.S8	SBb(s). 2	NGC 1521	8	E3	NGC 2325	9	E	NGC 2798	105	$\mathrm{SBa}(\mathrm{s})$ tides
NGC	1302	70	Sa	NGC 1527	40	$\mathrm{SO}_{2}(6)$	NGC 2325	10	E4	NGC 2811	65	Sa
NGC	1309	255	$\mathrm{Sc}(\mathrm{s})$ II	NGC 1531	197,337	Amorph	NGC 2336	204, S13	SBbc(r)I	NGC 2815	131	Sb (s) I -II
NGC	1313	309	SBc	NGC 1532	197	$\mathrm{Sbc}(\mathrm{s})\left(\right.$ (ides? ${ }^{\text {a }}$	NGC 2339	299	$\mathrm{SBc}(\mathrm{s}) \mathrm{II}$	NGC 2832	22	E3 (tides)
NGC	1316	73	Sa pec (ripples)	NGC 1533	90	SBO_{2} (2)/SBa	NGC 2347	186	$\mathrm{Sbc}(\mathrm{r}) \mathrm{I}$-II	NGC 2835	296	$\mathrm{SBc}(\mathrm{rs}) \mathrm{I} .2$
NGC	1317	62.S 12	Sals)	NGC 1536	313	SBc	NGC 2366	327	SBmiV-V	NGC 2841	142.S4.S 12	Sb
NGC	1325	141	Sb(s)II	NGC 1537	13	E6	NGC 2369	178	Sbc(s)I pec	NGC 2844	77	$\mathrm{Sa}(\mathrm{r})$
NGC	1326	100	RSBa	NGC 1543	100,102	$\left.\mathrm{RSBO}_{2} / 3(0) / \mathrm{a}\right)$	NGC 2397	279	$\mathrm{Sc}(\mathrm{s})$ III	NGC 2848	244	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$
NGC	1332	34	S0i(6)	NGC 1546	273	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$	NGC 2403	273	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$	NGC 2851	43	$\mathrm{SO}_{3} / \mathrm{Sa}$
NGC	1337	231	$\mathrm{Sc}(\mathrm{s})$ I-II	NGC 1549	5. SI	E2	NGC 2427	269	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$	NGC 2855	73, 74	Sa (r)
NGC	1339	10	E4	NGC 1553	39	SOi/2(5) pec	NGC 2434	1	E0	NGC 2859	58, S7	$\mathrm{RSBO}_{2}(3)$
NGC	1341	304	SBc(s)II-III	NGC 1559	299	$\mathrm{SBc}(\mathrm{s}) \mathrm{II} .2$	NGC 2441	227	$\mathrm{Sc}(\mathrm{r}) \mathrm{I}-\mathrm{II}$	NGC 2865	10	E4 (SO?)
NGC	1344	28	E5/S0](5)	NGC 1566	171,S5	$\mathrm{Sbc}(\mathrm{s}) 1.2$	NGC 2442	207	SBbc(rs)II	NGC 2880	54	SBOi
NGC	1350	71.88. S3	$\mathrm{Sa}(\mathrm{r})$	NGC 1569	336	SmIV/Amorph	NGC 2460	111, 145. S3	$3 \mathrm{Sab}(\mathrm{s})$	NGC 2888	6	E2 (SO?)
NGC	1351	28	E6/S0](6)	NGC 1574	56. S7	$\mathrm{SBO}_{2}(3)$	NGC 2500	262	Sc(s)II. 8	NGC 2889	135	$\mathrm{Sb}(\mathrm{r}) \mathrm{II}$
NGC	1353	190	$\mathrm{Sbc}(\mathrm{r}) \mathrm{II}$	NGC 1596	51	S0i(7)	NGC2523	160	SBb(r)I	NGC 2902	30	S0i(0)
NGC	1357	68	Sa	NGC 1602	51.328	SBm	NGC 2525	298, S10	$\mathrm{SBc}(\mathrm{s}) \mathrm{II}$	NGC 2903	226	$\mathrm{Sc}(\mathrm{s}) \mathrm{I}-\mathrm{II}$
NGC	1358	100.107.S8	$\mathrm{SBa}(\mathrm{s}) \mathrm{I}$	NGC 1617	79. 87	Sa (s)	NGC 2537	275	ScIII pec	NGC 2907	48	S03(6) pec
NGC	1359	271	Sc(s)II-III	NGC 1625	186	$\mathrm{Sbc}(\mathrm{s}) \mathrm{I}$-II	NGC 2541	264	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$	NGC 2911	49	S03(2) or SO pec
NGC	1365	199.S8	SBbc(s)I	NGC 1637	306	SBc(s)II. 3	NGC 2545	203	$\mathrm{SBbc}(\mathrm{r}) \mathrm{I}$ III	NGC 2924	21	E0
NGC	1366	28	S0!(7)/E7	NGC 1638	73	Sa	NGC 2549	40	$\mathrm{S} 00_{1 / 2}(7)$	NGC2935	155	SBb(s)I. 2
NGC	1371	64, 80.88.S3	Sa (s)	NGC 1640	206	SBbc(r)I-II	NGC 2551	134	$\mathrm{Sb}(\mathrm{r}) \mathrm{I}-\mathrm{II}$	NGC 2942	214	$\mathrm{Sc}(\mathrm{s}) 1.3$
NGC	1376	221	Sc(s)I	NGC 1659	263	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$	NGC 2552	322	Sd/SBd	NGC 2950	57	RSBO2/3
NGC	1379	2	E0	NGC 1667	234	$\mathrm{Sc}(\mathrm{r}) \mathrm{I}-\mathrm{II}$	NGC 2608	183	$\mathrm{Sbc}(\mathrm{s}) \mathrm{II}$	NGC 2955	215	$\mathrm{Sc}(\mathrm{s}) \mathrm{I}$
NGC	1380	61	S03(7)/Sa	NGC 1672	136	Sb (rs)II	NGC 2613	139, S4	$\mathbf{S b}$ (s)(II)	NGC 2962	93	$\mathrm{RSBO}_{2} / \mathrm{Sa}$
NGC	1381	37.50	$\mathrm{S}_{\mathrm{X}}(8)$	NGC 1688	299	$\mathrm{SBc}(\mathrm{s}) \mathrm{II}$	NGC 2633	155	SBb(s)I. 3	NGC 2964	240,251	$\mathrm{Sc}(\mathrm{s}) \mathrm{lf} .2$
NGC	1385	308	SBc	NGC 1700	8	E3	NGC 2639	77	Sa	NGC 2967	230	$\mathrm{Sc}(\mathrm{rs}) \mathrm{I}-\mathrm{II}$
NGC	1386	76. S14	Sa	NGC 1705	335	Amorph	NGC 2642	163	$\mathbf{S B b}(\mathrm{rs}) \mathrm{I}$-II	NGC 2968	49.337	Amorph or SO3
NGC	1387	56	$\mathrm{SB} 0_{2} \mathrm{pec}$	NGC 1726	27	$\mathrm{E} 4 / \mathrm{SO}_{2}(4)$	NGC 2646	56	$\mathrm{SB} 0{ }_{2}$	NCC 2974	9	E4
NGC	1389	35	S0i(5)/SB0!	NGC 1744	316	Scd/SBcd	NGC 2654	114	Sab:	NGC 2976	317	Scd/SBcd
NGC	1395	5	E2	NGC 1784	210	SBbc(r)II	NGC 2655	62	Sa pec	NGC 2983	95	SBa
NGC	1398	120.121	SBab (r)I	NGC 1792	255	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$	NGC 2672	22	E2 (tides)	NGC 2985	I 11	Sab(s)
NGC	1399	19	El	NGC 1796	313	SBc	NGC 2673	22	E0 (tides)	NGC 2986	5	E2

									NAME	Panel	Ti 1 E
NGC 2989	221	Sc(s)I	NGC 3226	26, 153	E2/S0i(2)	NGC3430	176	Sbc(rs)I-I)	NGC 3675	139, S4/13/14	$\mathrm{Sb}(\mathrm{r}) 11$
NGC 2990	252	$\mathrm{Sc}(\mathrm{s}) \mathrm{II} .2$	NGC 3227	26. 153	Sb (s)(tides)	NGC3432	319	Scd/SISrcl	NCC 3681	161	$\mathrm{SBb}(\mathrm{i}) \mathrm{l}$-Il
NGC 2992	85	Sa (tides)	NGC 3241	140	$\mathrm{Sb}(\mathrm{r}) \mathrm{II}$	NGC3432	320	Scd/SBcd	NCC 3683	291	Sc(on edge)
NGC 2993	85	Sab(tides)	NGC 3245	32, 33. S2	SOi(5)	NCC3433	177	$\mathrm{Sbc}(\mathrm{r}) 1.3$	NGC 3684	256	Sc.(a)II
NGC 2997	222. S5	$\mathrm{Sc}(\mathrm{s}) 1.3$	NGC 3250	7	E3	NGC3437	258	$\mathrm{Sc}(\mathrm{a}) \mathrm{II}$	NGC 3686	209	SBI) $\mathrm{C}(\mathrm{s}) \mathrm{II}$
NGC 2998	221	$\mathrm{Sc}(\mathrm{rs}) \mathrm{I}$	NGC 3254	140	$\mathrm{Sb}(\mathrm{s})$ II	NGC3445	275	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$	NGC 3687	206	SBbc(r)I. 2
NGC 3001	206	SBbc(s)I-II	NGC 3256	147	Sb (s) pec	NGC3448	339	Amorph	NGC 3690	282	Sc(tiilca)
NGC 3003	258	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$	NGC 3258	4	E1	NCC3449	77	Sa	NGC 3691	317	Scd/SBcd
NGC 3021	249	$\mathrm{Sc}(\mathrm{s})$ II	NGC 3259	185	$\mathrm{Sbc}(\mathrm{r}) \mathrm{I}$	NGC 3458	54	SBO]	NCC 3705	130	Sb (r)I-11
NGC 3031	129. 332	Sb (r)I-II	NCC 3261	122	SBab(rs)1-Il	NGC 3464	214	$\mathrm{Sc}(\mathrm{rs}) / \mathrm{ISBc}(\mathrm{s}) 1$	NGC 3706	10	Ivl
NGC 3032	74	RSa pec	NGC 3267	61	Sa	NGC 3478	215	$\mathrm{Sc}(\mathrm{s}) 1$	NGC 3717	150	Sb (s)
NGC 3034	333.334	Amorph	NGC 3268	5	E2	NGC 3485	211	$\mathrm{SBbc}(\mathrm{s}) 11$	NGC 3720	I 85	$\mathrm{Sbc}(\mathrm{s})$
NGC 3038	140	$\mathrm{Sb}(\mathrm{s}) \mathrm{II}$	NGC 3269	63, S3	Sa	NGC 3486	18.1. S13	$\mathrm{Sbc}(\mathrm{r}) 1.2$	NGC 3726	I!! I	$\mathrm{Sbc}(\mathrm{rs}) \mathrm{Il}$
NGC 3041	248	$\mathrm{Sc}(\mathrm{s}) \mathrm{ll}$	NGC 3271	61	Sa	NGC3489	60	$\mathrm{SO}_{3} / \mathrm{Sa}$	NGC3732	274	Sc(r) pec
NGC 3043	338	S pec	NGC 3274	317	Scd/SBcd	NGC3495	287. SII	Se (s) $11-\mathrm{III}$	NGC 3735	289	$\mathrm{Sc}(\mathrm{s})(\mathrm{I})$
NGC 3044	319	Scd/SBcd	NGC 3275	122	SBab(r)I	NGC3 504	157. 169	$\mathrm{Sb}(\mathrm{s}) / \mathrm{SBb}(\mathrm{s}) \mathrm{I}-\mathrm{I]}$	NGC 3738	328	Sdill
NGC 3052	236	$\mathrm{Sc}(\mathrm{r}) \mathrm{II}$	NGC 3277	65	$\mathrm{Sa}(\mathrm{r})$	NGC3 506	186	$\mathrm{Sbc}(\mathrm{s}) \mathrm{I}-\mathrm{I})$	NGC 3756	231	$\mathrm{Sc}(\mathrm{s}) \mathrm{l}-\mathrm{II}$
NGC 3054	205	$\mathrm{SBbc}(\mathrm{s}) \mathrm{I}$	NGC 3281	65	Sa	NGC3510	290	Sc (warped plumes)	NGC 3769	311	SBc
NGC 3055	251	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$	NGC 3285	119	Sab(s)	NGC 3511	273	$\mathrm{Sc}(\mathrm{s}) \mathrm{II} .8$	NGC 3773	33(1	Amorph; pec jel
NGC 3056	39.53	SO 1/2(5) pec	NGC 3287	299	$\mathrm{SBc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$	NGC 3512	233	$\mathrm{Sc}(\mathrm{rs}) 1$-11	NGC3780	263	$\mathrm{Sc}(\mathrm{r}) \mathrm{II} .3$
NGC 3059	308. S9	SBc(s)III	NGC 3294	232	Sc(a) 1.3	NGC3513	299	$\mathrm{SBc}(\mathrm{s}) 11.2$	NGC 3782	328	SBcd(s)II)
NGC 3065	38	$\mathrm{SOi} / 2(0)$	NGC 3300	89	$\mathrm{SB} 0_{3} / \mathrm{a}$	NGC 3516	57	RSB0 ${ }_{2}$	NGC 3783	98. 107	$\mathrm{SBa}(\mathrm{r})$!
NGC 3067	292	Sc (dust)	NGC 3301	61	Sa	NGC 3521	188	$\mathrm{Sbc}(\mathrm{s}) \mathrm{II}$	NGC 3810	245	$\mathrm{Sc}(\mathrm{s}) \mathrm{Il}$
NGC 3077	335	Amorph	NCC 3309	4	E1	NGC 3547	192	$\mathrm{Sbc}(\mathrm{s}) \mathrm{II}-\mathrm{HI} \mathrm{pec}$	NGC 3818	12	E5
NGC 3078	8	E3	NGC 3310	196	Sbc(r)(merger)	NGC 3549	258	Se(rs)II	NGC 3865	110	$\mathrm{Sab}(\mathrm{r})$
NGC 3079	290	Sc(s)II-III	NGC 3312	114	Sab (r)	NGC3 556	288	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$	NGC 3872	9	m
NGC 3081	99.:107	SBa(s)	NGC 3318	211	$\mathrm{SBbc}(\mathrm{rs}) \mathrm{II} .2$	NGC 3557	7	E3	NGC3877	287	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$
NGC 3087	5	E2	NGC 3319	303	$\mathrm{SBc}(\mathrm{s}) 11.4$	NGC 3571	77	Sa	NGC 3885	76.87	Sa
NGC 3089	251	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$	NGC 3320	267	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$	NGC 3583	183	Six-	NGC 3887	209	SBbc(s)II-III
NGC 3091	8	E3	NGC 3329	119	Sab	NGC 3585	28	S0](7)/E7	NGC 3888	233	$\mathrm{Sc}(\mathrm{s}) \mathrm{I}-\mathrm{Il}$
NGC 3095	215	$\mathrm{Sc}(\mathrm{s}) \mathrm{l}$-II pec	NGC 3338	173	Sbc(s)I-II	NCC 3593	76	Sa pec	NGC 3892	57	sbo-
NGC 3098	37	$\mathrm{SO}_{\mathrm{x}}(9)$	NGC 3344	177	$\mathrm{Sbc}(\mathrm{rs}) 1.2$	NGC 3596	183	Slie(r)II. 2	NGC 3893	214	$\mathrm{Sc}(\mathrm{s}) 1.2$
NGC 3109	330	SmiV	NGC 3346	296	$\mathrm{SBc}(\mathrm{rs}) \mathrm{II} .2$	NCC 3605	12	E5	NGC 3896	214	BCD
NGC 3115	50	S0](7)/a	NGC 3347	161	$\mathrm{SBb}(\mathrm{r}) \mathrm{I}$	NGC3 607	44	$\mathrm{SO}_{3}(3)$	NGC 3898	79	Sa
NGC 3124	205	SBbc(r)I	NGC 3348	2	E0	NGC 3608	4	El	NGC 3900	69	$\mathrm{Sa}(\mathrm{r})$
NGC 3125	338	Amorph	NGC 3551	168.170	$\mathrm{SBb}(\mathrm{r}) \mathrm{Il}$	NGC 3610	28	E5/SO\|(5)	NGC39 12	313	SBc
NGC 3136	10	E4 (E/SO)	NGC 3353	338	Amorph?	NGC 3611	64	Sa	NGC3923	$\underline{0}$	Ivi/SO 1 (4\|
NGC 3145	202. S9	SBbc(rs)I	NGC 3358	70. 88	$\mathrm{Sa}(\mathrm{r}) \mathrm{I}$	NGC 3613	28	E6/S0i(6)	NGC 3936	231	Sels $\mid 1-\mathrm{II}$
NGC 3147	133	Sb (s)I-II	NGC 3359	295	$\mathrm{SBc}(\mathrm{s}) \mathrm{I} .8 \mathrm{pec}$	NGC 3614	220	$\mathrm{Sc}(\mathrm{r}) 1$	NCC 3938	2 19.220. S5	$\mathrm{Sc}(\mathrm{s}) \mathrm{I}$
NGC 3156	28	$\mathrm{SO}_{2} / 3(5) / \mathrm{E} 5$	NGC 3367	293	$\mathrm{SBc}(\mathrm{s}) \mathrm{II} .2$	NGC3619	75	Sa	NGC3941	89	Slid 10/a
NGC 3158	22	E3	NGC 3368	118	Sab(s)II	NGC 3621	273	$\mathrm{Sc}(\mathrm{s}) \mathrm{II} .8$	NGC 3945	58. 57	KSUO;)
NGC 3162	183	$\mathrm{Sbc}(\mathrm{s}) 1.8$	NGC 3370	234	$\mathrm{Sc}(\mathrm{s}) \mathrm{I}-\mathrm{II}$	NGC 3623	77. S14	$\mathrm{Sa}(\mathrm{s}) \mathrm{I}$)	NGC 3949	265	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{Hl}$
NGC 3166	77	$\mathrm{Sa}(\mathrm{s})$	NGC 3377	19	E6	NGC 3626	63.64.74	Sa	NGC3953	201	SBbc(r)I-II
NGC 3169	132	$\mathrm{Sb}(\mathrm{r}) \mathrm{I}-\mathrm{II}($ tides)	NGC 3377 A	A329	1 m	NGC 3627	137. S14	Sb (s)III. 2	NGC 3956	258	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$
NGC 3175	268	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$:	NGC 3379	1	E0	NGC 3629	248	$\mathrm{Se}(\mathrm{s}) 11.2$	NGC 3957	44	SO3(9)
NGC 3177	140	Sb (s)II	NGC 3384	54. S7	SB0](5)	NGC3 630	36	SO 1 (9)	NGC 3962	4	El
NGC 3184	237. S5	$\mathrm{Sc}(\mathrm{r}) \mathrm{II} .2$	NGC 3389	253	$\mathrm{Sc}(\mathrm{s}) \mathrm{II} .2$	NGC 3631	179	$\mathrm{Sbc}(\mathrm{s}) \mathrm{II}$	NGC 3963	185	$\mathrm{Sbc}(\mathrm{r}) 1.2$
NGC 3185	99	SBa(s)	NGC 3390	44	$\mathrm{SO}_{3}(8)$ or Sb	NGC 3637	89	$\mathrm{RSBO}_{2} / ; / / \mathrm{SBa}$	NGC 3981	178	Sbc(s)I-II(tides:')
NGC 3187	276	$\mathrm{Sc} / \mathrm{SBc}$	NGC 3395	282	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$	NGC 3642	126	$\mathrm{Sb}(\mathrm{r}) \mathrm{I}$	NGC 3985	252	Se(s)11 pee
NGC 3190	76	Sa	NGC 3396	282	Sc (tides)	NGC 3646	189	$\mathrm{Sbc}(\mathrm{r}) \mathrm{Il}$ pec	NGC 3990	34	$\mathrm{SO}(6) / \mathrm{Sa}$
NGC 3193	5	E2	NGC 3403	257	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$	NGC 3664	328	SBmll1	NGC 3991	283	Pec(tides)
NGC 3198	231	$\mathrm{Sc}(\mathrm{s})$ I-II	NGC 3412	55	SB0 $0_{1 / 2}(5)$	NGC 3665	43	SO3(3)	NGC 3992	155	SBb (rs)11
NCC 3200	176	$\mathrm{Sb}(\mathrm{r}) \mathrm{I}$	NGC 3414	50. 53	$\mathrm{SO}_{1 / 2}(0) / \mathrm{a}$	NGC 3666	291	Sell-III	NGC 3994	283	She or Se
NCC 3203	47. S2	$\mathrm{SO}_{2}(7)$	NGC 3415	145	Sb	NGC 3672	231	Sc(s)l-II	NCC 3995	283	Sc(tides)
NGC 3223	134.S4	$\mathrm{Sb}(\mathrm{s}) \mathrm{I}-\mathrm{II}$	NGC 3423	242	$\mathrm{Sc}(\mathrm{s}) 11.2$	NGC 3673	130	Sb (rs)1-11	NGC 3998	31.53	So i(3)

NAME	PANEL	TYPE									
NGC 4008	33	SO i(5)	NGC 4234	310	SBc	NGC4395	324. S6	Sclili-IV	NGC 4559	247	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$
NGC4013	19-1	SI,.-:	NGC4235	76	Sa	NGC 4406		S0i(3)/E3	NGC 4564	13. S1	E6
NGC. 4024	31	SOi(2.5.2 1	NGC 4236	324. S10	SBdIV	NGC 4412	201	SBbe(s)I-II pei:	NGC 4567	281	$\mathrm{Sc}(\mathrm{s}) 1 \mathrm{l}-\mathrm{Ill}$
NGC 4026	50	$\mathrm{SOi} / 2$ (9)	NGC 4237	246	$\mathrm{Sc}(\mathrm{r}) \mathrm{II} .2$	NCC 4414	254	$\mathrm{Sc}(\mathrm{sr}) \mathrm{II} .2$	NGC 4568	281	$\mathrm{Sc}(\mathrm{s})$ II-III
NGC402 7	252	$\mathrm{Sc}(\mathrm{s}) \mathrm{II} .2$	NGC 4242	322	Sd/SBd	NCC 4417	47	$\mathrm{SO}_{\mathrm{x}}(7)$	NGC4569	109	$\mathrm{Sab}(\mathrm{s}) \mathrm{I}-\mathrm{H}$
NGC. 4033	35	SOi(fi)	NCC 42 14	319	Scd/SBcd	NGC4419	86. 114	Sa (dust only)	NGC 4570	29	S0,(7)/E7
NGC 4036	60	S03(8)/Sa	NGC 4245	95	SBa(s)	NGC 4420	274	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$	NGC 4571	260	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$
NGC 4038	280	Sc(tid.--)	NGC 4251	36. S2	S0i(8)	NGC 4424	60	S(a?) pec	NGC 4578	38	S0] $/ 2$ (4)
NGC 4039	280	Sc (tides)	NGC 4254	224	$\mathrm{Se}(\mathrm{s}) 1.3$	NGC 4425	57.60	SBO pec or Sa	NGC 4579	108	Sab(s)II
NGC 4041	268	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-111$	NGC 4256	150	Sb (s)	NGC 4428	265	$\mathrm{Se}(\mathrm{s}) 11.3$	NGC 4580	86.276	$\mathrm{Sc}(\mathrm{s}) / \mathrm{Sa}$
NGC 4047	232	$\mathrm{Sc}(\mathrm{s}) \mathrm{I}-\mathrm{I}]$	NGC4258	135	$\mathrm{Sb}(\mathrm{s}) \mathrm{II}$	NGC 4429	60. S2	S03(6)/Sa	NGC 4580	276	Sc:
NGC 4050	131	Sl, ¢.)]-1]	NGC 4260	94	SBa(s)	NCC 4433	194	SbcIII	NGC 4586	76	Sa
NGC405 1	180	S $1, \mathrm{c}(\mathrm{r}) 11$	NGC4261	6	E3	NGC 4435	56. 153	SB0](7)	NGC 4589	6	E2
NGC 4062	265	S.-1s/1I-1II	NGC4262	56	SBOi	NGC 4438	56. 153	Sli'.(tides)	NGC 4592	319	Scd/SBcd
NGC 4064	313	SBc	NGC4267	54	SBO_{1}	NGC 4442	5.5	SBO 1(6)	NGC 4593	165	$\mathrm{SBb}(\mathrm{rs}) \mathrm{I}-\mathrm{II}$
NGC 4073	12	E5	NGC 4270	35	S0!(6)	NGC 4448	69	Sa(late)	NGC 4594	113. SI 1	$\mathrm{Sa}^{+} / \mathrm{Sb}{ }^{\prime}$
NGC 4085	291	ScIII:	NCC 4273	310	SBc	NCC 4449	326. S6	SmIV	NGC 4595	265	Se(s)II-III
NGC 4088	271	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{III} / \mathrm{SBE}$	NGC 4274	66.88	$\mathrm{Sa}(\mathrm{sr})$	NGC 4450	110. SI 4	Sal, pee	NGC4596	101	SBa(very early)
NGC 4094	189	$\mathrm{Sbc}(\mathrm{s})$ I]	NGC4278	20	El	NGC 4452	36	SOjIIO)	NGC 4597	304	SBc(r)III:
NGC 4096	287	$\mathrm{Sc}(\mathrm{s}) \mathrm{H}$	NCC4281	44	$\mathrm{SO}_{3}(6)$	NGC 4454	67	Sa	NCC 4602	229	Sc(i-) $1-11$
NGC 4100	229	$\mathrm{Sc}(\mathrm{s}) \mathrm{I}-\mathrm{II}$	NGC4283	2	вО	NGC 4457	138	RSb(s)II	NGC 4603	176	$\mathrm{Sbc}(\mathrm{s}) \mathrm{I}-\mathrm{II}$
NGC 4102	140	Sb (r)1 \ldots <-	NGC 4283	20	Ео	NGC 4459	43	SO3(3)	NGC 4605	292	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$
NGC 4105	56. 105	SOi/2(3)	NGC4286	20	dE.N/Im	NGC 4460	36	SO/Sc:	NGC 4608	97	SBO3/a
NGC4106	56.105	SBO/a(tides)	NGC 4293	59	Sa	NGC 4461	61	Sa	NGC4612	57	RSBO $1 / 2$
NGC 1111	47.53	$\mathrm{SO}_{2}(91$	NGC 4294	310	SBc	NGC 4462	123	SBab(s)I-II	NGC 4618	212	$\mathrm{SBI}) \mathrm{c}$ (rs) II .2
NGC 4116	306	$\mathrm{SBc}(\mathrm{r}) \mathrm{II}-\mathrm{III}$	NGC 4298	279.289	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$	NGC 4469	114	Sab (on edge)	NCC 4621	12. 32	E5
NGC 4123	201.S8	SBbc(rs)I. 8	NCC 4299	328	SdU)III	NGC 4472	18. 26	El/SOjd)	NCC 4623	13. SI	E7
NGC412 4	44	802(1-116)	NGC 4302	289	Sc (on edge)	NGC 4473	11	E5	NCC 4625	275	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{II}]$ pec
NGC4 125	28	E6/S0 1/2(6)	NGC 4303	213	$\mathrm{Sc}(\mathrm{s}) 1.2$	NGC 4474	37	$\mathrm{SO}_{1}(8)$	NGC 4627	290	dE5.N
NGC 4128	35	SOi(6)	NGC430 I	208	SBbc(s)ll	NGC 4476	11.12	E5 pec(dust); $\mathrm{SO3}$ (5)	NGC 4630	275	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$
NGC 4129	291	$\mathrm{Sc}(\mathrm{s}) 11$	NGC 4307	150	SI)	NGC 4477	90	SBOi/2/SBa	NGC4631	290	Se(on edge)
NGC 4136	230	$\mathrm{Sc}(\mathrm{r}) \mathrm{I}-\mathrm{Il}$	NCC 4314	95. 106	SBa(rs) pec	NGC 4478	6	E2	NCC4632	288	$\mathrm{Sc}(\mathrm{s}) \mathrm{IL} 3$
NGC 4138	74	$\mathrm{Sa}(\mathrm{r})$	NGC 4321	213	$\mathrm{Sc}(\mathrm{s}) \mathrm{I}$	NGC 4483	54	SBO, (5)	NGC 4636	26	E0/S0](6)
NGC 4143	59	S0\|(5)/Sa	NGC4324	66	Sa(i-) ring	NGC 4485	317	Scd/SBcd	NCC 4639	164	SBb(r)IJ
NGC 4144	319	Scd/SBcd	NCC 4339	38	$\mathrm{SOi} / 2$ (0)	NGC 4486	17	EO	NGC 4643	97. 107	$\mathrm{SBO}_{3} / \mathrm{SBa}$
NGC 4145	235	Si-i i-111	NGC 4340	57. S7	RSBO2	NGC 4487	250	$\mathrm{Se}(\mathrm{s}) \mathrm{II} .2$	NGC 4645	12	E5
NGC 4150	-	S $0_{\text {jij }}(4) / \mathrm{Sa}$	NGC 4342	23	E7(S0!)	NGC 4490	317	Scd/SBcd	NGC4647	51.278. S14	$4 \mathrm{Se}(.-\mathrm{s}) 111$
NGC4151	119	Sab	NGC4346	55	SB0i(8)	NGC 4494	4	E1	NGC 4649	51	SO 1 (2)
NGC4152	233	$\mathrm{Sc}(\mathrm{r}) 1.4$	NGC 4350	35	S0i(8)	NGC 4496	308	SBc	NGC4651	233	$\mathrm{Sc}(\mathrm{r}) \mathrm{I}-\mathrm{Il}$
NGC 4162	2.31	Sc(.-II-11	NGC 4365	7. 18. SI	E3	NGC450 1	187	$\mathrm{Sbc}(*) \mathrm{II}$	NGC 4653	230	$\mathrm{Sc}(\mathrm{rs}) 1.3$
NGC 4178	311	SBc	NGC 4369	275	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}-\mathrm{IV}$	NGC 4503	61	Sa	NGC 4654	302	SBe(i-s)II-III
NGC 1179	36. S2	SOi(91	NGC 4371	57	$\mathrm{SBO}_{2} / 3(\mathrm{r})(3)$	NCC 4504	247	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$	NGC 4656	327, S6	Im
NGC 4183	320	Scd/SBcd	NGC 4373	23	E4	NGC4507	123	SBab(rs)I	NGC 4657	327. S6	Im
NGC 4189	244	SBc(sr)I]	NCC 4374	4	El	NGC4519	304	SBc(rs)II. 2	NGC 4660	11.19	E5 (E/SO)
NGC 4190	326	SmiV	NGC 4377	52	SO] (3)	NGC 4522	194. 291	Sc/SI>:	NGC 4666	194	SbcII. 3
NGC 1192	135	SI,II:	NCC 4378	70	Sa (s)	NGC 4526	44	$\mathrm{SO}_{3}(6)$	NCC 4668	313	SBc
NGC 1203	11	S()2(11	NGC4379	31	SO 1 (2)	NGC 4527	141	$\mathrm{Sb}(<) \mathrm{II}$	NCC 4679	141	$\mathrm{Sb}(\mathrm{s}) \mathrm{I}-\mathrm{I}]$
NGC 4212	278	$\mathrm{Sc}(\mathrm{s} \mid \mathrm{II}-\mathrm{III}$	NGC 4380	117	Sab(s)	NGC4532	327	SmIII	NGC 4682	192	$\mathrm{Sbc}(\mathrm{rs}) \mathrm{II}$
NGC 1211	330	SBmlll	NGC 4382	41	$\mathrm{SO}_{2}(3) \mathrm{pec}$	NGC4535	297	$\mathrm{SBc}(\mathrm{s}) \mathrm{I} .3$	NGC 4684	42	SO[(7)
NGC 4215	17	So\|191	NGC 4383	337	Amorph?(not SO)	NGC4536	174	$\mathrm{Sbc}(\mathrm{s}) \mathrm{I}-\mathrm{Il}$	NGC 4689	277	$\mathrm{Sc}(\mathrm{s}) \mathrm{II} .3$
NGC 1216	149	Sb (s)	NCC4385	211	SBbc(s)II	NGC 4540	275	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$	NGC469 1	337	R Amorph pet
NGC 1219	190	$\mathrm{Sbc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$	NGC 4386	34	SO ${ }^{1(5)}$	NCC 4546	89	SBOi/Su	NGC 4694	338	Amorph
NGC 1220	77	$\mathrm{Sa}(\mathrm{r})$	NCC 4388	I 14	Sal,	NGC4 548	169.170	$\mathrm{SBb}(\mathrm{rs}) \mathrm{I}-\mathrm{II}$	NCC469 6	43	$\mathrm{SO}_{3}(0)$
NGC 1224	76	Sa	NGC 1389	313	SBc	NGC 4550	29	E7/S0\|(7)	NGC 4697	13. 19	E6
NGC 4233	7. 5	SB0ị(6)	NGC 4394	165	SBb (sr)I-III	NGC4552	30	SO \|(0)	NGC 4698	78.79 .87	S11

									name	Panel	TYTK
NGC 4699	Ta.S7.118.S12	$\mathrm{Sab}(\mathrm{sr})$ or Sa	NCC 5011	30	S0,(2)	NCC 53:\%3	29	$\mathrm{SO}_{2} / 3$? 7 (7)/E7	NCC 56,11	12:i	SBnli
NGC 4700	291	Sc or Sm	NGC 5017	6	E2	NGC 5354	29		NCC 5613	30	SBi-isim-III
NGC 4710	44	$\mathrm{SO}_{3}(9)$	NGC 5018	41.59	$\mathrm{SO}_{2}(4) / \mathrm{a}$	NGC 5355	29	SO ; (3)/E3	ngc 5645	265	S; (sill- III
NGC 4712	240	$\mathrm{Sc}(\mathrm{s})$ II	NGC 5033	127	$\mathrm{Sb}(\mathrm{s})$]	NGC 5357	7	E3	NGC 5653	271	SI'Is1111 \|mT
NGC 4725	168	$\mathrm{Sb} / \mathrm{SBb}(\mathrm{r}) \mathrm{II}$	NGC 5037	1 I	$\mathrm{Sab}(\mathrm{s})$	NGC 5358	29	SO](61	NGC 5660	211	S.-(sll1. 2
NGC 4731	310	SBc	NCC 504 I	2	EO	NGC 5362	2.18	Sc(s)II	NGC 5665	86.2')2	$\mathrm{Su} / \mathrm{Sc}$
NGC 4736	119	RSab(s)	NGC 5054	130.SI	$\mathrm{Sb}(\mathrm{s}) \mathrm{I}-\mathrm{I})$	NGC 5361	217	$\mathrm{Sc}(\mathrm{r}) 1$	NGC 5668	2(,1.268	Sils 111-111
NGC 4742	10	E4	NCC 5055	191.55	$\mathrm{Sbc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$	NGC 5365	58	KSIS l_{2}	ngc 5669	2i)i)	Slitislıl
NGC 4753	48	SO pec	NGC 5061	\therefore	EO	NGC 5371	126	$\mathrm{Sb}(\mathrm{rs}) \mathrm{l}^{\text {/ }}$ SBli(rs) 1	NGC 567P	2.15	Si-1sIII
NCC4 754	54	SB0i(5)	NCC 5064	77	Sa	NGC 5376	190	$\mathrm{Sbc}(\mathrm{s}) \mathrm{II}$	NGC 5678	278	s., sinll- ill
NGC4760	30	SOJ (2) or cD	NCC 5068	306	$\mathrm{SBc}(\mathrm{s}) \mathrm{II}-\mathrm{II}]$	NGC 5377	96	Slia or Sa	NGC 5689	78	Sa
NGC4762	37	SO i $\mathrm{I}_{\text {I }}$ 0	NCC 5074	313	SBc	NGC 5380	30	SOI(0)	NGC 56'III	288	Si-1s111:
NGC4763	21 I	SBbc(r)II	NCC 5077	42	SOi/2(4)	NGC 5383	168	Slilmsill	NGC 5691	168	SIIIII, \|.r.' ill:
NGC 4765	337	Amorph?	NGC 5084	50	so, 181	NGC 5394	153	Sb (tides)	NGC 5701	Ion.1111.10'1	(PR)SBn
NGC4767	59	$\mathrm{SO}_{2}(6) / \mathrm{a}$	NGC 5085	243	$\mathrm{Sc}(\mathrm{r}) \mathrm{U}$	NGC 5395	153	SI,II	NGC 5713	196	sim-ISI pri-
NGC 4775	268	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$	NGC 5087	43	SO3(5)	NCC 5398	304	SBc(s)II-III	NCC 5728	166	Sm, (sill
NGC 4781	273	$\mathrm{Sc}(\mathrm{s}) \mathrm{III}$	NGC 5088	292	Scis 111	NGC 5406	1 Co	$\mathrm{SBb}(\mathrm{r}) 1$	NGC 5739	70	Sa
NGC 4782	21	EO(tides)	NGC 5090	22	E2	NGC 5119	30	SO1(2)	NGC 5710	1.11	simsiui
NGC 4783	21	El (tides)	NGC 5091	22	Sa	NGC 5422	50. S2	Sa or SO3(8)	NGC 5716	151.S11	SI,
NGC 4786	8	E3	NGC 5101	100. 10 1. 10:)	Sba	NGC 5426	198	$\mathrm{Sbc}(\mathrm{rs}) 1.2$	NGC 5750	98	SBals1
NCC 4790	315	Scd/SBcd	NGC5102	34	So \|(5)	NGC 5.127	198	$\mathrm{Sbc}(\mathrm{s}) 1$	NGC 5756	23'). 257	S,-(sll1
NGC 4793	257	$\mathrm{Sc}(\mathrm{s}) \mathrm{II} .2$	NGC5 112	248	$\mathrm{Sc}(\mathrm{rs}) \mathrm{I]}$	NGC 5430	209	SH1.C(H) 1.8	NGC 57.1	161	SBli(rs)II
NGC 4795	105	SBa(tides?)	NGC5121	61	Sa	NGC 5448	67	$\mathrm{Sa}(\mathrm{s})$	NGC 5768	2511	Siisill
NGC4800	188	Sb (rs) [I-III	NGC5128	45.46	SO +S pec	NGC 5457	218	$\mathrm{Sr}(\mathrm{s}) 1$	NGC 5775	289	St-(om edge)
NCC 4808	288	Sc:(s)III	NGC 5134	144	Sb (s)(II-III)	NGC 5464	328	SBmill	NCC 5791	31	Sol(11
NGC 4814	128	$\mathrm{Sb}(\mathrm{s}) \mathrm{I}$	NGC5135	165	SBb pec	NCC 5468	245	$\mathrm{Sc}(\mathrm{s}) 1.8$	NGC 5792	161	SBb (ra). 3
NGC 4825	38	SO1/9(3)	NGC 5150	134	$\mathrm{Sb}(\mathrm{r}) \mathrm{I}$ - D	NGC 5473	54. S7	Sb0i(3)	NCC 5796	3	El pec
NGC 4826	110	$\mathrm{Sab}(\mathrm{s}) \mathrm{II}$	NCC5156	164	$\mathrm{SBb}(\mathrm{rs}) \mathrm{I}$-n	NGC 5474	315	Scd/SBcd	NCC 5806	144	st, [sill. 8
NGC 4835	288	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$	NCC5161	220	$\mathrm{Sc}(\mathrm{s}) \mathrm{I}$	NGC 5477	326	S,1:	NGC 5812	I	El)
NGC 4856	89	$\mathrm{SOj}(6) / \mathrm{Sa}$	NCC5 170	150	Sb :	NCC 5480	274	Scfsim	NCC 5813	3.	El
NCC 4861	327	SBmill	NGC5188	211	SBbc(s)II-H) pec	NGC 5483	211	SBbc(s)II-III	NGC 5820	10	$\mathrm{SO} \mathrm{O}_{(1-1)}$
NGC4866	60	Sa	NCC 5193	30	S0i(0)	NGC5485	45	S $0 ; \mathrm{J}(2 \mid$ pec (prolate)	NGC 5831	27	Et/SO 1 (-1- Idiliskl
NCC4874	21	E0	NGC 5193A		SO $1 / 2$ (8)	NGC 5493	35	S0\|(7)	NGC 5838	. 11	$\mathrm{SO}_{2}(5)$
NGC 4889	23	E4	NGC 5194	172.177	Sbc(s)l--11	NGC 5494	244	Sds) 11	NCC 58.16	52	Soi (0)
NGC 4891	205	SBbc(r)-II	NGC5195	55.172.177	SBOj ${ }^{\text {¢ }}$ ¢	NGC 5496	289	Sets)II	NCC 5850	163	$\mathrm{SBb}(\mathrm{sr}) \mathrm{I}-\mathrm{II}$
NGC 4899	232	Sc(s)l-II	NGC5 198	2	E1?	NGC 5530	270	Sc(s)II. 8	NGC 5851	61	Sa
NGC 4902	162	$\mathrm{SBb}(\mathrm{rs}) \mathrm{I}-\mathrm{II}$	NGC 5204	324	Sd/SBd	NGC 5533	128	$\mathrm{Sb}(\mathrm{s}) 1$	NCC 5861	239	Sclsill
NGC4914	28	E5/SOi(5)	NGC 5236	300.301	SBc(s)II	NGC 5534	212	.S!liii-(s)l(ifile. \sim merger?	NGC 5864	89	Slia
NGC4915	2	E0	NGC5 247	223.55	$\mathrm{Se}(\mathrm{s}) \mathrm{I}-\mathrm{n}$	NGC 5548	65	Sa	NGC 5866	II	SO3(8)
NGC 4928	274	Sc(s)in. 3	NGC5 248	174	$\mathrm{Sbc}(\mathrm{s}) \mathrm{I}-\mathrm{Il}$	NCC5556	305	SBc(sr)IMII	NGC 5878	128	Sb (s)1.2
NGC 4933	49	SO3 pec (tides)	NGC5253	335	Amorph	NGC5557	6	E2	NGC 5879	139	st, /sill - ill
NGC 4936	22	E2	NGC5266	45	S03(5) pec (prolate)	NCC 5566	1(15	SBa(r)II	NGC 5885	302	Sb,-I sill
NGC 4939	176	$\mathrm{Sbc}(\mathrm{rs})$ I	NCC5 273	72	SOIn	NGC55 74	59	SO 1 (8 I/a	NGC 5898	12	s(2) 2: J10:
NGC 4941	117	Sab(s)II	NCC 5297	228	$\mathrm{Sc}(\mathrm{s}) \mathrm{i}-\mathrm{n}$	NCC5576	9	E4(tide8?)	NGC 5899	239	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$
NGC 4945	285	Si:	NGC 5301	289	$\mathrm{Sc}(\mathrm{s})$	NCC 5584	244	$\mathrm{Sc}(\mathrm{s}) 1.8$	NGC 5903	27	E3/SO[(3)
NGC 4947	184	Sbc(s)I-II pec	NGC 5308	37	SO 1 (81	NGC 5585	323	Sd/SBd	NCC 5905	203	SBb<:(rs)I
NCC 4951	249	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$	NGC5313	192	$\mathrm{Sbc}(\mathrm{s}) \mathrm{II}$	NGC 5592	175	$\mathrm{Sbc}(\mathrm{s}) \mathrm{I}-\mathrm{II}$	NGC 5907	28). SI 1	Srfoll I difil)
NCC4958	37	SOi(7)	NGC 5322	10	E4 (E/SO)	NGC 5595	253	$\mathrm{Sc}(\mathrm{s})$ II	NGC 5908	152	SI,(on edge)
NGC 496 I	211	SBbc(s) $]$	NGC 5324	185	$\mathrm{Sbc}(\mathrm{r}) 1.3$	NGC 5597	298. SIO	$\mathrm{SBc}(\mathrm{s})$ []	NGC 5915	212	SBbc(s) pec
NGC 4976	31	$\mathrm{SOi}(4)$	NGC5326	44.76	S03(6)/Sa	NGC5605	246	Srisislil	NGC 5916	81	Sapec
NCC 4981	210	SBbc(sr)II	NGC5328	23	E4	NCC5613	81	Sa	NGC 592 I	206	SBbc(s)I-H
NGC 4984	73	$\mathrm{Sa}(\mathrm{s})$	NGC 5334	302	$\mathrm{SBc}(\mathrm{rs}) \mathrm{II}$	NCC5614	81	$\mathrm{Sa}(\mathrm{s})$ (tidea)	NGC 5936	228	$\mathrm{Sc}(\mathrm{r}) \mathrm{I}-\mathrm{H}$
NGC 4995	183	Sbe(s) II	NGC 5347	164	SBb (s)I-II	NGC563 1	74	$\mathrm{SO}_{3}(2) / \mathrm{Sa}$	NGC 59.19	279	Sc
NCC 4999	159. S9	$\mathrm{SBb}(\mathrm{rs}) \mathrm{I}$	NGC5350	29. 202	$\mathrm{SBbc}(\mathrm{rs}) \mathrm{I}-\mathrm{Il}$	NGC 5633	253	$\mathrm{Sc}(\mathrm{s}) \mathrm{H}$	NGC 5962	264	$\mathrm{Sc}(\mathrm{rs}) \mathrm{II} .3$
NGC 5005	139. SI 4	$\mathrm{Sb}(\mathrm{s}) \mathrm{II}$	NGC 5351	184	$\mathrm{Sbc}(\mathrm{rs}) 1.2$	NGC5638	4	El	NGC 5967	249	Si-Irsill. 2

NAME	Panel	TYPE						
NGC 5970	211	SBbe(r)I)	NGC 6935	67	$\mathrm{Sa}(\mathrm{r})$	NGC 7331	133	$\mathbf{S b}$ (rs)I-U
NGC 5982	22	E3	NGC 6942	92.106	SBa(s)	NGC 7332	42	$\mathrm{SO}_{2} / 3(8)$
NGC 598!	320	Scd/SBcd	NGC 6943	140	Sb(rs)I]	NGC 7361	288	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}-\mathrm{III}$
NGC 5985	160	$\mathbf{S B b}(\mathbf{r})$]	NGC 6946	239	Sc(s)II	NGC 7371	96, 106.SI 2	SBa(r)II
NGC 6015	265	$\mathbf{S c}(\mathbf{s}) \mathrm{II}-\mathrm{II}]$	NGC 6951	155	$\mathbf{S b / S B b}(\mathrm{rs}) \mathrm{I} .3$	NGC 7377	75.SI 4	S09/3/Sa pee
NCC 6070	229	Sc(s)I-H	NGC 6958	30	S0\|(3)	NGC 7392	186	Slic(s)1-II
NGC 6106	264	$\mathrm{Sc}(\mathrm{rs}) \mathrm{II} .3$	NGC 6970	253	Sc(s)II	NGC 7410	96	SBa or Sa
NGC 6118	229	Sc(s)1.3	NGC 6981	183	Sbe(r)1.8	NGC 7412	227	$\mathrm{Sc}($ (s) $)$-II
NGC 6181	240	$\mathbf{S c}(\mathbf{s})$ II	NGC 7007	59	SO $2 / 3 / \mathbf{}$	NGC 7418	238	Sc(rs) 1.8
NGC6207	274	Sell!	NGC 7014	23	E5	NGC 7421	210	SBbe(rs)II-III
NGC 6215	251	Sc(s)I]	NGC 7020	70	RS02(5)/RSa	NGC 7424	295.S9	$\mathbf{S c}(\mathrm{rs}) \mathrm{II} .3 / \mathrm{SBe}(\mathrm{s}) \mathrm{II} .3$
NGC 6217	209	RSBbe(s)I]	NGC 7029	32	So, (5)	NGC 7448	251	$\mathrm{Se}(\mathrm{r}) 11.2$
NGC 6221	189	Sbe(s)II-III	NGC 7038	175	Sbe(s)1.8	NGC 7456	264	Se (s)II-III
NGC 6239	310	SBc	NCC 7041	29	SO	NGC 7457	33	SOi (5)
NGC 6300	168	$\mathbf{S B b}(\mathbf{s})$ II pec	NGC 7049	59. 74	$\mathrm{SO}_{3}(4) / \mathbf{S a}$	NGC 7462	311	SBc
NGC 6310	62	$\mathbf{S a}(\mathbf{r}) \mathrm{I}$	NGC 7059	249	$\mathrm{Sc}(\mathrm{r}) \mathrm{I}]$	NGC 7479	200.S8	SBbe(s)I-II
NGC 6384	127.54	Sb(r)1.2	NGC 7064	320	Scd/SBed	NGC 7496	303.S 10	SBc(s)IL8
NGC 6412	304	$\mathbf{S B c}(\mathbf{s}) / \mathbf{S c}(\mathbf{s}) \mathbf{I - I]}$	NGC 7070	306	SBc:	NCC 7507	1	EO
NGC 6482	6	E2	NGC 7079	97	SBa	NGC 7531	175	Slie(r)I-II
NGC 6503	288	Sc -(s) 11.8	NGC 7083	130	Sb (s)I-II	NGC 7537	282	Sc(s)
NGC 6574	219	$\mathbf{S c}(\mathbf{s}) \mathbf{I I}$	NGC 7090	195	Amorph .ir SBc:(on edge)	NGC 7541	255.282	Sc(s)II
NGC 6643	216.217	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$	NGC 7096	68.88.S3	$\mathrm{Sa}(\mathrm{r}) 1$	NCC 7552	156	SBb(s)I-II
NGC 6684	97	SBa(s)	NGC 7097	9	E4	NGC 7582	122	SBab(rs)
NGC 6699	184	$\mathrm{Sl} \mathrm{c}(\mathrm{s}) 1.2$	NGC 7107	316	Scd/SBed	NCC 7585	84	S0i(3)/Sa
NGC 6721	3	El	NGC 7119	282	$\mathrm{Sc}(\mathrm{s}) \mathrm{II}$	NGC 7600	33	SOi(5)
NGC 6744	188	$\mathbf{S b c}(\mathbf{r})$ II/SBbe(\mathbf{r})II	NGC 7124	174	Sbe(rs)I-II	NGC 7606	127.S 13	$\mathbf{S b}(\mathbf{r}) 1$
NGC 6753	125	$\mathbf{S b}(\mathbf{r}) \mathbf{I}$	NGC 7125	225	$\mathbf{S c}(\mathbf{r s}) \mathrm{I}-\mathrm{II} / \mathbf{S B c}(\mathbf{s}) \mathrm{I}-\mathrm{I}]$	NGC 7619	7	E3
NGC 6754	192	Sbc(s)II-m	NGC 7126	111	Sab(s)I	NGC 7623	23	E5
NGC 6758	5	E2	NGC 7135	51	SO i per (merger)	NGC 7626	3	El
NGC 6769	153	$\mathrm{Sb}(\mathrm{r}) \mathrm{n}$	NGC 7137	266	Sc(rs)II. 8	NGC 7640	311	SBc
NGC 6770	153	SBb(tides)	NGC 7144	1	E0	NGC 7678	201	SBbe(s)I-II
NGC 6776	3	El pec (ripple)	NGC 7145	1	EO	NGC 7679	86, 292	$\mathrm{Se}(\mathrm{s}) / \mathrm{Sa}$ (tides?)
NGC 6780	177	Sbe(rs)I-II	NGC 7155	56	SBO	NGC 7689	241	$\mathbf{S c}(\mathbf{s r})$ II
NGC 6782	122	SBab(s)	NGC 7162	190	Sbc(rs)I]	NGC 7690	118	Sab(s)
NGC 6808	258	Sc(s)II	NCC 7162 A	A324	Sil/SBrl	NGC 7702	66	RSa(r)
NGC 6810	145	SI)	NGC 7166	34	SOi(6)	NGC 7713	267	Sc(s)II-III
NGC 6814	175	Sbe(rs)I-II	NGC 7168	7	E3	NGC 7716	111	Sab(r)I
NGC 6822	330	imlV-V	NGC 7171	176	Sbc(r)I-II	NGC 7721	176	$\mathrm{Sbc}(\mathrm{s}) \mathrm{I} 1.2$
NGC 6835	195	Amorph?	NCC 7177	118	$\mathbf{S a b}(\mathrm{r})$ II. 2	NGC 7723	163	SBl)(rs)I-II
NGC 6851	10	E4	NGC 7184	141	$\mathbf{S b}(\mathbf{r})$ II	NGC 7727	83	Sa pee
NGC 6854	21	E0 + E1	NGC 7192	40	$\mathrm{SO}_{2}(0)$	NGC 7741	297.S 10	$\mathrm{SBc}(\mathrm{s}) \mathrm{H} .2$
NGC 6861	13	so;j(6)	NGC 7196	27	E3/S03(3)	NGC 7742	66	Sa(r!)
NGC 6868	26	E3/SO 2/3 (3)	NGC 7205	144	$\mathrm{Sb}(\mathrm{r}) \mathrm{II} .8$	NGC 7743	91.106	SBa
NGC 6870	26	E/SO	NGC 7213	75. S1 4	Sa (rs)	NGC 7744	56	SBO!(3)
NGC 6875	59	S0/a(ripples)	NGC 7217	143	$\mathbf{S b} \mathbf{(r)}$ II-III	NGC 7755	203	SBbe(r)/Sbe(r)I-II
NGC 6876	22	E3	NGC 7218	271	$\mathrm{Sc}(\mathrm{s}) \mathrm{II} .8$	NGC 7764	329	SBmll
NGC 6878	228	Sc(r) 1.3	NGC 7232	51	$\mathrm{SO} 3(7) \mathrm{in}-\mathrm{Sb}$	NGC 7769	81.198	Sbe(s)(tides?)
NGC 6887	133	$\mathrm{Sli}(\mathrm{s}) \mathrm{l}-\mathrm{II}$	NGC 7233	51	Sa (late)	NCC 7770	81.198	Sa pee
NGC 6890	144	$\mathbf{S b}(\mathbf{s}) \mathrm{II}-\mathrm{II}]$	NGC 7252	340	Merger or SO i pee	NGC 7771	81,198	SBab pec
NGC 6893	13	SO3(4)	NCC 7300	228	$\mathrm{Sc}(\mathrm{s}) \mathrm{I}-\mathrm{E}$	NGC 7779	65. 133	Sa
NGC 6902	69	$\mathrm{Sa}(\mathrm{r})$	NGC 7302	32	SO] (4)	NGC 7782	133.S 13	$\mathbf{S b}(\mathbf{s})$ I-II
NGC 6907	208	Sl ${ }^{\text {a }}$ ($(\mathrm{s}) \mathrm{II}$	NGC 7307	311	SBc	NCC 7785	27	S0!(5)/E5
NGC 6909	11	E5 (E/SO)	NGC 7309	228	Sr (rs) I -[I	NGC 7793	321.S6	Sd (s) IV
NGC 6923	208	SBbe(s)II	NGC 7314	278	$\mathrm{S}^{\wedge} \mathrm{sJIII}$	NGC 7796	3	El
NGC 6925	185	Sl)(-(r)I-II	NGC 7329	163	$\mathrm{SBb}(\mathrm{r}) \mathrm{I}-\mathrm{II}$	NGC 7814	$112 . \mathrm{Sl1}$	S (ab)

ets Ref-Attlas
 n"uminian

FEB • 8 . 210 ?

